Performance Analysis

Peter Harrison, Maria Vigliotti and Jeremy Bradley

Room 372. Email: jb@doc.ic.ac.uk

Department of Computing, Imperial College London

Produced with prosper and LATEX

Recall Jackson's theorem

For a steady-state probability $\pi(r_1, ..., r_N)$ of there being r_1 jobs in node 1, r_2 nodes at node 2, etc.:

$$egin{array}{lll} \pi(r_1,r_2,\ldots,r_N) &=& \prod_{i=1}^N (1-
ho_i)
ho_i^{r_i} \ &=& \prod_{i=1}^N \pi_i(r_i) \end{array}$$

where $\pi_i(r_i)$ is the steady-state probability there being n_i jobs at node i independently

PEPA and Product Form

- A product form result links the overall steady-state of a system to the product of the steady state for the components of that system
 - e.g. Jackson's theorem
- In PEPA, a simple product form can be got from:

$$P_1 \bowtie P_2 \bowtie \cdots \bowtie P_n$$

- $\pi(P_1^{r_1}, P_2^{r_2}, \dots, P_n^{r_n}) = \frac{1}{G} \prod_{i=1}^n \pi(P_1^{r_1}) \cdots \pi(P_n^{r_n})$
- where $\pi(P_i^{r_i})$ is steady state prob. that component P_i is in state r_i

PEPA and RCAT

- RCAT: Reversed Compound Agent Theorem
- RCAT can take the more general cooperation:

$$P \bowtie_{L} Q$$

 ...and find a product form, given structural conditions, in terms of the individual components P and Q

What does RCAT do?

- RCAT expresses the reversed component $\overline{P}\bowtie \overline{Q}$ in terms of \overline{P} and \overline{Q} (almost)
- This is powerful since it avoids the need to expand the state space of $P \bowtie_{L} Q$
- This is useful since from the forward and reversed processes, $P \bowtie_{L} Q$ and $P \bowtie_{L} Q$, we can find the steady state distribution $\pi(P_i, Q_i)$
- \bullet $\pi(P_i,Q_i)$ is the steady state distribution of both the forward and reversed processes (by definition)

Recall: Reversed processes

The reversed process of a stationary Markov process $\{X_t : t \geq 0\}$ with state space S, generator matrix Q and stationary probabilities $\vec{\pi}$ is a stationary Markov process with generator matrix Q' defined by:

$$q'_{ij} = \frac{\pi_j q_{ji}}{\pi_i} \qquad : i, j \in S$$

and with the same stationary probabilities $\vec{\pi}$.

Kolmogorov's Generalised Criteria

A stationary Markov process with state space S and generator matrix Q has reversed process with generator matrix Q' if and only if:

- 1. $q'_i = q_i$ for every state $i \in S$
- 2. For every finite sequence of states

$$i_1, i_2, ..., i_n \in S$$
,

$$q_{i_1 i_2} q_{i_2 i_3} \dots q_{i_{n-1} i_n} q_{i_n i_1} = q'_{i_1 i_n} q'_{i_n i_{n-1}} \dots q'_{i_3 i_2} q'_{i_2 i_1}$$

where
$$q_i = -q_{ii} = \sum_{j:j\neq i} q_{ij}$$

Finding π from the reversed process

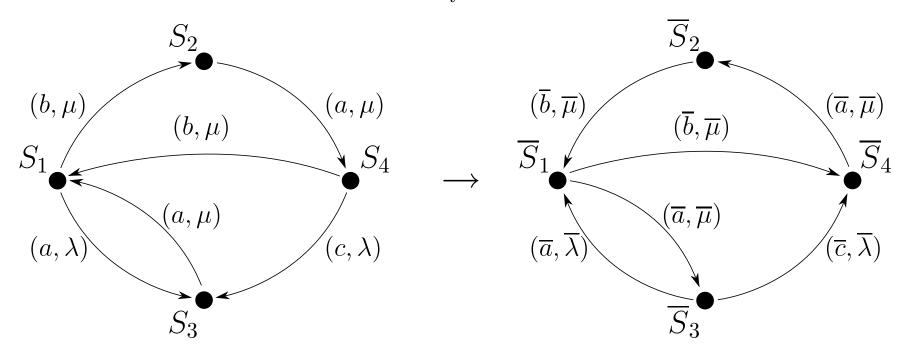
- Once reversed process rates Q' have been found, can be used to extract $\vec{\pi}$
- In an irreducible Markov process, choose a reference state 0 arbitrarily
- Find a sequence of connected states, in either the forward or reversed process, $0, \ldots, j$ (i.e. with either $q_{i,i+1} > 0$ or $q'_{i,i+1} > 0$ for $0 \le i \le j-1$) for any state j and calculate:

$$\pi_j = \pi_0 \prod_{i=0}^{j-1} \frac{q_{i,i+1}}{q'_{i+1,i}} = \pi_0 \prod_{i=0}^{j-1} \frac{q'_{i,i+1}}{q_{i+1,i}}$$

Reversing a sequential component

Reversing a sequential component, S, is straightforward:

$$\overline{S} \stackrel{\text{def}}{=} \sum_{i: R_i \xrightarrow{(a_i, \lambda_i)} S} (\overline{a}_i, \overline{\lambda}_i).\overline{R}_i$$



Activity substitution

• We need to be able to substitute a PEPA activity $\alpha = (a, r)$ for another $\alpha' = (a', r')$:

$$(\beta.P)\{\alpha \leftarrow \alpha'\} \ = \ \begin{cases} \alpha'.(P\{\alpha \leftarrow \alpha'\}) \ : \text{if } \alpha = \beta \\ \beta.(P\{\alpha \leftarrow \alpha'\}) \ : \text{otherwise} \end{cases}$$

$$(P+Q)\{\alpha \leftarrow \alpha'\} \ = \ P\{\alpha \leftarrow \alpha'\} + Q\{\alpha \leftarrow \alpha'\}$$

$$(P \bowtie Q)\{\alpha \leftarrow \alpha'\} \ = \ P\{\alpha \leftarrow \alpha'\} \bowtie Q\{\alpha \leftarrow \alpha'\}$$
 where
$$L\{(a,\lambda) \leftarrow (a',\lambda')\} = (L \setminus \{a\}) \cup \{a'\}$$
 if $a \in L$ and L otherwise

A set of substitutions can be applied with:

$$P\{\alpha \leftarrow \alpha', \beta \leftarrow \beta'\}$$

RCAT Conditions (Informal)

For a cooperation $P \bowtie_L Q$, the reversed process $\overline{P \bowtie_L Q}$ can be created if:

- 1. Every passive action in P or Q that is involved in the cooperation \bowtie_L must always be enabled in P or Q respectively.
- 2. Every reversed action \overline{a} in \overline{P} or \overline{Q} , where a is active in the original cooperation \bowtie_L , must:
 - (a) always be enabled in \overline{P} or \overline{Q} respectively
 - (b) have the same rate throughout \overline{P} or \overline{Q} respectively

RCAT Notation

In the cooperation, $P \bowtie_{L} Q$:

- $\mathcal{A}_P(L)$ is the set of actions in L that are also active in the component P
- $\mathcal{A}_Q(L)$ is the set of actions in L that are also active in the component Q
- $\mathcal{P}_P(L)$ is the set of actions in L that are also passive in the component P
- $\mathcal{P}_Q(L)$ is the set of actions in L that are also passive in the component Q
- \overline{L} is the reversed set of actions in L, that is $\overline{L} = \{\overline{a} \mid a \in L\}$

RCAT Conditions (Formal)

For a cooperation $P \bowtie_L Q$, the reversed process $\overline{P \bowtie_L Q}$ can be created if:

- 1. Every passive action type in $\mathcal{P}_P(L)$ or $\mathcal{P}_Q(L)$ is always enabled in P or Q respectively (i.e. enabled in all states of the transition graph)
- 2. Every reversed action of an active action type in $\mathcal{A}_P(L)$ or $\mathcal{A}_Q(L)$ is always enabled in \overline{P} or \overline{Q} respectively
- 3. Every occurrence of a reversed action of an active action type in $\mathcal{A}_P(L)$ or $\mathcal{A}_Q(L)$ has the same rate in \overline{P} or \overline{Q} respectively

RCAT (I)

For $P \bowtie_{L} Q$, the reversed process is:

$$\overline{P \bowtie_{L} Q} = R^* \bowtie_{\overline{L}} S^*$$

where:

$$R^* = \overline{R}\{(\overline{a}, \overline{p}_a) \leftarrow (\overline{a}, \top) \mid a \in \mathcal{A}_P(L)\}$$

$$S^* = \overline{S}\{(\overline{a}, \overline{q}_a) \leftarrow (\overline{a}, \top) \mid a \in \mathcal{A}_Q(L)\}$$

$$R = P\{(a, \top) \leftarrow (a, x_a) \mid a \in \mathcal{P}_P(L)\}$$

$$S = Q\{(a, \top) \leftarrow (a, x_a) \mid a \in \mathcal{P}_Q(L)\}$$

where the reversed rates, \overline{p}_a and \overline{q}_a , of reversed actions are solutions of Kolmogorov equations.

RCAT (II)

 x_a are solutions to the linear equations:

$$x_a = \begin{cases} \overline{q}_a & : \text{if } a \in \mathcal{P}_P(L) \\ \overline{p}_a & : \text{if } a \in \mathcal{P}_Q(L) \end{cases}$$

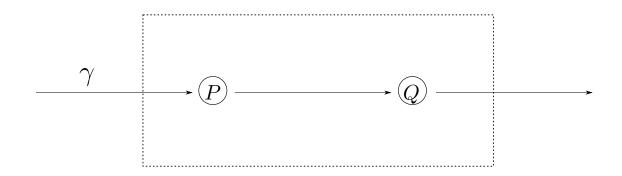
and \overline{p}_a , \overline{q}_a are the symbolic rates of action types \overline{a} in \overline{P} and \overline{Q} respectively.

RCAT in words

To obtain
$$\overline{P \bowtie_{L} Q} = R^* \bowtie_{\overline{L}} S^*$$
:

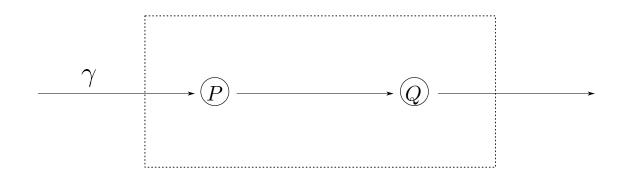
- 1. substitute all the cooperating passive rates in P, Q with symbolic rates, x_{action} , to get R, S
- 2. reverse R and S, to get \overline{R} and \overline{S}
- 3. solve non-linear equations to get reversed rates, $\{\overline{r}\}$ in terms of forward rates $\{r\}$
- 4. solve non-linear equations to get symbolic rates $\{x_{action}\}$ in terms of forward rates
- 5. substitute all the cooperating active rates in \overline{R} , \overline{S} with \top to get R^* , S^*

Example: Tandem queues (I)



- Jobs arrive to node P with activity (e, γ)
- ullet Jobs are serviced at node P with rate μ_1
- Jobs move between node P and Q with action a
- ullet Jobs are serviced at node Q with rate μ_2
- Jobs depart Q with action d

Example: Tandem queues (II)



• PEPA description, $P_0 \bowtie_{\{a\}} Q_0$, where:

$$P_0 \stackrel{\text{def}}{=} (e, \gamma).P_1$$
 $P_n \stackrel{\text{def}}{=} (e, \gamma).P_{n+1} + (a, \mu_1).P_{n-1} : n > 0$
 $Q_0 \stackrel{\text{def}}{=} (a, \top).Q_1$
 $Q_n \stackrel{\text{def}}{=} (a, \top).Q_{n+1} + (d, \mu_2).Q_{n-1} : n > 0$

Example: Tandem queues (III)

Replace passive rates in cooperation with variables:

$$R = P\{(a, \top) \leftarrow (a, x_a) \mid a \in \mathcal{P}_P(L)\}$$

$$S = Q\{(a, \top) \leftarrow (a, x_a) \mid a \in \mathcal{P}_Q(L)\}$$

Transformed PEPA model:

$$R_0 \stackrel{\text{def}}{=} (e, \gamma).R_1$$
 $R_n \stackrel{\text{def}}{=} (e, \gamma).R_{n+1} + (a, \mu_1).R_{n-1} : n > 0$
 $S_0 \stackrel{\text{def}}{=} (a, x_a).S_1$
 $S_n \stackrel{\text{def}}{=} (a, x_a).S_{n+1} + (d, \mu_2).S_{n-1} : n > 0$

Example: Tandem queues (IV)

Reverse components R and S to get:

$$\overline{R}_{0} \stackrel{\text{def}}{=} (\overline{a}, \overline{\mu}_{1}).\overline{R}_{1}$$

$$\overline{R}_{n} \stackrel{\text{def}}{=} (\overline{a}, \overline{\mu}_{1}).\overline{R}_{n+1} + (\overline{e}, \overline{\gamma}).\overline{R}_{n-1} : n > 0$$

$$\overline{S}_{0} \stackrel{\text{def}}{=} (\overline{d}, \overline{\mu}_{2}).\overline{S}_{1}$$

$$\overline{S}_{n} \stackrel{\text{def}}{=} (\overline{d}, \overline{\mu}_{2}).\overline{S}_{n+1} + (\overline{a}, \overline{x}_{a}).\overline{S}_{n-1} : n > 0$$

- Now need to find in this order:
 - 1. reverse rates in terms of forward rates
 - 2. variable x_a in terms of forward rates

Example: Tandem queues (V)

- Finding reverse rates using Kolmogorov
 - Compare forward/reverse leaving rate from states R_0 , S_0 :

$$exit_rate(R_0) = exit_rate(\overline{R}_0) : \overline{\mu}_1 = \gamma$$

 $exit_rate(S_0) = exit_rate(\overline{S}_0) : \overline{\mu}_2 = x_a$

• Compare rate cycles in R, \overline{R} and S, \overline{S} :

$$R_0 \to R_1 \to R_0: \quad \gamma \mu_1 = \overline{\mu}_1 \overline{\gamma}$$

 $S_0 \to S_1 \to S_0: \quad x_a \mu_2 = \overline{\mu}_2 \overline{x}_a$

• Giving: $\overline{\gamma}=\mu_1$ and $\overline{x}_a=\mu_2$

Example: Tandem queues (VI)

Finding symbolic rates – recall:

$$x_a = \begin{cases} \overline{q}_a & : \text{if } a \in \mathcal{P}_P(L) \\ \overline{p}_a & : \text{if } a \in \mathcal{P}_Q(L) \end{cases}$$

- In this case, $a \in \mathcal{P}_Q(L)$, so $x_a = \overline{p}_a = \text{reversed}$ rate of $a\text{-action in }\overline{R}$
- Thus $x_a = \overline{\mu}_1 = \gamma$
- This agrees with rate of customers leaving forward network – why?

Example: Tandem queues (VII)

- - ${f P}_0 igotimes_{\{a\}} Q_0 = R_0^* igotimes_{\{\overline{a}\}} S_0^*$ where:

$$R_0^* \stackrel{\text{def}}{=} (\overline{a}, \top).R_1^*$$

$$R_n^* \stackrel{\text{def}}{=} (\overline{a}, \top).R_{n+1}^* + (\overline{e}, \mu_1).R_{n-1}^* : n > 0$$

$$S_0^* \stackrel{\text{def}}{=} (\overline{d}, \gamma).S_1^*$$

$$S_n^* \stackrel{\text{def}}{=} (\overline{d}, \gamma).S_{n+1}^* + (\overline{a}, \mu_2).S_{n-1}^* : n > 0$$

Example: Tandem queues (VIII)

- Finding the steady state distribution:
 - Need to use the following formula:

$$\pi_j = \pi_0 \prod_{i=0}^{j-1} \frac{q_{i,i+1}}{q'_{i+1,i}}$$

...to find the steady state distribution

- First need to construct a sequence of events to a generic state (n, m) in network
 - where (n,m) represents n jobs in node P and m in node Q

Example: Tandem queues (IX)

- Generic state can be reached by:
 - 1. n+m arrivals or e-actions to node P (forward rate $=\gamma$, reverse rate $=\mu_1$)
 - 2. followed by m departures or a-actions from node P and arrivals to node Q (forward rate $= \mu_1$, reverse rate $= \mu_2$)

Thus:
$$\pi(n,m) = \pi_0 \prod_{i=0}^{n+m-1} \frac{\gamma}{\mu_1} \times \prod_{i=0}^{m-1} \frac{\mu_1}{\mu_2}$$

$$= \pi_0 \left(\frac{\gamma}{\mu_1}\right)^n \left(\frac{\gamma}{\mu_2}\right)^m$$

References

- RCAT
 - Turning back time in Markovian Process Algebra. Peter Harrison. TCS 290(3), pp. 1947–1986. January 2003.
- Generalised RCAT: less strict structural conditions
 - Reversed processes, product forms and a non-product form. Peter Harrison. LAA 386, pp. 359–381. July 2004.
- MARCAT: N-way cooperation extension:
 - Separable equilibrium state probabilities via time-reversal in Markovian process algebra.
 Peter Harrison and Ting-Ting Lee. TCS, pp. 161–182. November 2005.