
Reasoning about Programs

Jeremy Bradley, Francesca Toni and Xiang Feng

Room 372. Office hour - Tuesdays at noon. Email: jb@doc.ic.ac.uk

Department of Computing, Imperial College London

Produced with prosper and LATEX

Induction [01/2005] – p.1/34

Haskell v Java

Cannot change values of variables in Haskell
Not allowed: a := a + 1;

In Java:
Allowed: a := a + 1;

In Java: try not to let functions change values
of variables outside of scope of function

Induction [01/2005] – p.2/34

KISS Principle

Reasoning will be easy if parts of program
are simple:

“There are two ways of constructing
a first rate program: one is to make it so
simple that there are obviously no
deficiencies; the other is to make it so
complicated that there are no obvious
deficiencies.” Tony Hoare

Induction [01/2005] – p.3/34

Pre/Post/Mid Conditions

Pre-condition must be true before a method or
function is entered, if code is to operate
correctly

Post-condition will be true after code has
executed (as long as Pre-condition was met)

Mid-condition is true at a specific checkpoint in
the code while it is running

Induction [01/2005] – p.4/34

Sequential reasoning

void swapInts (int x, int y) {

// pre: none

// post: (x == y_0 && y == x_0)

int z = x;

x = y;

y = z;

}

In pre/post: var0 refers to an input variable’s
initial value, var is intermediate/final value

Allows reasoning about variables whose
value alters over the course of the function

Variables not mentioned in pre/mid/post are
assumed unchanged i.e. var=var0

Induction [01/2005] – p.5/34

Conditional reasoning

int intMin(int x, int y) {

// pre: none

// post: (res == x_0 || res == y_0)

// && (res <= x_0 && res <= y_0))

int res;

if (x <= y)

res = x;

else

res = y;

return res;

}

where res is notation for return variable
Induction [01/2005] – p.6/34

intMin with mid-conditions

int intMin(int x, int y) {

// pre: none

// post: (res == x_0 || res == y_0)

// && (res <= x_0 && res <= y_0))

int res;

if (x <= y)

res = x;

// mid case x <= y: (res == x_0 && res <= y_0)

else

res = y;

// mid case x > y: (res == y_0 && res <= x_0)

return res;

}
Induction [01/2005] – p.7/34

Reasoning with mid-conditions

From intMin program:
Need to reason from pre-condition to
mid-condition:

tt ` (res = x0 ∧ res ≤ y0)

∨ (res = y0 ∧ res ≤ x0)

Need to reason from mid-condition to
post-condition:

(res = x0 ∧ res ≤ y0)

` (res = x0 ∨ res = y0)

∧ (res ≤ x0 ∧ res ≤ y0))

Induction [01/2005] – p.8/34

Swapping variable values

class Swap1 {

public static void swap (int i, int j) {

int t=i;

i = j;

j = t;

return;

}

public static void main (String args[]) {

int a = 1;

int b = 2;

swap(a,b);

}

}

Induction [01/2005] – p.9/34

Swapping variable values

The method swap1.swap does not swap the
values of i and j

Why? – call-by-reference versus call-by-value
i.e. no side-effects

In Java, all user classes are passed by
reference

i.e. side-effects can happen

Induction [01/2005] – p.10/34

Call-by-reference in Java

For the following coordinate class:

class Point {
int xc;
int yc;

Point (int i, int j) {
xc = i;
yc = j;

}
}

Induction [01/2005] – p.11/34

Call-by-reference in Java

class Swap { \\ Swaps coordinates of point Q

public static void swap (Point Q) {

int t = Q.xc;

Q.xc=Q.yc;

Q.yc=t;

return;

}

public static void main (String args[]) {

Point P = new Point (10,25);

swap (P);

}

}

Correct (but complicated) swap method
Induction [01/2005] – p.12/34

Simplified swap method

public void swap () {

// Pre: none

// Post: xc == yc_0 && yc == xc_0

int t;

t = xc;

xc = yc;

yc = t;

return;

}

Simpler class-related swap implementation

Induction [01/2005] – p.13/34

Simplified swap method

public void swap () {

// Pre: none

// Post: xc == yc_0 && yc == xc_0

int t;

[1] t = xc; // a. t == xc_0 && yc == yc_0

[2] xc = yc; // b. t == xc_0 && xc == yc_0

[3] yc = t; // c. xc == yc_0 && yc == xc_0

return;

}

Here we have 2 mid-conditions (a) and (b),
and the post-condition (c)

Important lines of code are numbered [n]

Induction [01/2005] – p.14/34

Using natural deduction

From pre-condition to mid-condition (a):
` t = xc0 ∧ yc = yc0

1. xc = xc0 var I
2. yc = yc0 var I
3. t = xc code[1] I
4. t = xc0 =trans(1, 3)

5. t = xc0 ∧ yc = yc0 ∧I(2, 4)

Induction [01/2005] – p.15/34

New reasoning tools

var I
used to introduce implicit pre-condition
assumptions
not needed if pre-condition is stated in full

code[n] I
used to introduce line n from the program

trans
transitivity property, e.g.

if a = b and b = c then a = c
if x ≤ y and y ≤ z then x ≤ z

Induction [01/2005] – p.16/34

New reasoning tools

Also require:

def
when using a definition e.g.

a ≤ b ≡ a = b ∨ a < b

=subs
using an equality to replace a variable e.g.
1. x = z + 1

2.
...

3. z = y0

4. x = y0 + 1 =subs(1, 3)
Induction [01/2005] – p.17/34

Back to intMin

int intMin(int x, int y) {

// pre: none

// post: (res == x_0 || res == y_0)

// && (res <= x_0 && res <= y_0))

int res;

if (x <= y)

[1] res = x;

// mid case x <= y: (res == x_0 && res <= y_0)

else

[2] res = y;

// mid case x > y: (res == y_0 && res <= x_0)

return res;

}

Induction [01/2005] – p.18/34

Pre-condition to mid-condition

Require to show:
` (res = x0 ∧ res ≤ y0) ∨ (res = y0 ∧ res ≤ x0)

1. x = x0 varI

2. y = y0 varI

3. x ≤ y ∨ x > y lem

4. x ≤ y ass

5. res = x code[1]I

6. res = x0 =trans(1, 5)

7. res ≤ y =subs(4, 5)

8. res ≤ y0 =subs(2, 7)

9. res = x0 ∧ res ≤ y0 ∧I(6, 8)

10. x > y ass

11. res = y code[2]I

12. res = y0 =trans(2, 11)

13. res < x =subs(10, 11)

14. res < x0 =subs(1, 13)

15. res < x0 ∨ res = x0 ∨I(14)

16. res ≤ x0 ≤def(15)

17. res = y0 ∧ res ≤ x0 ∧I(12, 16)

18. (res = x0 ∧ res ≤ y0) ∨ (res = y0 ∧ res ≤ x0) ∨E(3, 4, 9, 10, 17)

Induction [01/2005] – p.19/34

How to cope with x = x + 1

How do we deal with statements that modify
an input variable x based on the old value of
x. e.g.
x = x + 1

x = 2 * x

x = 3 * z % x

Answer: need to introduce a sequence of x
variables as well as x0: i.e. x1, x2,x3,. . .

Extra variables keep track of all the
intermediary values of x before the final
version is calculated

Induction [01/2005] – p.20/34

Example: extra variables

public int intInc (int x) {
// Pre: none
// Post: x == 2*x_0 + 2

[1] x = x + 1;
[2] x = 2 * x;

return x;
}

Extra variables needed as x has 3 values
during method execution

We will see that we also need to modify the
behaviour of VAR and CODE keywords...

Induction [01/2005] – p.21/34

Example: extra variables

Reasoning for intInc method:
1. x1 = x0 var I
2. x2 = x1 + 1 code[1] I
3. x3 = 2 ∗ x2 code[2] I
4. x = x3 var I
5. x2 = x0 + 1 =subs(1, 2)

6. x3 = 2 ∗ (x0 + 1) =subs(3, 5)

7. x3 = 2 ∗ x0 + 2 distributivity def(6)
8. x = 2 ∗ x0 + 2 =subs(7, 4)

Induction [01/2005] – p.22/34

Modifications to var

var
is used to introduce the first extra variable
in terms of the initial value: x1 = x0

is used to set the final value, x, to the last
in the sequence of extra x-variables, in this
case: x = x3

Induction [01/2005] – p.23/34

Modifications to code

code[n]
is used to introduce code from line n

if a variable undergoes a change of value
during reasoning e.g. x = f(x), then extra
variables must be used, i.e.

xi+1 = f(xi)

where i is the index of the last extra
variable used

Induction [01/2005] – p.24/34

Modifications to code

code[n]
code[n] statements must be introduced in
program order so that correct variable
names can be set
code[n] statements in while/if clauses can
only be introduced if associated
branch/loop tests are true

Induction [01/2005] – p.25/34

Summary: Extra variables

Note that the final result value is still x and is
equal to the last supplementary variable

We should not need many extra variables if
we create sufficient mid-conditions

mid-conditions help to break up the
reasoning into smaller easier chunks

The result value x might be the value in a
mid-condition or a post-condition depending
on which we are trying to derive

Induction [01/2005] – p.26/34

More mid-conditions...

Need to augment Point class with up and
right methods:

...

public void up (int n) {

// Pre: none

// Post: xc == xc_0 && yc == yc_0 + n

yc = yc + n;

}

public void right (int n) {

// Pre: none

// Post: xc == xc_0 + n && yc == yc_0

xc = xc + n;

}

...

Induction [01/2005] – p.27/34

More mid-conditions...

Can reason about evolution of coordinates
from method call to method call

...

public static square (Point P, int n) {

// Pre: none

// Post: xc == xc_0 && yc == yc_0

[1] P.right(n); // xc == xc_0+n && yc == yc_0

[2] P.up(n); // xc == xc_0+n && yc == yc_0+n

[3] P.right(-n); // xc == xc_0 && yc == yc_0+n

[4] P.up(-n); // xc == xc_0 && yc == yc_0

}

...

Induction [01/2005] – p.28/34

Using lower level post-conditions

We are going to assume that Point.left
and Point.right have been proved correct

We now have to prove that square meets its
post-condition

i.e. ` xc = xc0 ∧ yc = yc0

1. xc1 = xc0 var I

2. yc1 = yc0 var I

3. xc2 = xc1 + n ∧ yc2 = yc1 pc[1] I

4. xc3 = xc2 ∧ yc = yc2 + n pc[2] I

5.
...

Induction [01/2005] – p.29/34

Some more extra notation

pc[n]
Introduces the post condition of the method
at line n

Same behaviour as code[n] when creating
intermediate variables between the initial
value xc0 and final value xc

hence introduction xc1 between start of
square and beginning of P.right(n)
might optionally need xc2, xc3, . . .
depending on how many post-conditions
we are using

Induction [01/2005] – p.30/34

Important rules

For pc/code statements:
introduce lines into reasoning in program
order
only introduce pc/code statements from
if/while clauses if branch/loop tests met

If variable changes value during reasoning
then will require extra variables

applies to local and global method
variables

Induction [01/2005] – p.31/34

Class invariants

Reasoning specific to an OO paradigm

Class invariant
is a logical property that is true of a class
and its data at all times
needs to be true for after each constructor
method
needs to be shown that invariant is
reestablished after each (non-constructor)
method call

Induction [01/2005] – p.32/34

Class invariant example

class Total {

// Class invariant: i >= 0

int i;

Total () {

i = 0;

}

void addto(int x) {

// Pre: x_0 > 0

// Post: i == (i_0 + x_0)

i += x;

}

}

Induction [01/2005] – p.33/34

Class invariant

After Total (): i = 0 ≥ 0
√

Invariant re-established after addup(x):
Show: i0 ≥ 0 ∧ x0 > 0 ∧ (x0 > 0 → (i =
(i0 + x0))) ` i ≥ 0

In general:

variant before∧pre∧(pre → post) ` variant after

Induction [01/2005] – p.34/34

	Haskell v Java
	KISS Principle
	Pre/Post/Mid Conditions
	Sequential reasoning
	Conditional reasoning
	intMin with mid-conditions
	Reasoning with mid-conditions
	Swapping variable values
	Swapping variable values
	Call-by-reference in Java
	Call-by-reference in Java
	Simplified swap method
	Simplified swap method
	Using natural deduction
	New reasoning tools
	New reasoning tools
	Back to intMin
	Pre-condition to mid-condition
	How to cope with {	t x = x + 1}
	Example: extra variables
	Example: extra variables
	Modifications to var
	Modifications to code
	Modifications to code
	Summary: Extra variables
	More mid-conditions...
	More mid-conditions...
	Using lower level post-conditions
	Some more extra notation
	Important rules
	Class invariants
	Class invariant example
	Class invariant

