Mathematical Induction: Tutorial sheet 1

Jeremy Bradley

10 January 2005

```
Assessed Exercise 1: Question 3 is assessed and is due in to the SAO by 4.30 pm on 25 January 2005. This is a hardcopy submission but you still need to register your submission using CATE which will also provide you with your submission cover sheet: https://sparrow.doc.ic.ac.uk/~cate/
```

1. Prove using induction that $\sum_{i=0}^{n} i^{2}=\frac{n}{6}(n+1)(2 n+1)$ for $n \geq 0$.
2. (a) Prove that for all $n \geq 0$, (proc1 n) 'mod' $6=0$ is a property of the function proc1.
proc1 :: Int -> Int
proc1 $\mathrm{n}=\mathrm{n}$ ^3-25*n
(b) Using the result from part (2a), (without using induction) show that, if the restriction $n \geq 0$ is removed, (proc1 n) ' $\bmod ^{\prime} 6=0$ is true for all integers n.
(c) Prove that for all $n \geq 0$, all elements of the list generated by procInts n are divisible by 6 (again using the result from part (2a)).
-- pre-condition: n >= 0
procInts :: Int \rightarrow [Int]
procInts $0=[0]$
procInts $\mathrm{n}=($ proc1 $\mathrm{n}:$ procInts ($\mathrm{n}-1)$)
3. ASSESSED Given the following function definition, prove that for all $n \geq 1$:

$$
\text { head }(\text { squareList } \mathrm{n})=n^{2}
$$

```
squareList :: Int -> [Int]
squareList 1 = [1]
squareList n = (2*n + m - 1 : ms) where
    ms = squareList (n-1)
    m = head ms
```

4. Consider the program:
```
-- pre-condition: n >= 1
uList2 :: Int -> Int
uList2 1 = 3
uList2 2 = 5
uList2 n = (3*uList2 (n-1)) - (2*uList2 (n-2))
```

(a) What is the post-condition for uList2 n in terms of n ?
(b) Prove that your post-condition holds by induction.
5. Given the following program for calculating powers of 2:

```
-- pre-condition: n >= 0
power2 :: Int -> Int
power2 0 = 1
power2 n = 2 * (power2 (n - 1))
```

(a) Prove the property that power2 $\mathrm{n}<n$! for all $n \geq 4$.
(b) Given the following more efficient implementation of power2, prove the same property of power $2 \bmod n$ for $n \geq 4$.
-- pre-condition: n >= 0
power2mod :: Int -> Int
power2mod $0=1$
power2mod n
| (mod $n 2)=0=($ power2mod (div $n 2))$

* (power2mod (div n 2))
| otherwise $=2 * \operatorname{power} 2 \bmod (n-1)$

