
Structural Induction: Tutorial sheet 3

Jeremy Bradley

23 January 2005

1. Prove the following by induction on n:

(a) Show that sumOddCubes n < 2n4 for all n ≥ 1:

sumOddCubes :: Int -> Int

-- Pre-condition: n >= 1

sumOddCubes 1 = 1

sumOddCubes n = (2*n-1)^3 + (sumOddCubes (n-1))

(b) Show that sumChoices n = 2n − 1, for all n ≥ 1, where

sumChoices :: Integer -> Integer

-- Pre-condition: n >= 1

sumChoices n = sum [choose (n,r) | r <- [1..n]]

choose :: (Integer, Integer) -> Integer

-- Pre-condition: n >= r and n, r >= 0

choose (n, r) = div (factorial n) ((factorial r)

* (factorial (n-r)))

factorial :: Integer -> Integer

-- Pre-condition: n >= 1

factorial 0 = 1

factorial n = product [1..n]

To relate your induction step to your induction assumption, you may
use the fact that for all 1 ≤ r ≤ n:

choose (n+ 1, r) = choose (n, r) + choose (n, r− 1)

without proof.

1



2. Show, using structural induction, that for all ts :: BTree a:

(numBTelem ts) = length (flattenTree ts)

data BTree a

= BTempty

| BTnode (BTree a) a (BTree a)

flattenTree :: BTree a -> [a]

flattenTree BTempty = []

flattenTree (BTnode lhs i rhs)

= (flattenTree lhs) ++ [i]

++ (flattenTree rhs)

numBTelem :: BTree a -> Int

numBTelem BTempty = 0

numBTelem (BTnode lhs x rhs) = 1 + (numBTelem lhs)

+ (numBTelem rhs)

length :: [a] -> Int

length [] = 0

length (x:xs) = 1 + (length xs)

You may assume the property: length (xs ++ ys) = length xs+length ys

3. Inductions over functions with multiple parameters sometimes (not al-
ways) require several induction arguments. For instance, in being asked
to prove: for all x, for all y, show F (x, y), for some proposition F . In
performing induction over the first variable, x, you would start with the
proposition P (x) = for all y, F (x, y). In trying to prove the base case,
P (0), it may be that a second induction argument is required, i.e. an in-
duction argument over y when x = 0. It may also be the case that the
induction step P (k+1) requires a further induction argument, again over
y and this time when x = k + 1.

The program below is Ackermann’s function.

ack :: Int -> Int -> Int

-- Pre-condition: m >= 0 and n >= 0

ack m n

| (m == 0) && (n >= 0) = n+1

| (m > 0) && (n == 0) = ack (m-1) 1

| (m > 0) && (n > 0) = ack (m-1) (ack m (n-1))

Prove that:

for all m ≥ 0, for all n ≥ 0, (ack m n) terminates

2



As usual, take your induction proposition to be:

P (m) = for all n ≥ 0, (ack m n) terminates

and perform induction on m. You will find the base case does not require
a further induction, however the induction step does. You will need to
remember that the induction assumption, P (k), from the induction over
m applies to the entire induction argument over n in the induction step.

You may find it useful to create a second proposition:

Q(n) = (ack (k+ 1) n) terminates

at the appropriate moment in your argument.

Why does a single induction over just m fail?

4. Prove P (xs) for all lists, xs:

P (xs) = Q(xs) ∧R(xs)

Q(xs) = x 6∈ filterX x xs

R(xs) = (there exists qs such that (merge qs (filterX x xs)) = xs)

∧ for all q ∈ qs⇒ q = x

by proving Q(xs) and R(xs) by induction separately.

filterX :: (Ord a, Eq a) => a -> [a] -> [a]

-- Pre-condition: input list should be in ascending order

filterX x [] = []

filterX x (y:ys)

| (x == y) = filterX x ys

| otherwise = y : filterX x ys

merge :: Ord a => [a] -> [a] -> [a]

merge [] ys = ys

merge xs [] = xs

merge (x:xs) (y:ys)

| x < y = x : (merge xs (y:ys))

| otherwise = y : (merge (x:xs) ys)

3



5. A datatype Ball is defined such that + and ∗ are defined for any pair of
variables of type Ball:

data Ball = ...

instance Num Ball where

(*) :: Ball -> Ball -> Ball

b1 * b2 = ...

(+) :: Ball -> Ball -> Ball

b1 + b2 = ...

Also for any b :: Ball and positive integer, n: nb =

n
︷ ︸︸ ︷

b+ b+ · · ·+ b

A function compD has the datatype compD :: Ball -> Ball.

You do not need to know how compD, + or ∗ are implemented or the details
of how a Ball is represented. All you are given is the following properties
of compD; for any h1,h2 :: Ball:

compD (h1 * h2) = (h1 * (compD h2)) + ((compD h1) * h2)

and for n,m integers, compD is linear, i.e. :

compD (n * h1 + m * h2) = n * (compD h1) + m * (compD h2)

The function applyND applies compD n times to a Ball:

applyND :: Ball -> Int -> Ball

applyND b 0 = b

applyND b n = compD (applyND b (n-1))

Show by induction on n, that for any two balls f, g, the following property
holds for all n ≥ 1:

applyND (f ∗ g) n =

n∑

r=0

(
n

r

)

(applyND f (n− r)) ∗ (applyND g r)

where: (
n

r

)

=
n!

r!(n− r)!

You are allowed to the use the fact that for 1 ≤ r ≤ n :
(

n

r

)

+

(
n

r − 1

)

=

(
n + 1

r

)

without proof.

4


