Structural Induction: Tutorial sheet 3

Jeremy Bradley

23 January 2005

1. Prove the following by induction on n :
(a) Show that sumOddCubes $\mathrm{n}<2 n^{4}$ for all $n \geq 1$:
sumOddCubes :: Int -> Int
-- Pre-condition: n >= 1
sumOddCubes 1 = 1
sumOddCubes $\mathrm{n}=(2 * \mathrm{n}-1)^{\wedge} 3+$ (sumOddCubes ($\mathrm{n}-1$))
(b) Show that sumChoices $\mathrm{n}=2^{n}-1$, for all $n \geq 1$, where
sumChoices :: Integer -> Integer
-- Pre-condition: n >= 1
sumChoices $n=\operatorname{sum}[$ choose (n, r) | $\mathrm{r}<-$ [1..n]]
choose :: (Integer, Integer) -> Integer
-- Pre-condition: $\mathrm{n}>=\mathrm{r}$ and $\mathrm{n}, \mathrm{r}>=0$
choose (n, r) $=\operatorname{div}$ (factorial n) ((factorial r)

* (factorial (n-r)))
factorial :: Integer -> Integer
-- Pre-condition: n >= 1
factorial $0=1$
factorial $\mathrm{n}=$ product [1..n]
To relate your induction step to your induction assumption, you may use the fact that for all $1 \leq r \leq n$:

$$
\text { choose }(n+1, r)=\text { choose }(n, r)+\text { choose }(n, r-1)
$$

without proof.
2. Show, using structural induction, that for all ts :: BTree a:

$$
(\text { numBTelem ts })=\text { length }(\text { flattenTree } t s)
$$

```
data BTree a
    = BTempty
    | BTnode (BTree a) a (BTree a)
flattenTree :: BTree a -> [a]
flattenTree BTempty = []
flattenTree (BTnode lhs i rhs)
    = (flattenTree lhs) ++ [i]
        ++ (flattenTree rhs)
numBTelem :: BTree a -> Int
numBTelem BTempty = 0
numBTelem (BTnode lhs x rhs) = 1 + (numBTelem lhs)
    + (numBTelem rhs)
```

length :: [a] -> Int
length [] = 0
length (x:xs) $=1+($ length $x s)$

You may assume the property: length (xs ++ ys) = length xs+length ys
3. Inductions over functions with multiple parameters sometimes (not always) require several induction arguments. For instance, in being asked to prove: for all x, for all y, show $F(x, y)$, for some proposition F. In performing induction over the first variable, x, you would start with the proposition $P(x)=$ for all $y, F(x, y)$. In trying to prove the base case, $P(0)$, it may be that a second induction argument is required, i.e. an induction argument over y when $x=0$. It may also be the case that the induction step $P(k+1)$ requires a further induction argument, again over y and this time when $x=k+1$.

The program below is Ackermann's function.
ack :: Int -> Int -> Int
-- Pre-condition: m >= 0 and $\mathrm{n}>=0$
ack m n
| (m == 0) \&\& ($n>=0$) $=n+1$
$\mid(m>0) \& \&(n=0)=\operatorname{ack}(m-1) 1$
$\mid(m>0) \& \&(n>0)=\operatorname{ack}(m-1)($ ack $m(n-1))$

Prove that:
for all $m \geq 0$, for all $n \geq 0,($ ack m n$)$ terminates

As usual, take your induction proposition to be:

$$
P(m)=\text { for all } n \geq 0,(\text { ack } \mathrm{m} \mathrm{n}) \text { terminates }
$$

and perform induction on m. You will find the base case does not require a further induction, however the induction step does. You will need to remember that the induction assumption, $P(k)$, from the induction over m applies to the entire induction argument over n in the induction step. You may find it useful to create a second proposition:

$$
Q(n)=(\operatorname{ack}(\mathrm{k}+1) \mathrm{n}) \text { terminates }
$$

at the appropriate moment in your argument.
Why does a single induction over just m fail?
4. Prove $P(\mathrm{xs})$ for all lists, $\mathrm{xs}:$

$$
\begin{aligned}
P(\mathrm{xs})= & Q(\mathrm{xs}) \wedge R(\mathrm{xs}) \\
Q(\mathrm{xs})= & \mathrm{x} \notin \mathrm{filter} \mathrm{X} \mathrm{x} \mathrm{x} \\
R(\mathrm{xs})= & (\text { there exists qs such that (merge qs }(\text { filter } \mathrm{X} \times \mathrm{xs}))=\mathrm{xs}) \\
& \wedge \text { for all } \mathrm{q} \in \mathrm{qs} \Rightarrow \mathrm{q}=\mathrm{x}
\end{aligned}
$$

by proving $Q(\mathrm{xs})$ and $R(\mathrm{xs})$ by induction separately.

```
filterX :: (Ord a, Eq a) => a -> [a] -> [a]
-- Pre-condition: input list should be in ascending order
filterX x [] = []
filterX x (y:ys)
    | (x == y) = filterX x ys
    | otherwise = y : filterX x ys
merge :: Ord a => [a] -> [a] -> [a]
merge [] ys = ys
merge xs [] = xs
merge (x:xs) (y:ys)
    | x < y = x : (merge xs (y:ys))
    | otherwise = y : (merge (x:xs) ys)
```

5. A datatype Ball is defined such that + and $*$ are defined for any pair of variables of type Ball:
```
data Ball = ...
instance Num Ball where
    (*) :: Ball -> Ball -> Ball
    b1 * b2 = ...
    (+) :: Ball -> Ball -> Ball
    b1 + b2 = ...
```

Also for any $\mathrm{b}::$ Ball and positive integer, n : $n \mathrm{~b}=\overbrace{\mathrm{b}+\mathrm{b}+\cdots+\mathrm{b}}^{n}$
A function compD has the datatype compD : : Ball -> Ball.
You do not need to know how compD, + or $*$ are implemented or the details of how a Ball is represented. All you are given is the following properties of compD; for any h1,h2 :: Ball:

```
compD (h1 * h2) = (h1 * (compD h2)) + ((compD h1) * h2)
```

and for n, m integers, compD is linear, i.e. :

```
compD (n * h1 + m * h2) = n * (compD h1) + m * (compD h2)
```

The function applyND applies compD n times to a Ball:

```
applyND :: Ball -> Int -> Ball
applyND b 0 = b
applyND b n = compD (applyND b (n-1))
```

Show by induction on n, that for any two balls f, g, the following property holds for all $n \geq 1$:

$$
\text { applyND }(f * g) n=\sum_{r=0}^{n}\binom{n}{r}(\operatorname{applyND} f(n-r)) *(\operatorname{applyND} g r)
$$

where:

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!}
$$

You are allowed to the use the fact that for $1 \leq r \leq n$:

$$
\binom{n}{r}+\binom{n}{r-1}=\binom{n+1}{r}
$$

without proof.

