# Loop-invariants: Tutorial sheet 5 

Jeremy Bradley

7 February 2005

1. Given the following method which generates the product of an array of integers:
```
int product (int a []) {
    // pre: none
    int res = 1;
    int i = 0;
    while (i < a.length) {
        res = res * a[i];
        ++i;
        // loop invariant: ?
    }
    return res;
}
```

The postcondition for product is:

- $a=a_{0}$
$\wedge($ a.length $=0) \rightarrow$ res $=1$
$\wedge($ a.length $>0) \rightarrow$ res $=\prod_{j=0}^{\text {a.length }-1} a[j]$
(a) Assuming a.length $=0$ show that pre-condition $\vdash$ post-condition
(b) Construct a loop variant for the loop in product
(c) Construct a loop invariant for the position marked in the code
(d) Assuming a.length $>0$, show that the invariant is established initially
(e) Show that the invariant is re-established from the $k$ th iteration of the loop to the $(k+1)$ th iteration

2. The following method checks an array of integers to see if they are sorted into descending order.
```
boolean isSorted (int [] a) {
    // pre: none
    boolean res = true;
    int i = 0;
    while (i < a.length-1) {
                // invariant: <here>
            if (a[i] < a[i+1])
                res = false;
            ++i;
    }
    return res;
}
```

Show that the loop invariant below is established initially and re-establishes itself during iteration:

$$
\left(a=a_{0}\right) \wedge\left(0<i_{k}+1<\text { a.length }\right) \wedge\left(\operatorname{res}_{k}=\bigwedge_{j=0}^{i_{k}-1}(a[j] \geq a[j+1])\right)
$$

[You may assume that $\bigwedge_{n=0}^{m} P(n)=$ true for $m<0$ ]
3. The method newfind does not require that the element $x$ exists in the array $a$. It either returns the $a$-index that corresponds to $x$ or it returns a.length if $x$ cannot be found.
[1]

```
int newfind (int x, int a []) {
    // pre: none
    int i = 0;
    int res = 0;
    while ( (i < a.length) && (a[i] != x) ) {
            // invariant: ?
            i++;
    }
    res = i;
    return res;
}
```

Given that the post-condition of newfind is:

- $a=a_{0}$
$\wedge(0 \leq r e s \leq a . l e n g t h)$
$\wedge(0 \leq$ res $<$ a.length $) \rightarrow(a[r e s]=x)$
$\wedge($ res $=$ a.length $) \rightarrow((0 \leq j<$ a.length $) \rightarrow a[j] \neq x)$
(a) Write down a loop variant for the loop
(b) Construct the $k$ th loop invariant at the position shown in the code
(c) Show that the loop is re-established in the $(k+1)$ th invariant

