Reasoning about Programs

Jeremy Bradley and Francesca Toni
Room 372. Office hour - Tuesdays at noon. Email: jb@doc.ic.ac.uk
Department of Computing, Imperial College London

Produced with prosper and ${ }^{L A} T_{E} X$

Haskell Lectures I

Proving correctness of Haskell functions

- Induction over natural numbers
- summing natural numbers: sumInts
- summing fractions: sumFracs
- natural number sequence: uList
- proving induction works
- Structural induction
- Induction over Haskell data structures
- induction over lists: subList, revList
- induction over user-defined structures:
evalBoolExpr

Haskell Lectures II

Proving correctness of Haskell functions

- Failed induction: nub
- Tree sort example: sortInts, flattenTree, insTree

Induction Example

Given the following Haskell program:

$$
\begin{aligned}
& \text { sumInts }:: \text { Int }->\text { Int } \\
& \text { sumInts } 1=1 \\
& \text { sumInts } n=n+\text { (sumInts }(n-1))
\end{aligned}
$$

- There are constraints on its input i.e. on the variable r in the function call sumInts r
- What is its output?

$$
\begin{aligned}
\text { sumInts } r & =r+(r-1)+\cdots+2+1 \\
& =\sum_{n=1}^{r} n
\end{aligned}
$$

sumlnts: Example

- Input constraints are the pre-conditions of a function
- Output requirements are the post-conditions for a function
- Function should be rewritten with conditions:
-- Pre-condition: n >= 1
-- Post-condition: sumInts $r=$?
sumInts : : Int -> Int
sumInts $1=1$
sumInts $\mathrm{n}=\mathrm{n}+($ sumInts $(\mathrm{n}-1))$

sumlnts: Example

Variable and output	
n	sumInts n
1	1
2	3
3	6
4	10
5	15
6	21
7	28
8	36
9	45
10	55

```
-- Pre-condition: n >= 1
-- Post-condition: sumInts r = ?
sumInts :: Int -> Int
sumInts 1 = 1
sumInts n = n + (sumInts (n-1))
```


sumlnts: Example

- Let's guess that the post-condition for sumInts should be:

$$
\text { sumInts } n=\frac{n}{2}(n+1)
$$

- How do we prove our conjecture?
- We use induction

Induction in General

The structure of an induction proof always follows the same pattern:

- State the proposition being proved: e.g. $P(n)$
- Identify and prove the base case: e.g. show true at $n=1$
- Identify and state the induction hypothesis as assumed e.g. assumed true for the case, $n=k$
- Prove the $n=k+1$ case is true as long as the $n=k$ case is assumed true. This is the induction step

sumlnts: Induction

1. Base case, $n=1$: sumInts $1=\frac{1}{2} \times 2=1$
2. Induction hypothesis, $n=k$: Assume sumInts $\mathrm{k}=\frac{\mathrm{k}}{2}(\mathrm{k}+1)$
3. Induction step, $n=k+1$: Using assumption, we need to show that:
sumInts $(\mathrm{k}+1)=$ $\frac{\mathrm{k}+1}{2}(\mathrm{k}+2)$

Trying to prove for all
$n \geq 1$:
sumInts $\mathrm{n}=\frac{\mathrm{n}}{2}(\mathrm{n}+1)$

sumlnts: Induction Step

- Need to keep in mind 3 things:
- Definition: sumInts $n=n+($ sumInts $(n-1))$
- Induction assumption: sumInts $\mathrm{k}=\frac{\mathrm{k}}{2}(\mathrm{k}+1)$
- Need to prove: sumInts $(\mathrm{k}+1)=\frac{\mathrm{k}+1}{2}(\mathrm{k}+2)$

Case, $n=k+1$:

$$
\begin{aligned}
\operatorname{sum} \operatorname{Ints}(\mathrm{k}+1) & =(k+1)+\text { sumInts } \mathrm{k} \\
& =(k+1)+\frac{k}{2}(k+1) \\
& =(k+1)\left(1+\frac{k}{2}\right) \\
& =\frac{k+1}{2}(k+2) \quad \square
\end{aligned}
$$

Induction Argument

An infinite argument:

- Base case: $P(1)$ is true
- Induction Step: $P(k) \Rightarrow P(k+1)$ for all $k \geq 1$
- $P(1) \Rightarrow P(2)$ is true
- $P(2) \Rightarrow P(3)$ is true
- $P(3) \Rightarrow P(4)$ is true
- . . .
- and so $P(n)$ is true for any $n \geq 1$

Example: sumFracs

- Given the following program:

```
-- Pre-condition: n >= 1
-- Post-condition: sumFracs n = n / (n + 1)
sumFracs :: Int -> Ratio Int
sumFracs 1 = 1 % 2
sumFracs n = (1 % (n* (n + 1)))
    + (sumFracs (n - 1))
```

- Equivalent to asking:

$$
\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\cdots+\frac{1}{n(n+1)}=\frac{n}{n+1}
$$

sumFracs: Induction

- Proving that post-condition holds:
- Base case, $n=1$: sumFracs $1=1 / 2$ (i.e. post-condition true)
- Assume, $n=k$: sumFracs $\mathrm{k}=\mathrm{k} /(\mathrm{k}+1)$
- Induction step, $n=k+1$:

$$
\begin{aligned}
\operatorname{sumFracs}(\mathrm{k}+1) & =\frac{1}{(k+1)(k+2)}+\operatorname{sumFracs} \mathrm{k} \\
& =\frac{1}{(k+1)(k+2)}+\frac{k}{k+1} \\
& =\frac{k^{2}+2 k+1}{(k+1)(k+2)} \\
& =\frac{(k+1)^{2}}{(k+1)(k+2)} \\
& =\frac{k+1}{k+2}
\end{aligned}
$$

Strong Induction

- Induction arguments can have:
- an induction step which depends on more than one assumption
。 as long as the assumption cases are $<$ the induction step case
- e.g. it may be that $P(k-5)$ and $P(k-3)$ and $P(k-2)$ have to be assumed true to show $P(k+1)$ true
- this is called strong induction and occasionally course-of-values induction
- several base conditions if needed
- e.g. $P(1), P(2), \ldots, P(5)$ may all be base cases

Example: uList function

Given the following program:

$$
\begin{aligned}
\text { uList }: & : \text { Int }->\text { Int } \\
\text { uList } 1 & =1 \\
\text { uList } 2 & =5 \\
\text { uList } n & =5 * \text { (uList }(n-1)) \\
& -6 * \text { (uList }(n-2))
\end{aligned}
$$

- Pre-condition: call uList r with $r \geq 1$
- Post-condition: require uList $r=3^{r}-2^{r}$

Induction Example

In mathematical terms induction problem looks like:

- We define a sequence of integers, u_{n}, where $u_{n}=5 u_{n-1}-6 u_{n-2}$ for $n \geq 2$ and base cases $u_{1}=1, u_{2}=5$.
- We want to prove, by induction, that:
$u_{n}=$ uList $\mathrm{n}=3^{\mathrm{n}}-2^{\mathrm{n}}$
- (Note that this time we have two base cases)

Proof by Induction

- Start with the base cases, $n=1,2$

$$
\begin{aligned}
& \text { ouList } 1=3^{1}-2^{1}=1 \\
& \text { uList } 2=3^{2}-2^{2}=5
\end{aligned}
$$

- State induction hypothesis for $n=k$ (that you're assuming is true for the next step):

$$
\text { - uList } \mathrm{k}=3^{\mathrm{k}}-2^{\mathrm{k}}
$$

Proof by Induction

- Looking to prove: uList $(k+1)=3^{k+1}-2^{k+1}$
- Prove induction step for $n=k+1$ case, by using the induction hypothesis case:

$$
\begin{aligned}
\text { uList }(\mathrm{k}+1) & =5 * \text { uList } \mathrm{k}-6 * \text { uList }(\mathrm{k}-1) \\
& =5\left(3^{k}-2^{k}\right)-6\left(3^{k-1}-2^{k-1}\right) \\
& =5\left(3^{k}-2^{k}\right)-2 \times 3^{k}+3 \times 2^{k} \\
& =3 \times 3^{k}-2 \times 2^{k} \\
& =3^{k+1}-2^{k+1}
\end{aligned}
$$

- Note we had to use the hypothesis twice

Induction Argument

An infinite argument for induction based on natural numbers:

- Base case: $P(0)$ is true
- Induction Step: $P(k) \Rightarrow P(k+1)$ for all $k \in \mathbb{N}$
- $P(0) \Rightarrow P(1)$ is true
- $P(1) \Rightarrow P(2)$ is true
- $P(2) \Rightarrow P(3)$ is true
- . . .
- and so $P(n)$ is true for any $n \in \mathbb{N}$
(Note: Induction can start with any value base case that is appropriate for the property

Proof by Contradiction

- We have a proposition $P(n)$ which we have proved by induction, i.e.
- $P(0)$ is true
- $P(k) \Rightarrow P(k+1)$ for all $k \in \mathbb{N}$
- Taken this to mean $P(n)$ is true for all $n \in \mathbb{N}$
- Let's assume instead that despite using induction on $P(n), P(n)$ is not true for all $n \in \mathbb{N}$
- If we can show that this assumption gives us a logical contradiction, then we will know that the assumption was false

Proof of Induction

- Proof relies on fact that:
- the set of natural numbers
$\mathbb{N}=\{0,1,2,3, \ldots\}$ has a least element
- also any subset of natural numbers has a least element: e.g. $\{8,13,87,112\}$ or $\{15,17,21,32\}$
- and so the natural numbers are ordered. i.e. $<$ is defined for all pairs of natural numbers (e.g. $4<7$)

Proof of Induction

- Assume $P(n)$ is not true for all $n \in \mathbb{N}$
\Rightarrow There must be largest subset of natural numbers, $S \subset \mathbb{N}$, for which $P(n)$ is not true. ($0 \notin S$)
\Rightarrow The set S must have a least element $m>0$, as it is a subset of the natural numbers
$\Rightarrow P(m)$ is false, but $P(m-1)$ must be true otherwise $m-1$ would be least element of S
- However we have proved that $P(k) \Rightarrow P(k+1)$ for all $k \in \mathbb{N}$
$\Rightarrow P(m-1) \Rightarrow P(m)$ is true. Contradiction!

Induction in General

- In general we can perform induction across data structures (i.e. the same or similar proof works) if:

1. the data structure has a least element or set of least elements
2. an ordering exists between the elements of the data structure

- For example for a list:

。 [] is the least element
。 xs $<$ ys if length xs $<$ length ys

Induction over Data Structures

Given a conjecture $P(\mathrm{xs})$ to test:

- Induction on [a]:
- Base case: test true for xs = []
- Assume true for $\mathrm{xs}=\mathrm{zs}::[\mathrm{a}]$
- Induction step: prove for $\mathrm{xs}=(\mathrm{z}: \mathrm{zs})$
- For structure MyList:

$$
\text { data MyList } a=\text { EmptyList } \mid \text { Cons a (MyList a) }
$$

- Base case: test true for xs = EmptyList
- Assume true for general xs = zs :: MyList a
- Induction step: prove for xs $=$ Cons z zs for any z

Induction over Data Structures

Given a conjecture $P(\mathrm{xs})$ to test:

- For a binary tree:
data BTree a

$$
\begin{aligned}
& =\text { BTempty } \\
& \mid \text { BTnode (BTree a) a (BTree a) }
\end{aligned}
$$

- Base case: test true for xs = BTempty
- Assume true for general cases: xs = t1 :: BTree a and $\mathrm{xs}=\mathrm{t} 2::$ BTree a
- Induction step: prove true for xs $=$ BTnode t1 z t2 for any z

Structural Induction in General I

The structure of an structural induction proof always follows the same pattern:

- For generic data structure:

```
data DataS a
    = Rec1 (DataS a) | Rec2 (DataS a) (DataS a) | ...
    | Base1 | Base2 | ...
```

- State the proposition being proved: e.g. P (xs :: DataS a)
- Identify and prove the base cases: e.g. show $P(x s)$ true at xs = Base1, Base2, \ldots

Structural Induction in General II

- For generic data structure:

```
data DataS a
    = Rec1 (DataS a) | Rec2 (DataS a) (DataS a) | ..
    | Base1 | Base2 | ...
```

- Identify and state the induction hypothesis as assumed e.g. assume $P(\mathrm{xs})$ true for all cases, $\mathrm{xs}=\mathrm{zs}$
- Finally, assuming all the $\mathrm{xs}=\mathrm{zs}$ cases are true. Prove the induction step $P(\mathrm{xs})$ true for the cases $\mathrm{xs}=\operatorname{Rec} 1 \mathrm{zs} 1, \mathrm{xs}=\operatorname{Rec} 2 \mathrm{zs} 1 \mathrm{zs} 2, \ldots$

Example: subList

- subList xs ys removes any element in ys from xs

```
subList :: Eq a => [a] -> [a] -> [a]
subList [] ys = []
subList (x:xs) ys
    | elem x ys \(=\) subList \(x s\) ys
    | otherwise \(=\) (x:subList xs ys)
```

- $P(\mathrm{xs})=$ for any ys, no elements of ys exist in subList xs ys
- Is this a post-condition for subList?

Induction: subList

- Base case, xs = []:
- $P([])=$ for any ys, no elements of ys exist in (subList [] ys) $=$ []. i.e. True.
- Assume case xs = zs:
- $P(\mathrm{zs})=$ for any ys, no elements of ys exist in (subList zs ys)
- Induction step, (require to prove) case $\mathrm{xs}=(\mathrm{z}: \mathrm{zs})$:
。 $P(\mathrm{z}: \mathrm{zs})=$ for any ys, no elements of ys exist in (subList (z:zs) ys)

Induction: subList

- Induction step, xs $=(\mathrm{z}: \mathrm{zs})$:

。 $P(\mathrm{z}: \mathrm{zs})=$ for any ys, no elements of ys exist in (subList (z:zs)ys)

$$
\begin{aligned}
& \text { subList }(\mathrm{z}: \mathrm{zs}) \text { ys } \\
&= \begin{cases}\text { subList } \mathrm{zs} \text { ys } & : \text { if } z \in \mathrm{ys} \\
(\mathrm{z}: \text { subList } \mathrm{zs} \mathrm{ys}) & : \text { if } z \notin \mathrm{ys}\end{cases} \\
& P(\mathrm{z}: \mathrm{zs})= \begin{cases}P(\mathrm{zs}) & \text { if } z \in \mathrm{ys} \\
(z \notin \mathrm{ys}) \operatorname{AND~P}(\mathrm{zs}) & : \text { if } z \notin \mathrm{ys}\end{cases}
\end{aligned}
$$

Example: revList

- Given the following program:

```
revList :: [a] -> [a]
revList [] = []
revList (x:xs) = (revList xs) ++ [x]
```

- We want to prove the following property:

。 $P(\mathrm{xs})=$ for any ys :

$$
\text { revList }(x s++y s)=(\text { revList ys })++(\text { revList } x s)
$$

Induction: revList

- Program:

```
revList :: [a] -> [a]
revList [] = []
revList (x:xs) = (revList xs) ++ [x]
```

- Base case, xs = []:
- $P([])=$ for any ys,

$$
\begin{aligned}
\operatorname{revList}([]++y s) & =(\text { revList ys }) \\
& =(\text { revList ys })++[] \\
& =(\text { revList ys })++(\text { revList }[])
\end{aligned}
$$

Induction: revList

- Assume case, xs = zs:
- $P(\mathrm{zs})=$ for any ys: revList $(z s++y s)=(r e v L i s t y s)++(r e v L i s t z s)$
- Induction step, xs $=(\mathrm{z}: \mathrm{zs})$:
- $P(\mathrm{z}: \mathrm{zs})=$ for any ys,

$$
\begin{aligned}
& \text { revList }((\mathrm{z}: \mathrm{zs})++y s) \\
&= \text { revList }(\mathrm{z}:(\mathrm{zs}++\mathrm{ys})) \\
&=(\text { revList }(\mathrm{zs}++\mathrm{ys}))++[\mathrm{z}] \\
&=((\text { revList ys })++(\text { revList } \mathrm{zs}))++[\mathrm{z}] \\
&=(\text { revList ys })++((\text { revList } \mathrm{zs})++[\mathrm{z}]) \\
&=(\text { revList ys })++(\text { revList }(\mathrm{z}: \mathrm{zs}))
\end{aligned}
$$

Example: BoolExpr

- Given the following representation of a Boolean expression:

data BoolExpr

= BoolAnd BoolExpr BoolExpr
BoolOr BoolExpr BoolExpr
BoolNot BoolExpr
| Booltrue
| BoolFalse

Example: BoolExpr

- The following function attempts to simplify a BoolExpr:

```
evalBoolExpr :: BoolExpr -> BoolExpr
evalBoolExpr BoolTrue = BoolTrue
evalBoolExpr BoolFalse = BoolFalse
evalBoolExpr (BoolAnd x y)
= (evalBoolExpr x) `boolAnd` (evalBoolExpr y)
evalBoolExpr (BoolOr x y)
= (evalBoolExpr x) `boolOr` (evalBoolExpr y)
evalBoolExpr (BoolNot x)
= boolNot (evalBoolExpr x)
```


Example: BoolExpr

- Definition of boolNot:

```
-- Pre-condition: input BoolTrue or BoolFalse
boolNot :: BoolExpr -> BoolExpr
boolNot BoolTrue = BoolFalse
boolNot BoolFalse = BoolTrue
boolNot _
    = error ("boolNot: input should be"
    ++ "BoolTrue or BoolFalse")
```


Example: BoolExpr

- Definitions of boolAnd and boolOr:

```
boolAnd :: BoolExpr -> BoolExpr -> BoolExpr
boolAnd x y
    isBoolTrue x = y
    otherwise = BoolFalse
boolOr :: BoolExpr -> BoolExpr -> BoolExpr
boolOr x y
    isBoolTrue x = BoolTrue
    otherwise = y
isBoolTrue :: BoolExpr -> Bool
isBoolTrue BoolTrue = True
isBoolTrue _ = False
```


Induction: BoolExpr

- Trying to prove statement:
- For all ex, $P($ ex $)=$ (evalBoolExpr ex) evaluates to BoolTrue or BoolFalse
- Base cases: ex = BoolTrue; ex = BoolFalse:
- $P($ BoolTrue $)=($ evalBoolExpr BoolTrue $)=$ BoolTrue
- P (BoolFalse $)=($ evalBoolExpr BoolFalse $)=$ BoolFalse

Induction: BoolExpr

- Assume cases, ex $=\mathrm{kx}, \mathrm{kx} 1, \mathrm{kx} 2$:
- e.g. $P(\mathrm{kx})=$ (evalBoolExpr kx) evaluates to BoolTrue or BoolFalse
- Three inductive steps:

1. Case ex = BoolNot kx

$$
P(\text { BoolNot kx })
$$

$$
\begin{aligned}
& =(\text { evalBoolExpr (BoolNot kx) }) \\
& =\text { boolNot (evalBoolExpr kx) }
\end{aligned}
$$

$= \begin{cases}\text { BoolFalse } & : \text { if (evalBoolExpr kx) BoolTrue } \\ \text { BoolTrue }: & \text { otherwise }\end{cases}$

Induction: BoolExpr

- Assume cases, ex $=\mathrm{kx}, \mathrm{kx} 1, \mathrm{kx} 2$:
- e.g. $P(\mathrm{kx} 1)=($ evalBoolExpr kx1) evaluates to BoolTrue or BoolFalse

2. Case ex = BoolAnd kx1 kx2

$$
\begin{aligned}
& P(\text { BoolAnd } \mathrm{kx} 1 \mathrm{kx} 2 \text {) } \\
& =(\text { evalBoolExpr (BoolAnd kx1 kx2)) } \\
& =(\text { evalBoolExpr kx1) 'boolAnd' (evalBoolExpr kx2) } \\
& = \begin{cases}(\text { evalBoolExpr kx2) } & : \text { if (evalBoolExpr kx1) } \\
& =\text { BoolTrue } \\
\text { BoolFalse } & : \text { otherwise }\end{cases}
\end{aligned}
$$

Induction: BoolExpr

- Assume cases, ex $=\mathrm{kx}, \mathrm{kx} 1, \mathrm{kx} 2$:
- e.g. $P(\mathrm{kx} 2)=($ evalBoolExpr kx2) evaluates to BoolTrue or BoolFalse

3. Case ex = BoolOr kx1 kx2

$$
\begin{aligned}
& P(\text { BoolOr kx1 kx2) } \\
& =(\text { evalBoolExpr (BoolOr kx1 kx2)) } \\
& =(\text { evalBoolExpr kx1) 'boolOr' (evalBoolExpr kx2) } \\
& =\left\{\begin{array}{l}
\text { BoolTrue : if (evalBoolExpr kx1) = BoolTrue } \\
(\text { evalBoolExpr kx2) : otherwise }
\end{array}\right.
\end{aligned}
$$

Example: nub

- What happens if you try to prove something that is not true?
- nub [from Haskell List library] removes duplicate elements from an arbitrary list

```
nub :: Eq a => [a] -> [a]
nub [] = []
nub (x:xs) = x : filter (x /=) (nub xs)
```

- We are going to attempt to prove:
- For all lists, xs, $P(\mathrm{xs})=$ for any ys :

$$
\operatorname{nub}(\mathrm{xs}++\mathrm{ys})=(\mathrm{nub} \mathrm{xs})++(\mathrm{nub} y s)
$$

Induction: nub

- False proposition:
- For all lists, $\mathrm{xs}, P(\mathrm{xs})=$ for any ys :

$$
\text { nub }(\mathrm{xs}++\mathrm{ys})=(\mathrm{nub} \mathrm{xs})++(\text { nub ys })
$$

- Base case, xs = []:

$$
\begin{aligned}
& P([])=\text { for any ys, } \\
& \text { nub }([]++ \text { ys }) \\
&= \text { nub ys } \\
&= {[]++(\text { nub ys }) } \\
&=(\text { nub }[])++(\text { nub ys })
\end{aligned}
$$

Induction: nub

- Assume case, xs = ks:
- $P(\mathrm{ks})=$ for any ys, nub $(\mathrm{ks}++\mathrm{ys})=($ nub ks $)++($ nub ys $)$
- Inductive step, xs = (k:ks):
- $P(\mathrm{k}: \mathrm{ks})=$ for any ys, nub ($\mathrm{k}: \mathrm{ks}$) ++ys)

$$
\begin{aligned}
& =\mathrm{nub}(\mathrm{k}:(\mathrm{ks}++\mathrm{ys})) \\
& =\mathrm{k}:(\mathrm{filter}(\mathrm{k} /=)(\mathrm{nub}(\mathrm{ks}++\mathrm{ys}))) \\
& =\mathrm{k}: \text { filter }(\mathrm{k} /=)((\mathrm{nub} \mathrm{ks})++(\text { nub } \mathrm{ys})) \\
& =(\mathrm{k}: \text { filter }(\mathrm{k} /=)(\text { nub } \mathrm{ks}))++(\text { filter }(\mathrm{k} /=)(\mathrm{nub} y s)) \\
& =(\mathrm{nub}(\mathrm{k}: \mathrm{ks}))++(\text { filter }(\mathrm{k} /=)(\text { nub } \mathrm{ys}))
\end{aligned}
$$

Example: nub

- Review of failed induction:

。 Our proposition was: $P(\mathrm{ks})=$ for any ys, nub (ks++ys) = (nub ks)++(nub ys)

- If true, we would expect the inductive step to give us: $P(\mathrm{k}: \mathrm{ks})=$ for any ys, nub $((\mathrm{k}: \mathrm{ks})++\mathrm{ys})=(\mathrm{nub}(\mathrm{k}: \mathrm{ks}))++(\mathrm{nub} \mathrm{ys})$

。 In fact we actually got: $P(\mathrm{k}: \mathrm{ks})=$ for any ys, nub ($(\mathrm{k}: \mathrm{ks})++\mathrm{ys})=$ (nub (k:ks))++(filter (k/=) (nub ys))

- Hence the induction failed

Induction: Beware!

- Good news:
- If you can prove a statement by induction then it's true!
- Bad news!
- If an induction proof fails - it's not necessarily false!
- i.e. induction proofs can fail because:
- the statement is not true
- induction is not an appropriate proof technique for a given problem

Fermat's Last Theorem

- Fermat stated and didn't prove that:

$$
x^{n}+y^{n}=z^{n}
$$

had no positive integer solutions for $n \geq 3$

- Base case: it's been proved that $x^{3}+y^{3}=z^{3}$ has no solutions
- Assuming: $x^{k}+y^{k}=z^{k}$ has no solutions for $n \geq 3$
- There is no way of showing that $x^{k+1}+y^{k+1}$ does not have (only) $k+1$ identical factors, from the assumption for the $n=k$ case

Induction over Data Structures

Given a conjecture $P(\mathrm{xs})$ to test:

- For a binary tree:
data BTree a

$$
\begin{aligned}
& =\text { BTempty } \\
& \mid \text { BTnode (BTree a) a (BTree a) }
\end{aligned}
$$

- Base case: test true for xs = BTempty
- Assume true for general cases: xs = t1 :: BTree a and $\mathrm{xs}=\mathrm{t} 2::$ BTree a
- Induction step: prove true for xs $=$ BTnode t1 z t2 for any z

Induction in General

- In general we can perform induction across data structures (i.e. the same or similar proof works) if:

1. the data structure has a least element or set of least elements
2. an ordering exists between the elements of the data structure

- For example for a list:

。 [] is the least element
。 xs $<$ ys if length xs $<$ length ys

Well-founded Induction

- For this induction we need an ordering function < for trees (as we already have for lists)
- < is a well-founded relation on a set/datatype S if there is no infinite decreasing sequence. i.e. $t_{1}<t_{2}<t_{3}<\cdots$ where t_{1} is a minimal element
- For trees, $t 1, t 2::$ BTree a, $t 1<t 2$ if numBTelem t1 < numBTelem t2

```
numBTelem :: BTelem a -> Int
numBTelem BTempty = 0
numBTelem (BTnode lhs x rhs)
    = 1 + (numBTelem lhs) + (numBTelem rhs)
```


Example: Tree Sort

- We are going to sort a list of integers using the tree data structure:
data BTree a
= BTempty
| BTnode (BTree a) a (BTree a)

จ and function, sortInts:

```
sortInts :: [Int] -> [Int]
sortInts xs = flattenTree ts where
    ts = foldr insTree BTempty xs
```


Example: Tree Sort

- flattenTree creates an inorder list of all elements of t
-- pre-condition: input tree is sorted
flattenTree : : BTree a -> [a]
flattenTree BTempty $=$ []
flattenTree (BTnode lhs i rhs)

$$
\begin{aligned}
= & (f l a t t e n T r e e ~ l h s) ~++~[i] \\
& ++ \text { (flattenTree rhs) }
\end{aligned}
$$

- inorder: = lhs ++ element ++ rhs
- preorder: = element ++ lhs ++ rhs

จ postorder: = lhs ++ rhs ++ element

Example: Tree Sort

- insTree inserts an integer into the correct place in a sorted tree

```
-- pre-condition: input tree is pre-sorted,
-- i is arbitrary Int
-- post-condition: output is sorted tree
-- containing all previous elements and i
insTree :: Int -> BTree Int -> BTree Int
insTree i BTempty = (BTnode BTempty i BTempty)
insTree i (BTnode t1 x t2)
    | i<x = (BTnode (insTree i t1) x t2)
```


Example: Tree Sort

- In order to show that sortInts does sort the integers - we need to show:
- flattenTree does produce an inorder traversal of a tree
- insTree
- inserts the relevent element
- keeps the tree sorted
- does not modify any of the pre-existing elements

Induction: flattenTree

- Proposition: $P(\mathrm{t})=($ flattenTree t$)$ creates inorder listing of all elements of t
- Base case, $\mathrm{t}=$ BTempty:

$$
P(\text { BTempty })=(\text { flattenTree BTempty })=[]
$$

- Assume cases, $\mathrm{t}=\mathrm{t} 1$ and t 2 , e.g. : $P(\mathrm{t} 1)=($ flattenTree t 1$)$ creates inorder listing of all elements of t 1

Induction: flattenTree

- Proposition: $P(\mathrm{t})=($ flattenTree t$)$ creates inorder listing of all elements of t
- Inductive step, $\mathrm{t}=$ BTnode t 1 i t2:
P (BTnode t1 it2)

$$
\begin{aligned}
& =(\text { flattenTree (BTnode t1 i t2) }) \\
& =(\text { flattenTree t1) }++[\mathrm{i}]++(\text { flattenTree t2) }
\end{aligned}
$$

Induction: insTree

- We can split the proof of correctness of insTree into two inductions:

1. keeps the tree sorted after the element is inserted
2. inserts the relevent element and does not modify any of the pre-existing elements

Induction 1: insTree

- A tree (BTnode t1 $\times \mathrm{t} 2$) is sorted if
- t1 and t2 are sorted
- all elements in t 1 are less than x
- all elements in t2 are greater than or equal to x
- Define induction hypothesis to be:

$$
P(\mathrm{t})=\text { for any } \mathrm{i},(\text { insTree } \mathrm{i} \mathrm{t}) \text { is sorted }
$$

Induction 1: insTree

- Base case, $\mathrm{t}=$ BTempty:
- $P($ BTempty $)=$ for any i , insTree i BTempty $=$ BTnode BTempty i BTempty
is sorted
- Assume $P(\mathrm{t})$ true for cases, BTempty $\leq \mathrm{t}<$ BTnode $\mathrm{t} 1 \mathrm{i}^{\prime} \mathrm{t} 2$
- e.g. $P(\mathrm{t} 1)=$ for any i ,
(insTree it1) is sorted

Induction 1: insTree

- Induction step, case $\mathrm{t}=$ BTnode $\mathrm{t} 1 \mathrm{i}^{\prime} \mathrm{t}$ 2:
- $P\left(\right.$ BTnode $\left.\mathrm{t} 1 \mathrm{i}^{\prime} \mathrm{t} 2\right)=$ for any i ,
insTree i (BTnode t1 $\mathrm{i}^{\prime} \mathrm{t} 2$)

$$
=\left\{\begin{array}{l}
\text { BTnode (insTree it1) } i^{\prime} t 2: \text { if } i<i^{\prime} \\
\text { BTnode } \mathrm{t} 1 \mathrm{i}^{\prime}(\text { insTree } \mathrm{it} 2): \text { otherwise }
\end{array}\right.
$$

- By our assumptions, we know that t1, t2, (insTree it1), (insTree it2) are sorted

Induction 2: insTree

- $Q(\mathrm{t})=$ there exist some ms , ns such that:

。 $(\mathrm{ms}++[\mathrm{i}]++\mathrm{ns})=($ flattenTree $($ insTree $\mathrm{i} t))$
。 $($ flattenTree $t)=(m s++n s)$

- Base case, $\mathrm{t}=$ BTempty:
- Q (BTempty $)=$ there exist some ms, ns such that:

$$
\begin{aligned}
& \text { (ms++[i]++ns) } \\
& =(\text { flattenTree (insTree i BTempty) }) \\
& =\text { flattenTree (BTnode BTempty i BTempty) } \\
& =(\text { flattenTree BTempty })++[\mathrm{i}]++(\text { flattenTree BTempty }) \\
& =[]++[\mathrm{i}]++[] \\
& \text { ๑ i.e. } \mathrm{ms}=\mathrm{ns}=[] \\
& \text { • (flattenTree BTempty) }=[]=(\mathrm{ms}++\mathrm{ns})
\end{aligned}
$$

Induction 2: insTree

- $Q(\mathrm{t})=$ there exist some ms , ns such that:
- $(\mathrm{ms}++[\mathrm{i}]++\mathrm{ns})=($ flattenTree $($ insTree $\mathrm{i} t))$

。 $(\mathrm{fl}$ attenTree t$)=(\mathrm{ms}++\mathrm{ns})$

- Assume cases, $\mathrm{t}=\mathrm{t} 1$, t 2 :
- $Q(\mathrm{t} 1)=$ there exist some $\mathrm{ms} 1, \mathrm{~ns} 1$ such that:
- $(\mathrm{ms} 1++[\mathrm{i}]++\mathrm{ns} 1)=(\mathrm{flattenTree}($ insTree $\mathrm{i} t 1))$
- $(\mathrm{flattenTree} \mathrm{t} 1)=(\mathrm{ms} 1++\mathrm{ns} 1)$
- $Q(\mathrm{t} 2)=$ there exist some ms 2 , ns2 such that:
- $(\mathrm{ms} 2++[\mathrm{i}]++\mathrm{ns} 2)=(\mathrm{flattenTree}($ insTree it2)$)$
- $(f l a t t e n T r e e t 2)=(m s 2++n s 2)$

Induction 2: insTree

- (Part 1) Case $t=$ BTnode t1 i^{\prime} t2:

。 Q (BTnode $\left.\mathrm{t} 1 \mathrm{i}^{\prime} \mathrm{t} 2\right)=$ there exist some ms, ns such that: ○ if $i<i^{\prime}$:

$$
\begin{aligned}
& (\mathrm{ms}++[\mathrm{i}]++\mathrm{ns}) \\
& \left.\quad=\left(\text { flattenTree (insTree } \mathrm{i}\left(\text { BTnode } \mathrm{t} 1 \mathrm{i}^{\prime} \mathrm{t} 2\right)\right)\right) \\
& \left.=\text { flattenTree }(\text { BTnode (insTree } \mathrm{i} t 1) \mathrm{i}^{\prime} \mathrm{t} 2\right) \\
& =\left(\text { flattenTree (insTree it1))++[} \mathrm{i}^{\prime}\right]++(\text { flattenTree } \mathrm{t} 2)
\end{aligned}
$$

- i.e. $\mathrm{ms}=\mathrm{ms} 1$ and $\mathrm{ns}=\mathrm{ns} 1++\left[\mathrm{i}^{\prime}\right]++\mathrm{ms} 2++\mathrm{ns} 2$

$$
\begin{aligned}
& \text { flattenTree (BTnode t1 } \left.\mathrm{i}^{\prime} \mathrm{t} 2\right) \\
& \qquad=(\text { flattenTree t1 })++\left[\mathrm{i}^{\prime}\right]++(\text { flattenTree } \mathrm{t} 2) \\
& =\mathrm{ms} 1++\mathrm{ns} 1++\left[\mathrm{i}^{\prime}\right]++\mathrm{ms} 2++\mathrm{ns} 2 \\
& =\mathrm{ms}++\mathrm{ns}
\end{aligned}
$$

Induction 2: insTree

- (Part 2) Case $\mathrm{t}=$ BTnode t1 i^{\prime} t2:

。 Q (BTnode $\left.\mathrm{t} 1 \mathrm{i}^{\prime} \mathrm{t} 2\right)=$ there exist some ms, ns such that: - if $i \geq i^{\prime}$:

$$
\begin{aligned}
(\mathrm{ms} & ++[\mathrm{i}]++\mathrm{ns}) \\
& \left.=\left(\text { flattenTree (insTree } \mathrm{i}\left(\text { BTnode t1 } \mathrm{i}^{\prime} \mathrm{t} 2\right)\right)\right) \\
& \left.=\text { flattenTree (BTnode t1 } \mathrm{i}^{\prime}(\text { insTree } \mathrm{it} 2)\right) \\
& =\left(\text { flattenTree t1) }++\left[\mathrm{i}^{\prime}\right]++(\text { flattenTree (insTree it2)) }\right.
\end{aligned}
$$

- i.e. $\mathrm{ms}=\mathrm{ms} 1++\mathrm{ns} 1++\left[\mathrm{i}^{\prime}\right]++\mathrm{ms} 2$ and $\mathrm{ns}=\mathrm{ns} 2$

$$
\begin{aligned}
& \text { flattenTree (BTnode t1 } \left.\mathrm{i}^{\prime} \mathrm{t} 2\right) \\
& =\left(\text { flattenTree t1) }++\left[\mathrm{i}^{\prime}\right]++(\text { flattenTree } \mathrm{t} 2)\right. \\
& =\mathrm{ms} 1++\mathrm{ns} 1++\left[\mathrm{i}^{\prime}\right]++\mathrm{ms} 2++\mathrm{ns} 2 \\
& =\mathrm{ms}++\mathrm{ns} \quad \square
\end{aligned}
$$

