
Reasoning about Programs

Jeremy Bradley, Francesca Toni and Xiang Feng

Room 372. Office hour - Tuesdays at noon. Email: jb@doc.ic.ac.uk

Department of Computing, Imperial College London

Produced with prosper and LATEX

Induction [01/2005] – p.1/23

Loops

In imperative languages:
common loop blocks include: while, for,
repeat/until

all can be expressed as while loops

A while loop:

i = 2;
while (i > 0) {

somemethod(P);
--i;

}

Induction [01/2005] – p.2/23

Anatomy of a loop

i = 2; // setup code
while (i > 0) { // loop condition

somemethod(P);
--i; // counter dec/increment

}

A loop typically consist of:
setup code
a looping condition which must be true for
the loop to execute
optionally a counter operation

Induction [01/2005] – p.3/23

Loops invariants and Loop variants

loop invariant

is a mid-condition embedded in a loop

loop variant

is a modeller-supplied quantity that
decreases at each iteration of the loop
it never becomes negative
loop variant = 0 should coincide with
termination of loop

Induction [01/2005] – p.4/23

Reasoning about Loops

A loop invariant is specified before a loop
block and usually expresses the cumulative
affect of the loop on the method variables
after i completed iterations

A loop variant is often (but doesn’t have to be)
expressed in terms of the loop variable

for a for loop were i varies from 1 → n, a
loop variant would be n− i

existence of a loop variant ensures loop
termination

Induction [01/2005] – p.5/23

Adding up an array

static int sumArray (int a[]) {

int i;

int res = 0;

// Loop invariant: 0 <= i < a.length

// && res = \sum_{j=0}ˆ{i-1} a[j]

for (i = 0; i < a.length; ++i) {

// Loop variant: a.length - i

res = res + a[i];

}

return res;

}

Invariant is a good place to check array
bounds will not be violated

Induction [01/2005] – p.6/23

General Reasoning about Loops

1. Is loop invariant established at beginning of
loop?

2. Is invariant re-established?
i.e. does invariant on kth iteration →
invariant on k + 1th iteration

3. Does loop terminate?
i.e. does loop variant decrease on each
iteration and does it have a minimum value

4. Finally, does loop termination and invariant →
post-condition?

Induction [01/2005] – p.7/23

Transform into while loop...

static int sumArray (int a[]) {

// Pre: none

// Post: res = \sum_{j=0}ˆ{a.length-1} a[j]

[1] int i=0;

[2] int res = 0;

[L] while (i < a.length) {

// Loop invariant: 0 <= i_k < a.length

// && res_k = \sum_{j=0}ˆ{i_k - 1} a[j]

res = res + a[i];

++i;

}

return res;

}

Induction [01/2005] – p.8/23

Invariant: base case

Need to show invariant true the first time that
it is executed

This is a standard mid-condition argument
Pre-condition ` first loop invariant
i.e. in this case:

`

(

0 ≤ i0 < a.length ∧ res0 =

i0−1
∑

j=0

a[j]

)

Induction [01/2005] – p.9/23

Invariant: base case

1. i0 = 0 code[1] I

2. res0 = 0 code[2] I

3. i0 < a.length code[L] I

4. i0 = 0 ∨ i0 > 0 ∨I(1)

5. 0 ≤ i0 ≤def(4)

6. 0 ≤ i0 < a.length ∧I(3, 5)

7. res0 =
∑i0−1

j=0
a[j]

∑

def(2)

8. 0 ≤ i0 < a.length ∧ res0 =
∑i0−1

j=0
a[j] ∧I(6, 7)

Induction [01/2005] – p.10/23

Transform into while loop...

static int sumArray (int a[]) {

// Pre: none

// Post: res = \sum_{j=0}ˆ{a.length-1} a[j]

int i=0;

int res = 0;

[L] while (i < a.length) {

// Loop invariant: 0 <= i_k < a.length

// && res_k = \sum_{j=0}ˆ{i_k - 1} a[j]

[1] res = res + a[i];

[2] ++i;

}

return res;

}

Induction [01/2005] – p.11/23

sumArray: Re-establishing invariant

Trying to show that:

0 ≤ ik < a.length ∧ resk =

ik−1
∑

j=0

a[j]

` 0 ≤ ik+1 < a.length ∧ resk+1 =

ik+1−1
∑

j=0

a[j]

where vark in a loop invariant context means
the value of the variable after the kth loop
iteration

To show this: need to take into account both
code and loop condition

Induction [01/2005] – p.12/23

sumArray: Re-establishing invariant

1. 0 ≤ ik < a.length ∧ resk =
∑ik−1

j=0 a[j] giv

2. 0 ≤ ik < a.length ∧ E(1)

3. resk =
∑ik−1

j=0 a[j] ∧ E(1)

4. resk+1 = resk + a[ik] code[1] I

5. ik+1 = ik + 1 code[2] I

6. ik+1 < a.length code[L] I

7. 1 ≤ ik+1 =subs(5, 2)

8. 0 ≤ ik+1 ≤trans(7)

9. 0 ≤ ik+1 < a.length ∧I(8, 6)

10. resk+1 =
∑ik−1

j=0 a[j] + a[ik] =subs(3, 4)

11. resk+1 =
∑ik

j=0 a[j]
∑

def(10)

12. resk+1 =
∑ik+1−1

j=0 a[j] =subs(5, 11)

13. 0 ≤ ik+1 < a.length ∧ resk+1 =
∑ik+1−1

j=0 a[j] ∧ I(9, 12)

Induction [01/2005] – p.13/23

Re-establishing invariant

1. Prove loop invariant holds on entry to loop
(i.e. base case)

2. Assume loop invariant holds on kth iteration:

invariant(k) ∧ code(k) ∧ loop condition

→ invariant(k + 1)

3. (c.f. induction step P (k) → P (k + 1))

Induction [01/2005] – p.14/23

Find an element in Array

int find (int a[], int x) {

int res,i;

for (i=0; a[i] != x && i < a.length; ++i) {}

res=i;

return res;

}

What post-condition do we need:
a[res] = x?
0 ≤ res < a.length ∧ a[res] = x?

...and if we want to say it finds the first
matching element in the array?

Induction [01/2005] – p.15/23

Find an element in Array

int find (int a[], int x) {

// Pre: there exists j. 0 <= j < a.length

// && a[j] = x

// Post: <next slide>

[1] int i=0;

[2] int res=0;

[L] while ((i < a.length) && (a[i] != x)) {

// Invariant: <next slides>

[3] ++i;

}

[4] res = i;

return res;

}

Pre-condition: ∃j.0 ≤ j < a.length ∧ a[j] = x

Induction [01/2005] – p.16/23

Post-condition for find

Post-condition:
a = a0 :keep array unchanged

∧ 0 ≤ res < a.length :keep within array bounds

∧ a[res] = x :res is correct index

∧ (0 ≤ j < res) → a[j] 6= x

:no elements before res matched

So how can we use this to design an
invariant?

Induction [01/2005] – p.17/23

Invariant design

Use post-condition to help generate invariant

Take into account any lines of code that are
executed between invariant and
post-condition

For find use loop invariant:
a = a0 :keep array unchanged

∧ 0 ≤ ik < a.length :keep within array bounds

∧ (0 ≤ j ≤ ik) → a[j] 6= x

:no elements before ik matched

Induction [01/2005] – p.18/23

find: Invariant base case

Need to establish invariant with: pre-condition
` first loop invariant

1. ∃j.0 ≤ j < a.length ∧ a[j] = x giv

2. a = a0 var I

3. i0 = 0 code[1] I

4. i0 = 0 ∨ i0 > 0 ∨I(3)

5. i0 ≥ 0 ≥def(4)

6. res0 = 0 code[2] I

7. a[i0] 6= x ∧ i0 < a.length code[L] I

8. i0 < a.length ∧E(5)

9. 0 ≤ i0 < a.length ∧I(5, 8)

Induction [01/2005] – p.19/23

find: Invariant base case

10. a[i0] 6= x ∧E(5)

11. 0 ≤ j ≤ i0 ass

12. 0 ≤ j ≤ 0 =subs(3, 11)

13. j = 0 =def(12)

14. a[0] 6= x =subs(3, 10)

15. a[j] 6= x =subs(13, 14)

16. (0 ≤ j ≤ i0) → a[j] 6= x → I(11, 15)

17. a = a0 ∧ 0 ≤ i0 < a.length

∧ (0 ≤ j ≤ i0) → a[j] 6= x ∧I(2, 9, 16)

Induction [01/2005] – p.20/23

find: Re-establishing invariant

To re-establish invariant for find, we need to
show that kth iteration invariant ` (k + 1)th
iteration invariant

a = a0

∧ 0 ≤ ik < a.length

∧ (0 ≤ j ≤ ik) → a[j] 6= x

` a = a0

∧ 0 ≤ ik+1 < a.length

∧ (0 ≤ j ≤ ik+1) → a[j] 6= x

Induction [01/2005] – p.21/23

find: Re-establishing invariant
1. a = a0 ∧ 0 ≤ ik < a.length

∧ (0 ≤ j ≤ ik)→ a[j] 6= x giv

2. a = a0 ∧ E(1)

3. 0 ≤ ik < a.length ∧ E(1)

4. 0 ≤ ik ∧ E(3)

5. (0 ≤ j ≤ ik) → a[j] 6= x ∧ E(1)

6. ik+1 = ik + 1 code[3] I

7. a[ik+1] 6= x ∧ ik+1 < a.length code[L] I

8. a[ik+1] 6= x ∧ E(6)

9. ik+1 < a.length ∧ E(6)

10. 1 ≤ ik+1 =subs(6, 4)

11. 0 ≤ ik+1 ≤trans(10)

12. 0 ≤ ik+1 < a.length ∧I(11, 9)
Induction [01/2005] – p.22/23

find: Re-establishing invariant

13. 0 ≤ j ≤ ik+1 ass

14. 0 ≤ j ≤ ik ass

15. a[j] 6= x → E(5)

16. j = ik+1 ass

17. a[j] 6= x =subs(8, 16)

18. a[j] 6= x ∨E(13, 14, 15, 16, 17)

19. (0 ≤ j ≤ ik+1)→ a[j] 6= x → E(13, 18)

20. a = a0 ∧ 0 ≤ ik+1 < a.length

∧ (0 ≤ j ≤ ik+1) → a[j] 6= x ∧I(2, 12, 19)

Induction [01/2005] – p.23/23

	Loops
	Anatomy of a loop
	Loops invariants and Loop variants
	Reasoning about Loops
	Adding up an array
	General Reasoning about Loops
	Transform into while loop...
	Invariant: base case
	Invariant: base case
	Transform into while loop...
	{	t sumArray}: Re-establishing invariant
	{	t sumArray}: Re-establishing invariant
	Re-establishing invariant
	Find an element in Array
	Find an element in Array
	Post-condition for {	t find}
	Invariant design
	{	t find}: Invariant base case
	{	t find}: Invariant base case
	{	t find}: Re-establishing invariant
	{	t find}: Re-establishing invariant
	{	t find}: Re-establishing invariant

