

- A loop typically consist of:
 - setup code
 - a looping condition which must be true for the loop to execute
 - optionally a counter operation

- it never becomes negative
- $\ensuremath{\,\circ\,}$ loop variant = 0 should coincide with termination of loop

Reasoning about Loops

- A loop invariant is specified before a loop block and usually expresses the cumulative affect of the loop on the method variables after *i* completed iterations
- A loop variant is often (but doesn't have to be) expressed in terms of the loop variable
 - ${\bf \circ}\,$ for a for loop were i varies from $1\to n,$ a loop variant would be n-i
 - existence of a loop variant ensures loop termination

General Reasoning about Loops

- 1. Is loop invariant established at beginning of loop?
- 2. Is invariant re-established?
 - i.e. does invariant on kth iteration → invariant on k + 1th iteration
- 3. Does loop terminate?
 - i.e. does loop variant decrease on each iteration and does it have a minimum value
- 4. Finally, does loop termination and invariant \rightarrow post-condition?

Adding up an array

```
static int sumArray (int a[]) {
    int i;
    int res = 0;
    // Loop invariant: 0 <= i < a.length
    // && res = \sum_{j=0}^{i-1} a[j]
    for (i = 0; i < a.length; ++i) {
        // Loop variant: a.length - i
        res = res + a[i];
    }
    return res;
}</pre>
```

 Invariant is a good place to check array bounds will not be violated

Induction [01/2005] - p.6/23

Transform into while loop...

```
static int sumArray (int a[]) {
    // Pre: none
    // Post: res = \sum_{j=0}^{a.length-1} a[j]
[1] int i=0;
[2] int res = 0;
[L] while ( i < a.length ) {
    // Loop invariant: 0 <= i_k < a.length
    // && res_k = \sum_{j=0}^{i_k - 1} a[j]
    res = res + a[i];
    ++i;
    }
    return res;
}
</pre>
```

Induction [01/2005] - p.7/23

Induction [01/2005] - p.5/23

Invariant: base case

- Need to show invariant true the first time that it is executed
- This is a standard mid-condition argument
 - Pre-condition \vdash first loop invariant
 - i.e. in this case:

$$\vdash \left(0 \le i_0 < a.length \land res_0 = \sum_{j=0}^{i_0-1} a[j] \right)$$

Induction [01/2005] - p.9/23

Transform into while loop...

```
static int sumArray (int a[]) {
    // Pre: none
    // Post: res = \sum_{j=0}^{a.length-1} a[j]
    int i=0;
    int res = 0;
[L] while ( i < a.length ) {
    // Loop invariant: 0 <= i_k < a.length
    // && res_k = \sum_{j=0}^{i_k - 1} a[j]
[1] res = res + a[i];
[2] ++i;
    }
    return res;
}</pre>
```

Invariant: base case

- **1.** $i_0 = 0$ **code[1]** I
- $2. res_0 = 0 \qquad \qquad \operatorname{code}[2]\mathcal{I}$
- **3.** $i_0 < a.length$ code[L] \mathcal{I}
- **4.** $i_0 = 0 \lor i_0 > 0$ $\lor \mathcal{I}(1)$
- $5. \ 0 \le i_0 \qquad \qquad \le \mathsf{def}(4)$
- **6.** $0 \le i_0 < a.length$ $\land \mathcal{I}(3,5)$
- 7. $res_0 = \sum_{j=0}^{i_0-1} a[j]$ $\sum def(2)$
- **8.** $0 \le i_0 < a.length \land res_0 = \sum_{j=0}^{i_0-1} a[j] \land \mathcal{I}(6,7)$

Induction [01/2005] - p.10/23

sumArray: Re-establishing invariant

• Trying to show that:

$$0 \le i_k < a.length \land res_k = \sum_{j=0}^{i_k-1} a[j]$$

$$\vdash \ 0 \le i_{k+1} < a.length \land res_{k+1} = \sum_{j=0}^{i_{k+1}-1} a[j]$$

- where vark in a loop invariant context means the value of the variable after the kth loop iteration
- To show this: need to take into account both code and loop condition

Induction [01/2005] - p.12/23

sumArray: Re-establishing invariant

1. $0 \le i_k < a.length \land res_k = \sum_{i=0}^{i_k-1} a[j]$	giv	
2. $0 \le i_k < a.length$	$\wedge \mathcal{E}(1)$	
3 . $res_k = \sum_{j=0}^{i_k-1} a[j]$	$\wedge \mathcal{E}(1)$	
4. $res_{k+1} = res_k + a[i_k]$	$code[1]\mathcal{I}$	
5. $i_{k+1} = i_k + 1$	$code[2]\mathcal{I}$	
6. $i_{k+1} < a.length$	$\text{code[L]}\mathcal{I}$	
7. $1 \le i_{k+1}$	=subs $(5,2)$	
8. $0 \le i_{k+1}$	\leq trans(7)	
9. $0 \le i_{k+1} < a.length$	$\wedge \mathcal{I}(8,6)$	
10. $res_{k+1} = \sum_{j=0}^{i_k-1} a[j] + a[i_k]$	=subs $(3,4)$	
11. $res_{k+1} = \sum_{j=0}^{i_k} a[j]$	$\sum \text{def}(10)$	
12. $res_{k+1} = \sum_{j=0}^{i_{k+1}-1} a[j]$	= subs $(5, 11)$	
13. $0 \le i_{k+1} < a.length \land res_{k+1} = \sum_{j=0}^{i_{k+1}-1} a[j]$	$\wedge \mathcal{I}(9, 12)$	

Find an element in Array

```
int find (int a[], int x) {
    int res,i;
    for (i=0; a[i] != x && i < a.length; ++i) {}
    res=i;
    return res;
}</pre>
```

Induction [01/2005] - p.13/23

Induction [01/2005] = p 15/2

- What post-condition do we need:
 - a[res] = x?
 - $0 \leq res < a.length \land a[res] = x$?
- ...and if we want to say it finds the first matching element in the array?

Re-establishing invariant

- 1. Prove loop invariant holds on entry to loop (i.e. base case)
- 2. Assume loop invariant holds on *k*th iteration:

 $\operatorname{invariant}(k) \wedge \operatorname{code}(k) \wedge \operatorname{loop condition}$ $\rightarrow \operatorname{invariant}(k+1)$

3. (c.f. induction step $P(k) \rightarrow P(k+1)$)

Induction [01/2005] - p.14/23

Find an element in Array

Induction [01/2005] - p.16/23

Post-condition for find

- Post-condition:
 - $a = a_0$:keep array unchanged
 - $\wedge \ 0 \leq \mathit{res} < a.\mathit{length}$:keep within array bounds
 - $\land a[res] = x$:res is correct index
 - $\land \ (0 \leq j < \mathit{res}) \rightarrow a[j] \neq x \\ : \text{no elements before } \mathit{res} \text{ matched}$
- So how can we use this to design an invariant?

find: Invariant base case

Need to establish invariant with: pre-condition
 First loop invariant

1. $\exists j.0 \leq j < a.length \land a[j] = x$	giv
2. $a = a_0$	$var\mathcal{I}$
3. $i_0 = 0$	$code[1]\mathcal{I}$
4. $i_0 = 0 \lor i_0 > 0$	$\vee \mathcal{I}(3)$
5. $i_0 \ge 0$	$\geq \operatorname{def}(4)$
6. $res_0 = 0$	$code[2]\mathcal{I}$
7. $a[i_0] \neq x \land i_0 < a.length$	$\text{code[L]}\mathcal{I}$
8. $i_0 < a.length$	$\wedge \mathcal{E}(5)$
9. $0 \leq i_0 < a.length$	$\wedge \mathcal{I}(5,8)$

Invariant design

- Use post-condition to help generate invariant
- Take into account any lines of code that are executed between invariant and post-condition
- For find use loop invariant:
 - $a = a_0$:keep array unchanged
 - $\wedge \ 0 \leq i_k < a.\mathit{length}$:keep within array bounds
 - $\land \ (0 \le j \le i_k) \to a[j] \ne x$:no elements before i_k matched

Induction [01/2005] - p.18/23

find: Invariant base case

10. $a[i_0] \neq x$	$\wedge \mathcal{E}(5)$
11. $0 \le j \le i_0$	ass
12. $0 \le j \le 0$	=subs $(3, 11)$
13. $j = 0$	=def (12)
14. $a[0] \neq x$	=subs $(3, 10)$
15. $a[j] \neq x$	=subs $(13, 14)$
16. $(0 \le j \le i_0) \to a[j] \ne x$	$\rightarrow \mathcal{I}(11, 15)$
17. $a = a_0 \land 0 \le i_0 < a.length$	
$\land (0 \leq j \leq i_0) \to a[j] \neq x$	$\wedge \mathcal{I}(2,9,16)$

Induction [01/2005] - p.19/23

Induction [01/2005] - p.17/23

find: Re-establishing invariant

- To re-establish invariant for find, we need to show that kth iteration invariant $\vdash (k + 1)$ th iteration invariant
 - a = a₀
 0 ≤ i_k < a.length
 (0 ≤ j ≤ i_k) → a[j] ≠ x
 a = a₀
 0 ≤ i_{k+1} < a.length
 (0 ≤ j ≤ i_{k+1}) → a[j] ≠ x

find: Re-establishing invariant

13. $0 \le j \le i_{k+1}$				ass
$14. 0 \le j \le i_k$	ass	16.	$j = i_{k+1}$	ass
15. $a[j] \neq x$	$\rightarrow \mathcal{E}(5)$	17.	$a[j] \neq x$	=subs $(8, 16)$
18. $a[j] \neq x$			$\vee \mathcal{E}($	13, 14, 15, 16, 17)
19. $(0 \le j \le i_{k+1}) \to$	$a[j] \neq x$			$\rightarrow \mathcal{E}(13, 18)$
20. $a = a_0 \land 0 \le i_{k+1}$	1 < a.length			
$\wedge \left(0 \le j \le i_{k+1} \right)$	$\rightarrow a[j] \neq x$			$\wedge \mathcal{I}(2, 12, 19)$

find: Re-establishing invariant

1.	$a = a_0 \land 0 \le i_k < a.length$		
	$\land (0 \le j \le i_k) \to a[j] \ne x$	giv	
2.	$a = a_0$	$\wedge {\cal E}(1)$	
3.	$0 \leq i_k < a.length$	$\wedge {\cal E}(1)$	
4.	$0 \le i_k$	$\wedge {\cal E}(3)$	
5.	$(0 \le j \le i_k) \to a[j] \ne x$	$\wedge {\cal E}(1)$	
6.	$i_{k+1} = i_k + 1$	$code[3]\mathcal{I}$	
7.	$a[i_{k+1}] \neq x \land i_{k+1} < a.length$	$\text{code[L]}\mathcal{I}$	
8.	$a[i_{k+1}] \neq x$	$\wedge {\cal E}(6)$	
9.	$i_{k+1} < a.length$	$\wedge {\cal E}(6)$	
10.	$1 \le i_{k+1}$	=subs $(6,4)$	
11.	$0 \le i_{k+1}$	\leq trans (10)	
12.	$0 \le i_{k+1} < a.length$	$\wedge \mathcal{I}(11,9)$	Induction [01/2005] - c 22/22

Induction [01/2005] - p.21/23

Induction [01/2005] - p.23/23