Reasoning about Programs

Jeremy Bradley, Francesca Toni and Xiang Feng

Room 372. Office hour - Tuesdays at noon. Email: jb@doc.ic.ac.uk

Department of Computing, Imperial College London

Produced with prosper and LATEX

Loops

- In imperative languages:
 - common loop blocks include: while, for, repeat/until
 - all can be expressed as while loops
- A while loop:

```
i = 2;
while ( i > 0 ) {
    somemethod(P);
    --i;
}
```

Anatomy of a loop

i = 2; // setup code
while (i > 0) { // loop condition
 somemethod(P);
 --i; // counter dec/increment
}

- A loop typically consist of:
 - setup code
 - a looping condition which must be true for the loop to execute
 - optionally a counter operation

Loops invariants and Loop variants

- Ioop invariant
 - is a mid-condition embedded in a loop
- Ioop variant
 - is a modeller-supplied quantity that decreases at each iteration of the loop
 - it never becomes negative
 - loop variant = 0 should coincide with termination of loop

Reasoning about Loops

- A loop invariant is specified before a loop block and usually expresses the cumulative affect of the loop on the method variables after *i* completed iterations
- A loop variant is often (but doesn't have to be) expressed in terms of the loop variable
 - for a for loop were i varies from $1 \rightarrow n,$ a loop variant would be n-i
 - existence of a loop variant ensures loop termination

Adding up an array

```
static int sumArray (int a[]) {
    int i;
    int res = 0;
    // Loop invariant: 0 <= i < a.length</pre>
    // && res = \sum_{j=0}^{i-1} a[j]
    for (i = 0; i < a.length; ++i) {
        // Loop variant: a.length - i
        res = res + a[i];
    return res;
```

Invariant is a good place to check array bounds will not be violated

General Reasoning about Loops

- 1. Is loop invariant established at beginning of loop?
- 2. Is invariant re-established?
 - i.e. does invariant on kth iteration \rightarrow invariant on k + 1th iteration
- 3. Does loop terminate?
 - i.e. does loop variant decrease on each iteration and does it have a minimum value
- 4. Finally, does loop termination and invariant \rightarrow post-condition?

Transform into while loop...

```
static int sumArray (int a[]) {
    // Pre: none
    // Post: res = \sum_{j=0}^{a.length-1} a[j]
[1] int i=0;
[2] int res = 0;
[L] while ( i < a.length ) {
    // Loop invariant: 0 <= i_k < a.length</pre>
    // && res_k = \sum_{j=0}^{i_k - 1} a[j]
        res = res + a[i];
        ++i;
    return res;
```

Invariant: base case

- Need to show invariant true the first time that it is executed
- This is a standard mid-condition argument
 - Pre-condition ⊢ first loop invariant
 - i.e. in this case:

$$\vdash \left(0 \le i_0 < a.length \land res_0 = \sum_{j=0}^{i_0-1} a[j] \right)$$

Invariant: base case

1. $i_0 = 0$	$code[1]\mathcal{I}$
2. $res_0 = 0$	$code[2]\mathcal{I}$
3. $i_0 < a.length$	$\text{code[L]}\mathcal{I}$
4. $i_0 = 0 \lor i_0 > 0$	$\lor \mathcal{I}(1)$
5. $0 \le i_0$	$\leq \operatorname{def}(4)$
6. $0 \le i_0 < a.length$	$\wedge \mathcal{I}(3,5)$
7. $res_0 = \sum_{j=0}^{i_0-1} a[j]$	$\sum \text{def}(2)$
8. $0 \le i_0 < a.length \land res_0 = \sum_{j=0}^{i_0-1} a[j]$	$\wedge \mathcal{I}(6,7)$

Transform into while loop...

```
static int sumArray (int a[]) {
    // Pre: none
    // Post: res = \sum_{j=0}^{a.length-1} a[j]
    int i=0;
    int res = 0;
[L] while ( i < a.length ) {
    // Loop invariant: 0 <= i_k < a.length</pre>
    // && res_k = \sum_{j=0}^{i_k - 1} a[j]
[1]
   res = res + a[i];
[2] ++i;
   return res;
```

sumArray: Re-establishing invariant

Trying to show that:

$$0 \le i_k < a.length \land res_k = \sum_{j=0}^{i_k-1} a[j]$$

$$- 0 \le i_{k+1} < a.length \land res_{k+1} = \sum_{j=0}^{i_{k+1}-1} a[j]$$

1

- where vark in a loop invariant context means the value of the variable after the kth loop iteration
- To show this: need to take into account both code and loop condition

sumArray: Re-establishing invariant

1. $0 \leq i_k < a.length \land res_k = \sum_{j=0}^{i_k-1} a[j]$	giv
2. $0 \leq i_k < a.length$	$\wedge {\cal E}(1)$
3. $res_k = \sum_{j=0}^{i_k-1} a[j]$	$\wedge \mathcal{E}(1)$
4. $res_{k+1} = res_k + a[i_k]$	$code[1]\mathcal{I}$
5. $i_{k+1} = i_k + 1$	$code[2]\mathcal{I}$
6. $i_{k+1} < a.length$	$code[L]\mathcal{I}$
7. $1 \le i_{k+1}$	=subs $(5,2)$
8. $0 \le i_{k+1}$	\leq trans(7)
9. $0 \le i_{k+1} < a.length$	$\wedge \mathcal{I}(8,6)$
10. $res_{k+1} = \sum_{j=0}^{i_k-1} a[j] + a[i_k]$	=subs $(3,4)$
11. $res_{k+1} = \sum_{j=0}^{i_k} a[j]$	$\sum \text{def}(10)$
12. $res_{k+1} = \sum_{j=0}^{i_{k+1}-1} a[j]$	= subs $(5, 11)$
13. $0 \le i_{k+1} < a.length \land res_{k+1} = \sum_{j=0}^{i_{k+1}-1} a[j]$	$\wedge \mathcal{I}(9, 12)$

Re-establishing invariant

- 1. Prove loop invariant holds on entry to loop (i.e. base case)
- 2. Assume loop invariant holds on *k*th iteration:

 $invariant(k) \land code(k) \land loop condition \\ \rightarrow invariant(k+1)$

3. (c.f. induction step $P(k) \rightarrow P(k+1)$)

Find an element in Array

```
int find (int a[], int x) {
    int res,i;
    for (i=0; a[i] != x && i < a.length; ++i) {}
    res=i;
    return res;
}</pre>
```

What post-condition do we need:

•
$$a[res] = x$$
?

• $0 \le res < a.length \land a[res] = x$?

...and if we want to say it finds the first matching element in the array?

Find an element in Array

```
int find (int a[], int x) {
     // Pre: there exists j. 0 <= j < a.length</pre>
     // && a[j] = x
    // Post: <next slide>
[1] int i=0;
[2] int res=0;
[L] while ((i < a.length) \&\& (a[i] != x)) 
        // Invariant: <next slides>
[3] ++i;
[4] res = i;
    return res;
  }
```

• **Pre-condition:** $\exists j.0 \leq j < a.length \land a[j] = x$

Post-condition for find

Post-condition:

• $a = a_0$:keep array unchanged

 $\wedge \ 0 \leq \mathit{res} < a.\mathit{length}$:keep within array bounds

$$\land a[res] = x$$
 :res is correct index

$$\land \ (0 \le j < res) \to a[j] \ne x$$

:no elements before res matched

So how can we use this to design an invariant?

Invariant design

- Use post-condition to help generate invariant
- Take into account any lines of code that are executed between invariant and post-condition
- For find use loop invariant:
 - $a = a_0$:keep array unchanged

 $\land 0 \leq i_k < a.length : \text{keep within array bounds} \\ \land (0 \leq j \leq i_k) \rightarrow a[j] \neq x \\ \text{:no elements before } i_k \text{ matched}$

find: Invariant base case

Need to establish invariant with: pre-condition
 First loop invariant

1. $\exists j.0 \leq j < a.length \land a[j] = x$	giv
2. $a = a_0$	$\operatorname{var} \mathcal{I}$
3. $i_0 = 0$	$code[1]\mathcal{I}$
4. $i_0 = 0 \lor i_0 > 0$	$\lor \mathcal{I}(3)$
5. $i_0 \ge 0$	$\geq \operatorname{def}(4)$
6. $res_0 = 0$	$code[2]\mathcal{I}$
7. $a[i_0] \neq x \land i_0 < a.length$	$\text{code[L]}\mathcal{I}$
8. $i_0 < a.length$	$\wedge \mathcal{E}(5)$
9. $0 \le i_0 < a.length$	$\wedge \mathcal{I}(5,8)$

find: Invariant base case

10.
$$a[i_0] \neq x$$
 $\wedge \mathcal{E}(5)$

 11. $0 \leq j \leq i_0$
 ass

 12. $0 \leq j \leq 0$
 $= subs(3, 11)$

13. $j = 0$	=def (12)
14. $a[0] \neq x$	=subs $(3, 10)$
15. $a[j] \neq x$	= subs $(13, 14)$

16.
$$(0 \le j \le i_0) \to a[j] \ne x \longrightarrow \mathcal{I}(11, 15)$$

17.
$$a = a_0 \land 0 \le i_0 < a.length$$

 $\land (0 \le j \le i_0) \rightarrow a[j] \ne x$ $\land \mathcal{I}(2, 9, 16)$

find: Re-establishing invariant

To re-establish invariant for find, we need to show that kth iteration invariant $\vdash (k + 1)$ th iteration invariant

find: Re-establishing invariant

1.	$a = a_0 \land 0 \le i_k < a.length$	
	$\wedge (0 \le j \le i_k) \to a[j] \ne x$	giv
2.	$a = a_0$	$\wedge {\cal E}(1)$
3.	$0 \le i_k < a.length$	$\wedge {\cal E}(1)$
4.	$0 \le i_k$	$\wedge {\cal E}(3)$
5.	$(0 \le j \le i_k) \to a[j] \ne x$	$\wedge {\cal E}(1)$
6.	$i_{k+1} = i_k + 1$	$code[3]\mathcal{I}$
7.	$a[i_{k+1}] \neq x \land i_{k+1} < a.length$	$code[L]\mathcal{I}$
8.	$a[i_{k+1}] \neq x$	$\wedge \mathcal{E}(6)$
9.	$i_{k+1} < a.length$	$\wedge {\cal E}(6)$
10.	$1 \le i_{k+1}$	=subs $(6,4)$
11.	$0 \le i_{k+1}$	\leq trans (10)
12.	$0 \le i_{k+1} < a.length$	$\wedge \mathcal{I}(11,9)$

Induction [01/2005] - p.22/23

find: Re-establishing invariant

13. $0 \le j \le i_{k+1}$			ass
14. $0 \le j \le i_k$	ass	16. $j = i_{k+1}$	ass
15. $a[j] \neq x$	$\rightarrow \mathcal{E}(5)$	17. $a[j] \neq x$	=subs $(8, 16)$
18. $a[j] \neq x$		$ee \mathcal{E}(z)$	13, 14, 15, 16, 17)
19. $(0 \le j \le i_{k+1}) \to a[j] \ne x$			$\rightarrow \mathcal{E}(13, 18)$
20. $a = a_0 \land 0 \le i_{k+1} < a.length$			
$\wedge \left(0 \leq j \leq i_{k+1} \right)$ -	$\rightarrow a[j] \neq x$		$\wedge \mathcal{I}(2, 12, 19)$