

An exponential distribution
A non-exponential distribution

An exponential distribution

- If $X \sim \exp (\lambda)$ then:
- Probability density function (PDF)

$$
f_{X}(t)=\lambda e^{-\lambda t}
$$

- Cumulative density function (CDF)

$$
F_{X}(t)=\mathbb{P}(X \leq t)=\int_{0}^{t} f_{X}(u) \mathrm{d} u=1-e^{-\lambda t}
$$

- Laplace transform of PDF

$$
L_{X}(s)=\frac{\lambda}{\lambda+s}
$$

Memoryless property

- The exponential distribution is unique by being memoryless
o i.e. if you interrupt an exponential event, the remaining time is also exponential
- Mathematically we would say - let $X \sim \exp (\lambda)$ and at time, $t+u$, where $X>u$, let $Y=X-u$ be the distribution of the remaining time:

$$
f_{(Y \mid X>u)}(t)=f_{X}(t)
$$

Stochastic Petri nets

- Stochastic Petri nets (SPNs) are based on untimed Petri nets (PNs)
- SPNs have exponential firing delays
- Generalised stochastic Petri nets (GSPNs) have exponential and immediate firing delays
- PNs/SPNs/GSPNs good at capturing resource usage, functional dependency
- No syntax for composition - although easy to compose Petri nets by eye!

Petri nets: summary

- Circles are places, solid discs are tokens, rectangles are transitions
- Arrows indicate flow of tokens/execution

Petri nets: definitions

Petri nets: enabling and firing

- Petri nets consist of places, transitions and tokens
- Places are connected to other places via transitions
- Tokens move from place to place by enabling and then firing transitions according to rules
- The configuration of tokens in a Petri net is known as the marking or state of the Petri net

Simple process transition

- A single token enables the transition, fires the transition and transits to the out-place
- An in-place for a transition is a place which points to that transition; an out-place for a transition is a place which is pointed to by tha transition
- A transition is enabled if all the in-places contain tokens
- A transition fires by taking 1 token from each in-place and putting 1 token in each out-place for that transition
- A transition firing does not necessarily preserve the token count

Process choice

ง A token can progress to either one of its out-places, but not both

Multiple token enabling

- If edges annotated with numbers, as above: it takes 3 tokens to enable the transition
- On firing, 3 tokens removed from place p_{1} and 2 put into place p_{2}
- An unannotated Petri net implicitly has 1s on all its edges

$\operatorname{swn}[1089]$ - 25

Stochastic Petri nets

- SPNs have same functional behaviour as Petri nets; it now takes time to fire a transition
- Each transition has an exponential rate associated with it
- Let X be the time-to-fire-once-enabled of the transition above, $X \sim \exp (\lambda)$

Stochastic Petri nets: racing

- What happens when we have two enabled transitions?
- If t_{1} fires first what delay is left on t_{2} ?

- t_{1} is timed transition with exponential delay λ; t_{2} is an immediate transition with weight, ω
- Immediate transitions are always enabled before timed transitions

Continuous Time Markov Chains

- The mathematical model underlying SPNs (and GSPNs after removing vanishing states) is a continuous time Markov chain (CTMC)
- A CTMC is formally described as a sequence of states from time $t \geq 0$ or:

$$
\{X(t): t \geq 0\}
$$

where $X(t)$ is a random variable representing the state of the chain at time t

- A CTMC is usually represented, in practice, by a generator matrix of rates, Q

Generating a CTMC from an SPN

Creating a Generator Matrix

1. Label the places of the SPN
2. Create a tuple representing the current marking of the SPN, e.g. $(1,0,0,1,0)$
3. Find all possible transitions out of that marking
(a) For each transition, write down the new tuple that is created
(b) an arrow leading from first tuple to the second annotated with the rate of the firing transition
4. Repeat from (2) until all markings discovered

(100)
Steady state analysis of a CTMC
- To solve for the steady-state of CTMC with generator matrix, Q : $\vec{\pi} Q=\overrightarrow{0}$ find the elements of $\vec{\pi}=\left(\pi_{1}, \pi_{2}, \ldots \pi_{n}\right)$ using the additional constraint that: $\pi_{1}+\pi_{2}+\cdots+\pi_{n}=1$ - π_{i} represents the steady state probability of being in marking i

Need to create the generator matrix for the CTMC, Q :

1. Number markings as generated on previous slide
2. Set $q_{i j}=$ sum of rates from marking i to j
3. Ignore any transitions from marking i to itself
4. Set $q_{i i}=-\sum_{j \neq i} q_{i j}$
5. Now sum of all rows of Q should be 0

Steady state

- Steady state probability of their being m tokens in place p_{n} is:

$$
\sum_{i: M(i, m, n)} \pi
$$

, where $M(i, m, n)=$
marking i has m tokens in place n

- This means that if you were to let your SPN run for a long time and glimpse it's marking, it would have this probability of being in this state

Steady-state example [1]

- Given a stochastic Petri net:

Steady-state example [3]

- By enumerating the states of the SPN, we can write down the CTMC genrator matrix, Q
- State enumeration:

1. $(1,0,0,0)$
2. $(0,1,0,0)$
3. $(0,0,1,0)$
4. $(0,0,0,1)$

- Gives the following transition matrix:

$$
Q=\left(\begin{array}{rcrr}
-\lambda & \lambda & 0 & 0 \\
0 & -(\lambda+\mu) & \mu & \lambda \\
\mu & 0 & -\mu & 0 \\
\lambda & 0 & 0 & -\lambda
\end{array}\right)
$$

- Using a tuple representation of marking ($p_{1}, p_{2}, p_{3}, p_{4}$), construct the underlying Markov chain

($0,0,1,0$)
(0, 0, 0, 1)

Steady-state example [4]

- Solving $\vec{\pi} Q=\overrightarrow{0}$ for a specific $\vec{\pi}=\left(\pi_{1}, \ldots, \pi_{n}\right)$ gives a steady state probablity, π_{i}, for being in marking i
- The equations from $\vec{\pi} Q$ will be linearly dependent since $|Q|=0$, so you will need $\sum_{i} \pi_{i}=1$ to give a unique solution
- In this case we get:

$$
\vec{\pi}=\frac{1}{4 \lambda+\mu}(\lambda+\mu, \lambda, \lambda, \lambda)
$$

Steady-state example [5]

PEPA: Stochastic process algebra

- Example calculations:
- So if $\lambda=1, \mu=6$:

$$
\mathbb{P}\left(1 \text { token in } p_{1}\right)=\pi_{1}=0.7
$$

$\mathbb{P}\left(1\right.$ token in either p_{3} or $\left.p_{4}\right)=\pi_{3}+\pi_{4}=0.2$

- Firing rate of a transition, t, is
$\sum_{i: E(i, t)} \pi_{i} r(t)$ where:
- $E(i, t)=$ marking i enables t
- $r(t)=$ rate of transition, t
$\mathbb{P}\left(\right.$ average firing rate of $\left.t_{1}\right)=\pi_{1} \lambda=0.7$

Tool Support

- PEPA has several methods of execution and analysis, through comprehensive too support:
- PEPA Workbench: Edinburgh
- Möbius: Urbana-Champaign, Illinois
- PRISM: Birmingham
- ipc: Imperial College London
- PEPA is a language for describing systems which have underlying continuous time Markov chains
- PEPA is useful because:
- it is a formal, algebraic description of a system
- it is compositional
- it is parsimonious (succinct)
- it is easy to learn!
- it is used in research and in industry

Types of Analysis

Steady-state and transient analysis in PEPA:

$$
\begin{aligned}
& \text { A1 } \xlongequal{\text { def }} \text { (start, } r_{1} \text {).A2 }+ \text { (pause, } r_{2} \text {).A3 } \\
& \text { A2 } \stackrel{\text { def }}{=} \text { (run, } r_{3} \text {).A1 }+ \text { (fail, } r_{4} \text {).A3 } \\
& \text { A3 } \stackrel{\text { def }}{=} \text { (recover, } r_{1} \text {).Al } \\
& \mathrm{AA} \stackrel{\text { def }}{=}(\mathrm{run}, \mathrm{~T}) \cdot\left(\mathrm{alert}, r_{5}\right) \cdot \mathrm{AA} \\
& \text { Sys } \stackrel{\text { def }}{=} \mathrm{AA} \mathbb{A}^{1}
\end{aligned}
$$

Passage-time Quantiles

Extract a passage-time density from a PEPA model:

Prefix: $(a, \lambda) . A$

Prefix is used to describe a process that evolves from one state to another by emitting or performing an action

- Example:

$$
P \stackrel{\text { def }}{=}(a, \lambda) \cdot A
$$

...means that the process P evolves with rate λ to become process A, by emitting an a-action

- λ is an exponential rate parameter
- This is also be written:

$$
\xrightarrow{P \xrightarrow{(a, \lambda)} A}
$$

PEPA Syntax

Syntax:
$P::=(a, \lambda) \cdot P|P+P| P \bowtie P|P / L| A$

- Action prefix: $(a, \lambda) . P$
- Competitive choice: $P_{1}+P_{2}$
- Cooperation: $P_{1} \underset{L}{\bowtie} P_{2}$
- Action hiding: P / L
- Constant label: A

Choice: $P_{1}+P_{2}$

- PEPA uses a type of choice known as competitive choice
- Example:

$$
P \xlongequal{\text { def }}(a, \lambda) \cdot P_{1}+(b, \mu) \cdot P_{2}
$$

...means that P can evolve either to produce an a-action with rate λ or to produce a b-action with rate μ

- In state-transition terms, P

Choice: $P_{1}+P_{2}$

- $P \stackrel{\text { def }}{=}(a, \lambda) \cdot P_{1}+(b, \mu) \cdot P_{2}$
- This is competitive choice since:
- P_{1} and P_{2} are in a race condition - the first one to perform an a or a b will dictate the direction of choice for $P_{1}+P_{2}$
- What is the probability that we see an a-action?

Cooperation: $P_{1} \bowtie P_{2}$

ง \bowtie defines concurrency and communication within PEPA

- The L in $P_{1} \bowtie P_{2}$ defines the set of actions over which two components are to cooperate
- Any other actions that P_{1} and P_{2} can do, not mentioned in L, can happen independently
- If $a \in L$ and P_{1} enables an a, then P_{1} has to wait for P_{2} to enable an a before the cooperation can proceed
- Easy source of deadlock!

Cooperation: $P_{1} \bowtie P_{2}$

- If $P_{1} \xrightarrow{(0, \lambda)} P_{1}^{\prime}$ and $P_{2} \xrightarrow{(a, T)} P_{2}^{\prime}$ then:

$$
P_{1} \underset{\downarrow a\}}{\bowtie} P_{2} \xrightarrow{(a, d)} P_{1}^{\prime} \underset{\{a\}}{\bowtie} P_{2}^{\prime}
$$

- T represents a passive rate which, in the cooperation, inherits the λ-rate of from P_{1}
- If both rates are specified and the only a-evolutions allowed from P_{1} and P_{2} are, $P_{1} \xrightarrow{(a, \lambda)} P_{1}^{\prime}$ and $P_{2} \xrightarrow{(a, \mu)} P_{2}^{\prime}$ then:

$$
P_{1} \underset{\{a\}}{\bowtie} P_{2} \xrightarrow{(a, m i n i(\lambda, u))} P_{1}^{\prime} \underset{\{a\}}{\bowtie} P_{2}^{\prime}
$$

- The general cooperation case is where:

。 P_{1} enables $m a$-actions

- P_{2} enables $n a$-actions
at the moment of cooperation
- ...in which case there are $m n$ possible transitions for $P_{1} \bowtie P_{2}$
- $P_{1} \underset{\{a\}}{\bowtie} P_{2} \xrightarrow{(a, R)}$ where $R=\frac{\lambda}{r_{a}\left(P_{1}\right)} \frac{\mu}{r_{a}\left(P_{2}\right)} \min \left(r_{a}\left(P_{1}\right), r_{a}\left(P_{2}\right)\right)$
ง $r_{a}(P)=\sum_{i: P} \xrightarrow{(a, r)} r_{i}$ is the apparent rate of an

Simplified Cooperation：$P_{1} \bowtie P_{2}$

An approximation to pairwise cooperation：
－Used to turn observable actions in P into hidden or silent actions in P / L
จ $P_{1} \xrightarrow{(0, T)} P_{1}^{\prime}$ and $P_{2} \xrightarrow{(0, T)} P_{2}^{\prime}$ L defines the set of actions to hide
。 $P_{1} \bowtie P_{2} \xrightarrow{(a, T)} P_{1}^{\prime} \bowtie P_{2}^{\prime}$
－$P_{1} \xrightarrow{(0, \lambda)} P_{1}^{\prime}$ and $P_{2} \xrightarrow{(0, T)} P_{2}^{\prime}$
－$P_{1} \xrightarrow{(a, T)} P_{1}^{\prime}$ and $P_{2} \xrightarrow{(a,,)} P_{2}^{\prime}$
。 Both give：$P_{1} \bowtie P_{2} \xrightarrow{(a, \lambda)} P_{1}^{\prime} \bowtie P_{2}^{\prime}$
－$P_{1} \xrightarrow{(a, \lambda)} P_{1}^{\prime}$ and $P_{2} \xrightarrow{(0, \mu)} P_{2}^{\prime}$

－If $P \xrightarrow{(0, \lambda)} P^{\prime}$ ：

$$
P /\{a\} \xrightarrow{(r, \lambda)} P^{\prime} /\{a\}
$$

ง τ is the silent action
－Used to hide complexity and create a component interface
－Cooperation on τ not allowed

Constant：A

－Used to define components labels，as in：
。 $P \xlongequal{\text { def }}(a, \lambda) \cdot P^{\prime}$
。 $Q \stackrel{\text { def }}{=}(q, \mu) \cdot W$
－P, P^{\prime}, Q and W are all constants

PEPA：A Transmitter－Receiver

－A simple transmitter－receiver over a network

T-R: Global state space

Expansion law for 2 Components

sullicea-n. 57 109 - B 7

Possible Evolutions of 2 Cpts

- $P_{1} \bowtie P_{2}$ where $P_{1} \xrightarrow{\left(a_{1}, r_{1}\right)} P_{1}^{\prime}$ and $P_{2} \xrightarrow{\left(a_{2}, r_{2}\right)} P_{2}^{\prime}$.

○ $a_{1}, a_{2} \notin L: P_{1} \bowtie_{L} P_{2} \xrightarrow{\left(a_{1}, r_{1}\right)} P_{1}^{\prime} \underset{L}{\bowtie} P_{2}$
○ $a_{1}, a_{2} \notin L: P_{1} \bowtie \otimes_{L} P_{2} \xrightarrow{\left(a_{2}, r_{2}\right)} P_{1} \underset{L}{\bowtie} P_{2}^{\prime}$
○ $a_{1} \notin L, a_{2} \in L: P_{1} \underset{L}{\boxtimes} P_{2} \xrightarrow{\left(a, 1, r_{1}\right)} P_{1}^{\prime} \underset{L}{\boxtimes} P_{2}$

- $a_{1} \in L, a_{2} \notin L: P_{1} \underset{L}{\bowtie} P_{2} \xrightarrow{\left(a_{2}, r_{2}\right)} P_{1} \not \overbrace{L} P_{2}^{\prime}$

○ $a_{1}=a_{2} \in L: P_{1} \bowtie P_{2} \xrightarrow{\left(a_{1}, \text { min(}\left(r_{1}, r_{2}\right)\right.} P_{1}^{\prime} \bowtie P_{2}^{\prime}$
。 $a_{1} \neq a_{2}, a_{1}, a_{2} \in L: P_{1} \bowtie P_{2} \longrightarrow$

Extracting the CTMC

- So how do we get a Markov chain from this
- Once we have enumerated the global states, we map each PEPA state onto a CTMC state
- The transitions of the global state space become transitions of the CTMC generator matrix
- Any self loops are ignored in the generator matrix - why?
- Any multiple transitions have their rate summed in the generator matrix - why?

Extracting the CTMC (2)

For example if: $P_{1} \underset{L}{\bowtie} P_{2} \xrightarrow{(a, \lambda)} P \underset{L}{\otimes} P_{2}^{\prime}$

1. Enumerate all the states and assign them numbers:
o ...

- 3: $P_{1} \bowtie P_{2}$

っ 4: $P_{1} \bowtie P_{2}^{\prime}$
o ...
2. Construct Q by setting $q_{34}=\lambda$ in this case
3. If another transition with rate μ is discovered for states 3 to 4 then q_{34} becomes $\lambda+\mu$

Extracting the CTMC (3)

4. Ignore any transitions from state i to state i
5. Finally set $q_{i i}=-\sum_{j \neq i} q_{i j}$
6. Now sum of all rows of Q should be 0
7. To solve for the steady-state of Q :

$$
\vec{\pi} Q=\overrightarrow{0}
$$

find the elements of $\vec{\pi}=\left(\pi_{1}, \pi_{2}, \ldots \pi_{n}\right)$ using the additional constraint that:

$$
\pi_{1}+\pi_{2}+\cdots+\pi_{n}=1
$$

Voting Example II

M/M/2/3 Queue: Serial Client

M/M/2/3 Queue: Serial Client

- Client is allocated to a particular server (first one free) e.g. post-office counters

```
Arrival \stackrel{def (arrive, \lambda).Arrival}{=}
Server }\mp@subsup{}{1}{}\stackrel{\mathrm{ def (to_server, }T\mathrm{ ).(service, }\mu).\mp@subsup{Server }{1}{}}{=
Server }2\stackrel{\mathrm{ def (to_server, }\mu).(to_server, T).Server }{2
B
B
```



```
B}\mp@subsup{\textrm{B}}{3}{}\stackrel{\mathrm{ def }}{=}(to_server, \rho).\mp@subsup{\textrm{B}}{2}{
```


M/M/2/3 Queue: Serial Client

```
Buff }\mp@subsup{|}{0}{|}\stackrel{\mathrm{ def (arrive, }\boldsymbol{T}).Buff}{=
Buff
```



```
Buff 3}\xlongequal{}{\mathrm{ def (service, T).Buff}
```

- Now overall composed process looks like:

- Compose servers with B components

$$
\mathrm{B}_{0} \underset{\left\{t_{-} \text {server }\right\}}{\infty}\left(\text { Server }_{1} \| \text { Server }_{2}\right)
$$

- Now 3 customers can arrive in succession initially but while 2 are being serviced, a further 2 customers could arrive - making 5 i.e. not strictly a $M / M / 2 / 3$ queue
- Need to have a further counting process, Buff, to check buffer not exceeded

Steady-state reward vectors

- Reward vectors are a way of relating the analysis of the CTMC back to the PEPA model
- A reward vector is a vector, \vec{r}, which expresses a looked-for property in the system:
- e.g. utilisation, loss, delay, mean buffer length
- To find the reward value of this property at steady state - need to calculate:

```
reward = \vec{\pi}\cdot\vec{r}
```


Constructing reward vectors

Constructing reward vectors

- Typically reward vectors match the states where particular actions are enabled in the PEPA model

```
Client = (use, T).(think, \mu).Client
Server = (use, \lambda).(swap, }\gamma).\mathrm{ Server
Sys = Client }\rightsquigarrow\mathrm{ use
```

- There are 4 states - enumerated as $1:(C, S)$, $2:\left(C^{\prime}, S^{\prime}\right), 3:\left(C, S^{\prime}\right)$ and $4:\left(C^{\prime}, S\right)$
- For this $M / M / 1 / 3$ queue, number of states is 4
\qquad
Mean Occupation as a Reward
- Quantities such as mean buffer size can also be expressed as rewards

```
B0}=(\mathrm{ arrive, }\lambda)\cdot\mp@subsup{B}{1}{
```

B0}=(\mathrm{ arrive, }\lambda)\cdot\mp@subsup{B}{1}{
B}=(\mathrm{ arrive, }\lambda)\cdot\mp@subsup{B}{2}{}+(\mathrm{ service, }\mu)\cdot\mp@subsup{B}{0}{
B}=(\mathrm{ arrive, }\lambda)\cdot\mp@subsup{B}{2}{}+(\mathrm{ service, }\mu)\cdot\mp@subsup{B}{0}{
B}=(\mathrm{ arrive, }\lambda)\cdot\mp@subsup{B}{3}{}+(\mathrm{ service, }\mu)\cdot\mp@subsup{B}{1}{
B}=(\mathrm{ arrive, }\lambda)\cdot\mp@subsup{B}{3}{}+(\mathrm{ service, }\mu)\cdot\mp@subsup{B}{1}{
B3}=(\mathrm{ service, }\mu).\mp@subsup{B}{2}{

```
B3}=(\mathrm{ service, }\mu).\mp@subsup{B}{2}{
```

- If we want to measure server usage in the system, we would reward states in the global state space where the action use is enabled or active
- Only the state $1:(C, S)$ enables use
- So we set $r_{1}=1$ and $r_{i}=0$ for $2 \leq i \leq 4$, giving:

$$
\vec{r}=(1,0,0,0)
$$

- These are typical action-enabled rewards, where the result of $\vec{r} \cdot \vec{\pi}$ is a probability

Mean Occupation as a Reward

- Having a reward vector which reflects the number of elements in the queue will give the mean buffer occupation for $\mathrm{M} / \mathrm{M} / 1 / 3$
- i.e. set $\vec{r}=(0,1,2,3)$ such that:

$$
\text { mean buffer size }=\vec{\pi} \cdot \vec{r}=\sum_{i=0}^{3} \pi_{i} r_{i}
$$

Useful facts about queues

- Little's Law: $N=\tau W$
- N - mean buffer length; τ - arrival rate;
W - mean waiting time/passage time
- only applies to system in steady-state; no creating/destroying of jobs
- For M/M/1 queue:
- λ - arrival rate, μ - service rate
- Stability condition, $\rho=\lambda / \mu<1$ for steady state to exist
- Mean queue length $=\frac{\rho}{1-\rho}$
- $\mathbb{P}(n$ jobs in queue at s-s $)=\rho^{n}(1-\rho)$

Small bit of queueing theory

- As $N=\sum_{k=0}^{\infty} k \pi_{k}$, we need to find π_{k} :
- Derive steady-state equations from time-varying equations
- Solve steady-state equations to get π_{k}
- Calculate M/M/1 mean queue length, N
- (In what follows, remember $\rho=\lambda / \mu$)

Small bit of queueing theory

- Going to show for $\mathrm{M} / \mathrm{M} / 1$ queue, that:

1. steady-state probability for buffer having k customers is:

$$
\pi_{k}=(1-\rho) \rho^{k}
$$

2. mean queue length, N, at steady-state is:

$$
\frac{\rho}{1-\rho}
$$

Small bit of queueing theory

- Write down time-varying equations for $\mathrm{M} / \mathrm{M} / 1$ queue:
- At time t, in state $k=0$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \pi_{0}(t)=-\lambda \pi_{0}(t)+\mu \pi_{1}(t)
$$

- At time, t, in state $k \geq 1$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \pi_{k}(t)=-(\lambda+\mu) \pi_{k}(t)+\lambda \pi_{k-1}(t)+\mu \pi_{k+1}(t)
$$

Steady－state for M／M／1

－At steady－state，$\pi_{k}(t)$ are constant（i．e．π_{k} ） and $\frac{\mathrm{d}}{\mathrm{d} t} \pi_{k}(t)=0$ for all k
\Rightarrow Balance equations：
。 $-\lambda \pi_{0}+\mu \pi_{1}=0$
。 $-(\lambda+\mu) \pi_{k}+\lambda \pi_{k-1}+\mu \pi_{k+1}=0 \quad: k \geq 1$
－Rearrange balance equations to give：
。 $\pi_{1}=\frac{\lambda}{\mu} \pi_{0}=\rho \pi_{0}$
－$\pi_{k+1}=\frac{\lambda+\mu}{\mu} \pi_{k}-\frac{\lambda}{\mu} \pi_{k-1} \quad: k \geq 1$
－Solution：$\pi_{k}=\rho^{k} \pi_{0}$（proof by induction）

－As these π_{k} are probabilities which sum to 1：

$$
\sum_{k=0}^{\infty} \pi_{k}=1
$$

ง i．e．$\sum_{k=0}^{\infty} \pi_{k}=\sum_{k=0}^{\infty} \rho^{k} \pi_{0}=\frac{\pi_{0}}{1-\rho}=1$
$\Rightarrow \pi_{0}=1-\rho$ as long as $\rho<1$
－So overall steady－state formula for $\mathrm{M} / \mathrm{M} / 1$ queue is：

$$
\pi_{k}=(1-\rho) \rho^{k}
$$

M／M／1 Mean Queue Length

－ N is queue length random variable
－N could be 0 or 1 or 2 or 3 ．．
－Mean queue length is written N ：
$N=0 \cdot \mathbb{P}($ in state 0$)+1 \cdot \mathbb{P}($ in state 1$)+2 \cdot \mathbb{P}($ in state 2$)+$
$=\sum_{k=0}^{\infty} k \pi_{k}$
$=\pi_{0} \sum_{k=0}^{\infty} k \rho^{k}=\pi_{0} \rho \sum_{k=0}^{\infty} k \rho^{k-1}=\pi_{0} \rho \sum_{k=0}^{\infty} \frac{\mathrm{d}}{\mathrm{d}} \rho^{k}$
$=\pi_{0} \rho \frac{\mathrm{~d}}{\mathrm{~d} \rho} \sum_{k=0}^{\infty} \rho^{k}=\pi_{0} \rho \frac{\mathrm{~d}}{\mathrm{~d} \rho}\left(\frac{1}{1-\rho}\right)$
$=\frac{\pi_{0} \rho}{(1-\rho)^{2}}=\frac{\rho}{1-\rho} \square$

M／M／1 Mean Queue Length

Open Queueing Networks

- A network of queueing nodes with inputs/outputs connected to each other
- Called an open queueing network (or OQN) because, traffic may enter (or leave) one or more of the nodes in the system from an external source (to an external sink)
- An open network is defined by:
- γ_{i}, the exponential arrival rate from an external source
$\bigcirc q_{i j}$, the probability that traffic leaving node i will be routed to node j
。 μ_{i} exponential service rate at node i

OQN: Network assumptions

In the following analysis, we assume:

- Exponential arrivals to network
- Exponential service at queueing nodes
- FIFO service at queueing nodes
- A network may be stable (be capable of reaching steady-state) or it may be unstable (have unbounded buffer growth)
- If a network reaches steady-state (becomes stationary), a single rate, λ_{i}, may be used to represent the throughput (both arrivals and departure rate) at node i

OQN: Notation

- A node whose output can be probabilistically redirected into its input is represented as:

o or...

- probability p of being rerouted back into buffer
\qquad sullivel-

OQN: Traffic Equations

- The traffic equations for a queueing network are a linear system in λ_{i}
- λ_{i} represents the aggregate arrival rate at node i (taking into account any traffic feedback from other nodes)
- For a given node i, in an open network:

$$
\lambda_{i}=\gamma_{i}+\sum_{j=1}^{n} \lambda_{j} q_{j i} \quad: i=1,2, \ldots, n
$$

- Define:
- the vector of aggregate arrival rates $\vec{\lambda}=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$
- the vector of external arrival rates $\vec{\gamma}=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right)$
- the matrix of routeing probabilities $Q=\left(q_{i j}\right)$
- In matrix form, traffic equations become:

$$
\begin{aligned}
\vec{\lambda} & =\vec{\gamma}+\vec{\lambda} Q \\
& =\vec{\gamma}(I-Q)^{-1}
\end{aligned}
$$

- Set up and solve traffic equations to find λ_{i} :

$$
\vec{\lambda}=\left(\begin{array}{c}
2 \gamma \\
0 \\
\gamma
\end{array}\right)+\vec{\lambda}\left(\begin{array}{ccc}
0 & 1-p & p \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

ง i.e. $\lambda_{1}=2 \gamma, \lambda_{2}=(1-p) \lambda_{1}, \lambda_{3}=\gamma+p \lambda_{1}$

$$
\square
$$

OQN: Traffic Equations: example 2

- Set up and solve traffic equations to find λ_{i} :

$$
\vec{\lambda}=\left(\begin{array}{c}
2 \gamma \\
0 \\
0 \\
\gamma
\end{array}\right)+\vec{\lambda}\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
p & 0 & 0 & 0 \\
q & r & s & 0
\end{array}\right)
$$

OQN: Network stability

- Stability of network (whether it achieves steady-state) is determined by utilisation, $\rho_{i}<1$ at every node i
- After solving traffic equations for λ_{i}, need to check that:

$$
\rho_{i}=\frac{\lambda_{i}}{\mu_{i}}<1
$$

Recall facts about M/M/1

OQN: Jackson's Theorem

- If λ is arrival rate, μ service rate then $\rho=\lambda / \mu$ is utilisation
- If $\rho<1$, then steady state solution exists
- Average buffer length:

$$
N=\frac{\rho}{1-\rho}
$$

- Distribution of jobs in queue is:
$\mathbb{P}(k$ jobs is queue at steady-state $)=(1-\rho) \rho^{k}$

OQN: Jackson's Theorem Results

- The marginal distribution of no. of jobs at node i is same as for isolated $\mathrm{M} / \mathrm{M} / 1$ queue: $(1-\rho) \rho^{k}$
- Number of jobs at any node is independent of jobs at any other node - hence product form solution
- Powerful since queues can be reasoned about separately for queue length - summing to give overall network queue occupancy
- Where node i has a service rate of μ_{i}, define $\rho_{i}=\lambda_{i} / \mu_{i}$
- If the arrival rates from the traffic equations are such that $\rho_{i}<1$ for all $i=1,2, \ldots, n$, then the steady-state exists and:

$$
\pi\left(r_{1}, r_{2}, \ldots, r_{n}\right)=\prod_{i=1}^{n}\left(1-\rho_{i}\right) \rho_{i}^{r_{i}}
$$

- This is a product form result!

OQN: Mean Jobs in System

- If only need mean results, we can use Little's law to derive mean performance measures
- Product form result implies that each node can be reasoned about as separate $\mathrm{M} / \mathrm{M} / 1$ queue in isolation, hence:

Av. no. of jobs at node $i=N_{i}=\frac{\rho_{i}}{1-\rho_{i}}$

- Thus total av. number of jobs in system is:

$$
N=\sum_{i=1}^{n} \frac{\rho_{i}}{1-\rho_{i}}
$$

- Applying Little's law to whole network gives:
- r_{i} represents the the average waiting time from arriving at node i to leaving the system

$$
N=\tau W
$$

where τ is total external arrival rate, W is mean response time.

- So mean response time from entering to leaving system:
- w_{i} represents average response time at node i, then:

$$
r_{i}=w_{i}+\sum_{j=1}^{n} q_{i j} r_{j}
$$

- which as before gives a vector equation:

$$
\begin{aligned}
\vec{r} & =\vec{w}+Q \vec{r} \\
& =(I-Q)^{-1} \vec{w}
\end{aligned}
$$

OQN: Average node visit count

- Compare average visit count equations with traffic equations:

$$
\begin{aligned}
\vec{v} & =\vec{\gamma}^{\prime}(I-Q)^{-1} \\
\vec{\lambda} & =\vec{\gamma}(I-Q)^{-1}
\end{aligned}
$$

- We can see that: $\vec{v}=\lambda / \tau$, so if we have solved the traffic equations, we needn't perform a separate linear calculation
- so for $\vec{\gamma}^{\prime}=\vec{\gamma} / \tau$:

$$
\begin{aligned}
\vec{v} & =\vec{\gamma}^{\prime}+\vec{v} Q \\
& =\vec{\gamma}^{\prime}(I-Q)^{-1}
\end{aligned}
$$

Transient Analysis of CTMCs

- What is transient analysis?
- Transient analysis finds, $\pi_{i}(t)$, the probability of being in a state i, at time t.
- For irreducible Markov chains, the limit of the transient probability is the steady-state probability for that state.

Transient Analysis: Notation

- $\{X(t): t \geq 0\}$: the state of the MC at time t
- $p_{i j}(t)=\mathbb{P}(X(t)=j \mid X(0)=i\}$: probability of being in state j at time t, given that was in state i at time 0 (time-homogeneous)
- $\pi_{j}(t)=\mathbb{P}(X(t)=j)$: transient-state distn.

$$
\pi_{j}(t)=\sum_{i} p_{i j}(t) \pi_{i}(0)
$$

- π_{j} : steady-state probability of being in state j

$$
\lim _{t \rightarrow \infty} p_{i j}(t)=\lim _{t \rightarrow \infty} \pi_{j}(t)=\pi_{j}
$$

for irreducible Markov chains

Transient Analysis of CTMCs

- Blue line: steady-state, $\pi_{X_{1}}$
- Red line: transient-state, $\pi_{X_{1}}(t)$

Transient Analysis

- For a CTMC with generator matrix A with elements, $a_{i j}$
- Transient equation:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \vec{\pi}(t)=\vec{\pi}(t) A \tag{*}
\end{equation*}
$$

- At steady-state:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \vec{\pi}(t)=\vec{\pi} A=0
$$

where $\vec{\pi}=\left\{\pi_{1}, \pi_{2}, \cdots, \pi_{N}\right\}$,
$\vec{\pi}(t)=\left\{\pi_{1}(t), \pi_{2}(t), \cdots, \pi_{N}(t)\right\}$

Transient Analysis

- Solving equation (*) gives:

$$
\vec{\pi}(t)=\vec{\pi}(0) e^{A t}
$$

where:

$$
e^{A t}=\sum_{k=0}^{\infty} \frac{(A t)^{k}}{k!}
$$

- Why not calculate $(* *)$ directly?
- A has negative and positive entries numerically unstable
- $\sum_{k=0}^{\infty}$ needs to be truncated

Transient Analysis

- We get an equation analogous to $(*)$ in $\vec{y}(t)$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \vec{y}(t)=\vec{y}(t) q A^{*}
$$

where $A^{*}=A / q+I$

- for which the solution is:

$$
\begin{aligned}
\vec{y}(t) & =y(0) e^{q A^{*} t} \\
e^{q t} \vec{\pi}(t) & =\vec{\pi}(0) e^{q A^{*} t} \\
\vec{\pi}(t) & =\vec{\pi}(0) \sum_{k=0}^{\infty} \frac{(q t)^{k} e^{-q t}}{k!} A^{* k}
\end{aligned}
$$

Transient Analysis

- Why not calculate ($* *$) directly?

。 A^{k} is computationally expensive and has fill-in for large k. If A is sparse, A^{k} will be dense!

- To get round first problem, we scale $\vec{\pi}(t)$ by $\vec{y}(t)=e^{q t} \vec{\pi}(t)$, where $q>\max _{i}\left(-a_{i i}\right)$

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \vec{y}(t) & =e^{q t} \frac{\mathrm{~d}}{\mathrm{~d} t} \vec{\pi}(t)+q e^{q t} \vec{\pi}(t) \\
& =e^{q t} \vec{\pi}(t) A+q e^{q t} \vec{\pi}(t) \quad \text { by eqn }(*) \\
& =e^{q t} \vec{\pi}(t) \underbrace{(A+q I)}_{\text {+ive diagona elements }}
\end{aligned}
$$

Transient Analysis

- Now let $\vec{\theta}(k)=\vec{\theta}(k-1) A^{*}$ and $\vec{\theta}(0)=\vec{\pi}(0)$
- This prevents having to calculate $A^{* k}$ directly and having fill-in
- Our final formula for the transient state probability is:

$$
\vec{\pi}(t)=\sum_{k=0}^{\infty} \vec{\theta}(k) \frac{(q t)^{k} e^{-q t}}{k!}
$$

- Summation can be truncated effectively
- Number iterations: $O(q t)$

Uniformization: Interpretation

- A^{*} is a DTMC transition matrix, so $\vec{\theta}(k)=\vec{\theta}(k-1) A^{*}$ is k th transition vector
- Constructing A^{*} from A can be seen as sampling the CTMC at regular intervals
- The probability of being in a given CTMC state at one of these sample times is dictated by the DTMC
- The time taken between state changes can be seen as a uniformized exponential distribution of rate, q
- This can be interpreted as:
\mathbb{P} (in state i at time, t)
$=\sum_{k} \mathbb{P}($ in state $i \mid k$ transitions $) \cdot \mathbb{P}$ (num. transitions $=k$)
- If $X \sim \operatorname{Poisson}(q t)$, number of exponential transitions of rate q in a time period, t :

$$
\mathbb{P}(X=k)=\frac{(q t)^{k} e^{-q t}}{k!}
$$

Transient Analysis
 $$
\vec{\pi}(t)=\sum_{k=0}^{\infty} \vec{\theta}(k) \frac{(q t)^{k} e^{-q t}}{k!}
$$

