
Simulation and Modelling

Tony Field and Jeremy Bradley

Room 372. Email: jb@doc.ic.ac.uk

Department of Computing, Imperial College London

Produced with prosper and LATEX

SM [11/08] – p. 1

Queues at Keil Ferry Terminal

1 week time-lapse CCTV of the Keil ferry
terminal (http://www.kielmonitor.de/)

Multi-server queue with vacations and batch
services

SM [11/08] – p. 2

Quantitative modelling

How many processors will we need to
achieve throughput of 300Mbit s−1?

What is the percentage utilisatation of the
upstream network link?

What is the probability that a text message
sent from mobile A to mobile B will take less
than 5 seconds

At time t = 4, what is the probability that the
software is in a mutual exclusion lock?

SM [11/08] – p. 3

Available modelling languages

Queueing networks:

SM [11/08] – p. 4



Available modelling languages

Stochastic Petri nets:

SM [11/08] – p. 5

Available modelling languages

Stochastic process algebras:

A1
def
= (start, r1 ).A2 + (pause, r2 ).A3

A2
def
= (run, r3 ).A1 + (fail, r4 ).A3

A3
def
= (recover, r1 ).A1

AA
def
= (run,⊤).(alert, r5 ).AA

Sys
def
= AA ¤¢

{run}
A1

SM [11/08] – p. 6

Available mathematical models

Markov Chains:

SM [11/08] – p. 7

Available mathematical models

Semi-Markov Chains:

SM [11/08] – p. 8



An exponential distribution

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3

X~exp(1.25)

SM [11/08] – p. 9

A non-exponential distribution

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  2  4  6  8  10  12  14

P
ro

ba
bi

lit
y 

de
ns

ity

Time, t

Analytic solution for L_12(s)

SM [11/08] – p. 10

An exponential distribution

If X ∼ exp(λ) then:
Probability density function (PDF)

fX(t) = λe−λt

Cumulative density function (CDF)

FX(t) = IP(X ≤ t) =

∫ t

0

fX(u) du = 1 − e−λt

Laplace transform of PDF

LX(s) =
λ

λ + s
SM [11/08] – p. 11

An exponential CDF

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5
C

um
ul

at
iv

e 
pr

ob
ab

ili
ty

, p

Time, t

X~exp(2.5) CDF

SM [11/08] – p. 12



Memoryless property

The exponential distribution is unique by
being memoryless

i.e. if you interrupt an exponential event,
the remaining time is also exponential
Mathematically we would say – let
X ∼ exp(λ) and at time, t + u, where
X > u, let Y = X − u be the distribution of
the remaining time:

f(Y |X>u)(t) = fX(t)

SM [11/08] – p. 13

Markov property

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3

X~exp(1.25)

SM [11/08] – p. 14

Stochastic Petri nets

Stochastic Petri nets (SPNs) are based on
untimed Petri nets (PNs)

SPNs have exponential firing delays

Generalised stochastic Petri nets (GSPNs)
have exponential and immediate firing delays

PNs/SPNs/GSPNs good at capturing
resource usage, functional dependency

No syntax for composition – although easy to
compose Petri nets by eye!

SM [11/08] – p. 15

Petri nets: summary

Circles are places , solid discs are tokens ,
rectangles are transitions

Arrows indicate flow of tokens/execution
SM [11/08] – p. 16



Petri nets: definitions

Petri nets consist of places, transitions and
tokens

Places are connected to other places via
transitions

Tokens move from place to place by enabling
and then firing transitions according to rules

The configuration of tokens in a Petri net is
known as the marking or state of the Petri net

SM [11/08] – p. 17

Petri nets: enabling and firing

An in-place for a transition is a place which
points to that transition; an out-place for a
transition is a place which is pointed to by that
transition

A transition is enabled if all the in-places
contain tokens

A transition fires by taking 1 token from each
in-place and putting 1 token in each out-place
for that transition

A transition firing does not necessarily
preserve the token count

SM [11/08] – p. 18

Simple process transition

A single token enables the transition, fires the
transition and transits to the out-place

SM [11/08] – p. 19

Process choice

A token can progress to either one of its
out-places, but not both

SM [11/08] – p. 20



Process forking

A process can fork two independent
processes with distinct behaviour, that
operate in parallel with each other

SM [11/08] – p. 21

Process joining

Two independent parallel processes can be
joined to form a single execution behaviour.
Both (all) in-places need to be occupied
before the transition is enabled.

SM [11/08] – p. 22

Duplicate behaviour

Independent processes with duplicate
behaviours can make use of the same Petri
net structure

SM [11/08] – p. 23

Duplicate behaviour

Places can have multiple tokens representing
independent processes

SM [11/08] – p. 24



Multiple token enabling

3 2 p2p1

If edges annotated with numbers, as above: it
takes 3 tokens to enable the transition

On firing, 3 tokens removed from place p1 and
2 put into place p2

An unannotated Petri net implicitly has 1s on
all its edges

SM [11/08] – p. 25

SPN Example: Voting model

SM [11/08] – p. 26

Stochastic Petri nets

λ

SPNs have same functional behaviour as
Petri nets; it now takes time to fire a transition

Each transition has an exponential rate
associated with it

Let X be the time-to-fire-once-enabled of the
transition above, X ∼ exp(λ)

SM [11/08] – p. 27

Stochastic Petri nets: racing

λ

µ

t1

t2

What happens when we have two enabled
transitions?

If t1 fires first what delay is left on t2?

SM [11/08] – p. 28



Generalised Stochastic Petri nets

λ

ω

t1

t2

t1 is timed transition with exponential delay λ;
t2 is an immediate transition with weight, ω

Immediate transitions are always enabled
before timed transitions

SM [11/08] – p. 29

Generalised Stochastic Petri nets

ω1

ω2

t1

t2

If multiple immediate transitions are enabled
then weights are used to choose which fires

Transition ti fires with probability ωi∑

j ωj

SM [11/08] – p. 30

Continuous Time Markov Chains

The mathematical model underlying SPNs
(and GSPNs after removing vanishing states)
is a continuous time Markov chain (CTMC)

A CTMC is formally described as a sequence
of states from time t ≥ 0 or:

{X(t) : t ≥ 0}

where X(t) is a random variable representing
the state of the chain at time t

A CTMC is usually represented, in practice,
by a generator matrix of rates, Q

SM [11/08] – p. 31

Continuous Time Markov Chains

A CTMC has the property:

IP(X(t) = i | X(tn) = jn, X(tn−1) = jn−1, . . . , X(t0) = j0)

= IP(X(t) = i | X(tn) = jn)

for any sequence of times

t0 < t1 < · · · < tn−1 < tn

This means that the probability of progressing
to any state i depends only on the current
state, and not on any prior trace history.

SM [11/08] – p. 32



Generating a CTMC from an SPN

1. Label the places of the SPN

2. Create a tuple representing the current
marking of the SPN, e.g. (1, 0, 0, 1, 0)

3. Find all possible transitions out of that
marking

(a) For each transition, write down the new
tuple that is created

(b) an arrow leading from first tuple to the
second annotated with the rate of the firing
transition

4. Repeat from (2) until all markings discovered

SM [11/08] – p. 33

Creating a Generator Matrix

Need to create the generator matrix for the
CTMC, Q:

1. Number markings as generated on previous
slide

2. Set qij = sum of rates from marking i to j

3. Ignore any transitions from marking i to itself

4. Set qii = −
∑

j 6=i qij

5. Now sum of all rows of Q should be 0

SM [11/08] – p. 34

Steady state analysis of a CTMC

To solve for the steady-state of CTMC with
generator matrix, Q:

~πQ = ~0

find the elements of ~π = (π1, π2, . . . πn) using
the additional constraint that:

π1 + π2 + · · · + πn = 1

πi represents the steady state probability of
being in marking i

SM [11/08] – p. 35

Steady state

Steady state probability of their being m
tokens in place pn is:

∑

i : M(i,m,n)

πi

where M(i, m, n) =
marking i has m tokens in place n

This means that if you were to let your SPN
run for a long time and glimpse it’s marking, it
would have this probability of being in this
state

SM [11/08] – p. 36



Steady-state example [1]

Given a stochastic Petri net:

p1 p2

p3

p4

λ

t1

λλ

µµ

SM [11/08] – p. 37

Steady-state example [2]

Using a tuple representation of marking,
(p1, p2, p3, p4), construct the underlying
Markov chain

(1, 0, 0, 0)

?

λ

(0, 1, 0, 0)
¡

¡
¡ª

µ

(0, 0, 1, 0)

@
@

@R

λ

(0, 0, 0, 1)
¢
¢
¢
¢
¢
¢
¢
¢̧

µ

A
A

A
A

A
A

A
AK

λ

SM [11/08] – p. 38

Steady-state example [3]

By enumerating the states of the SPN, we
can write down the CTMC genrator matrix, Q

State enumeration:
1. (1, 0, 0, 0)

2. (0, 1, 0, 0)

3. (0, 0, 1, 0)

4. (0, 0, 0, 1)

Gives the following transition matrix:

Q =








−λ λ 0 0

0 −(λ + µ) µ λ

µ 0 −µ 0

λ 0 0 −λ








SM [11/08] – p. 39

Steady-state example [4]

Solving ~πQ = ~0 for a specific ~π = (π1, . . . , πn)
gives a steady state probablity, πi, for being in
marking i

The equations from ~πQ will be linearly
dependent since |Q| = 0, so you will need
∑

i πi = 1 to give a unique solution

In this case we get:

~π =
1

4λ + µ
(λ + µ, λ, λ, λ)

SM [11/08] – p. 40



Steady-state example [5]

Example calculations:
So if λ = 1, µ = 6:

IP(1 token in p1) = π1 = 0.7

IP(1 token in either p3 or p4) = π3 + π4 = 0.2

Firing rate of a transition, t, is
∑

i : E(i,t) πi r(t) where:
E(i, t) = marking i enables t
r(t) = rate of transition, t

IP(average firing rate of t1) = π1λ = 0.7

SM [11/08] – p. 41

PEPA: Stochastic process algebra

PEPA is a language for describing systems
which have underlying continuous time
Markov chains

PEPA is useful because:
it is a formal, algebraic description of a
system
it is compositional
it is parsimonious (succinct)
it is easy to learn!
it is used in research and in industry

SM [11/08] – p. 42

Tool Support

PEPA has several methods of execution and
analysis, through comprehensive tool
support:

PEPA Workbench: Edinburgh
Möbius: Urbana-Champaign, Illinois
PRISM: Birmingham
ipc: Imperial College London

SM [11/08] – p. 43

Types of Analysis

Steady-state and transient analysis in PEPA:

A1
def
= (start, r1 ).A2 + (pause, r2 ).A3

A2
def
= (run, r3 ).A1 + (fail, r4 ).A3

A3
def
= (recover, r1 ).A1

AA
def
= (run,⊤).(alert, r5 ).AA

Sys
def
= AA ¤¢

{run}
A1

⇒

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0  5  10  15  20  25  30

P
ro

ba
bi

lit
y

Time, t

PEPA model: transient X_1 -> X_1
Steady state: X_1

SM [11/08] – p. 44



Passage-time Quantiles

Extract a passage-time density from a PEPA
model:

A1
def
= (start, r1 ).A2 + (pause, r2 ).A3

A2
def
= (run, r3 ).A1 + (fail, r4 ).A3

A3
def
= (recover, r1 ).A1

AA
def
= (run,⊤).(alert, r5 ).AA

Sys
def
= AA ¤¢

{run}
A1

⇒

SM [11/08] – p. 45

PEPA Syntax

Syntax:

P ::= (a, λ).P P + P P ¤¢
L

P P/L A

Action prefix: (a, λ).P

Competitive choice: P1 + P2

Cooperation: P1 ¤¢
L

P2

Action hiding: P/L

Constant label: A

SM [11/08] – p. 46

Prefix: (a, λ).A

Prefix is used to describe a process that
evolves from one state to another by emitting
or performing an action

Example:

P
def
= (a, λ).A

...means that the process P evolves with rate
λ to become process A, by emitting an
a-action

λ is an exponential rate parameter

This is also be written:

P
(a,λ)

−−−→ A
SM [11/08] – p. 47

Choice: P1 + P2

PEPA uses a type of choice known as
competitive choice

Example:

P
def
= (a, λ).P1 + (b, µ).P2

...means that P can evolve either to produce
an a-action with rate λ or to produce a
b-action with rate µ

In state-transition terms, P ´
´

´
3́

Q
Q

Q
Qs

(a, λ)

(b, µ)

P1

P2
SM [11/08] – p. 48



Choice: P1 + P2

P
def
= (a, λ).P1 + (b, µ).P2

This is competitive choice since:
P1 and P2 are in a race condition – the first
one to perform an a or a b will dictate the
direction of choice for P1 + P2

What is the probability that we see an
a-action?

SM [11/08] – p. 49

Cooperation: P1 ¤¢
L

P2

¤¢
L

defines concurrency and communication
within PEPA

The L in P1 ¤¢
L

P2 defines the set of actions
over which two components are to cooperate

Any other actions that P1 and P2 can do, not
mentioned in L, can happen independently

If a ∈ L and P1 enables an a, then P1 has to
wait for P2 to enable an a before the
cooperation can proceed

Easy source of deadlock!

SM [11/08] – p. 50

Cooperation: P1 ¤¢
L

P2

If P1

(a,λ)

−−−→ P ′
1 and P2

(a,⊤)

−−−→ P ′
2 then:

P1 ¤¢
{a}

P2

(a,λ)

−−−→ P ′
1 ¤¢

{a}
P ′

2

⊤ represents a passive rate which, in the
cooperation, inherits the λ-rate of from P1

If both rates are specified and the only
a-evolutions allowed from P1 and P2 are,

P1

(a,λ)

−−−→ P ′
1 and P2

(a,µ)

−−−→ P ′
2 then:

P1 ¤¢
{a}

P2

(a,min(λ,µ))

−−−→ P ′
1 ¤¢

{a}
P ′

2

SM [11/08] – p. 51

Cooperation: P1 ¤¢
L

P2

The general cooperation case is where:
P1 enables m a-actions
P2 enables n a-actions

at the moment of cooperation

...in which case there are mn possible
transitions for P1 ¤¢

{a}
P2

P1 ¤¢
{a}

P2

(a,R)

−−−→ where

R = λ
ra(P1)

µ
ra(P2)

min(ra(P1), ra(P2))

ra(P ) =
∑

i:P
(a,ri)−→

ri is the apparent rate of an
action a – the total rate at which P can do a

SM [11/08] – p. 52



Simplified Cooperation: P1 ¤¢
L

P2

An approximation to pairwise cooperation:

P1

(a,⊤)

−−−→ P ′
1 and P2

(a,⊤)

−−−→ P ′
2

P1 ¤¢
L

P2

(a,⊤)

−−−→ P ′
1 ¤¢

L
P ′

2

P1

(a,λ)

−−−→ P ′
1 and P2

(a,⊤)

−−−→ P ′
2

P1

(a,⊤)

−−−→ P ′
1 and P2

(a,λ)

−−−→ P ′
2

Both give: P1 ¤¢
L

P2

(a,λ)

−−−→ P ′
1 ¤¢

L
P ′

2

P1

(a,λ)

−−−→ P ′
1 and P2

(a,µ)

−−−→ P ′
2

P1 ¤¢
L

P2

(a,min(λ,µ))

−−−→ P ′
1 ¤¢

L
P ′

2
SM [11/08] – p. 53

Hiding: P/L

Used to turn observable actions in P into
hidden or silent actions in P/L

L defines the set of actions to hide

If P
(a,λ)

−−−→ P ′:

P/{a}
(τ,λ)

−−−→ P ′/{a}

τ is the silent action

Used to hide complexity and create a
component interface

Cooperation on τ not allowed

SM [11/08] – p. 54

Constant: A

Used to define components labels, as in:

P
def
= (a, λ).P ′

Q
def
= (q, µ).W

P ,P ′, Q and W are all constants

SM [11/08] – p. 55

PEPA: A Transmitter-Receiver

System
def
= (Transmitter ¤¢

∅
Receiver) ¤¢

{transmit,receive}
Network

Transmitter
def
= (transmit, λ1 ).(t_recover, λ2 ).Transmitter

Receiver
def
= (receive,⊤).(r_recover, µ).Receiver

Network
def
= (transmit,⊤).(delay, ν1 ).(receive, ν2 ).Network

A simple transmitter-receiver over a network

SM [11/08] – p. 56



T-R: Global state space

SM [11/08] – p. 57

Expansion law for 2 Components

P1 ¤¢
L

P2 where P1

(a1,r1)

−−−→ P ′
1 and P2

(a2,r2)

−−−→ P ′
2

There are four cases: a1, a2 6∈ L, a1 = a2 ∈ L,
a1 ∈ L, a2 6∈ L and a1 6∈ L, a2 ∈ L:

P1 ¤¢
L

P2 = (a1, r1).(P
′

1 ¤¢
L

P2) + (a2, r2).(P1 ¤¢
L

P ′

2)

if a1, a2 6∈ L

P1 ¤¢
L

P2 = (a1, min(r1, r2)).(P
′

1 ¤¢
L

P ′

2)

if a1 = a2 ∈ L

P1 ¤¢
L

P2 = (a1, r1).(P
′

1 ¤¢
L

P2)

if a1 6∈ L, a2 ∈ L

...

SM [11/08] – p. 58

Possible Evolutions of 2 Cpts

P1 ¤¢
L

P2 where P1

(a1,r1)

−−−→ P ′
1 and P2

(a2,r2)

−−−→ P ′
2.

a1, a2 6∈ L: P1 ¤¢
L

P2

(a1,r1)

−−−→ P ′
1 ¤¢

L
P2

a1, a2 6∈ L: P1 ¤¢
L

P2

(a2,r2)

−−−→ P1 ¤¢
L

P ′
2

a1 6∈ L, a2 ∈ L: P1 ¤¢
L

P2

(a1,r1)

−−−→ P ′
1 ¤¢

L
P2

a1 ∈ L, a2 6∈ L: P1 ¤¢
L

P2

(a2,r2)

−−−→ P1 ¤¢
L

P ′
2

a1 = a2 ∈ L: P1 ¤¢
L

P2

(a1,min(r1,r2))

−−−→ P ′
1 ¤¢

L
P ′

2

a1 6= a2, a1, a2 ∈ L: P1 ¤¢
L

P2 6−−−→

SM [11/08] – p. 59

Extracting the CTMC

So how do we get a Markov chain from this
Once we have enumerated the global
states, we map each PEPA state onto a
CTMC state
The transitions of the global state space
become transitions of the CTMC generator
matrix
Any self loops are ignored in the generator
matrix – why?
Any multiple transitions have their rate
summed in the generator matrix - why?

SM [11/08] – p. 60



Extracting the CTMC (2)

For example if: P1 ¤¢
L

P2

(a,λ)

−−−→ P ¤¢
L

P ′
2

1. Enumerate all the states and assign them
numbers:

· · ·

3: P1 ¤¢
L

P2

4: P1 ¤¢
L

P ′
2

· · ·

2. Construct Q by setting q34 = λ in this case

3. If another transition with rate µ is discovered
for states 3 to 4 then q34 becomes λ + µ

SM [11/08] – p. 61

Extracting the CTMC (3)

4. Ignore any transitions from state i to state i

5. Finally set qii = −
∑

j 6=i qij

6. Now sum of all rows of Q should be 0

7. To solve for the steady-state of Q:

~πQ = ~0

find the elements of ~π = (π1, π2, . . . πn) using
the additional constraint that:

π1 + π2 + · · · + πn = 1

SM [11/08] – p. 62

Voting Example I

System
def
= (Voter || Voter || Voter)

¤¢
{vote}

((Poler ¤¢
L

Poler) ¤¢
L′

Poler_group_0)

where

L = {recover_all}

L′ = {recover, break, recover_all}

SM [11/08] – p. 63

Voting Example II

Voter
def
= (vote, λ).(pause, µ).Voter

Poler
def
= (vote,⊤).(register, γ).Poler

+ (break, ν).Poler_broken

Poler_broken
def
= (recover, τ).Poler

+ (recover_all,⊤).Poler

SM [11/08] – p. 64



Voting Example III

Poler_group_0
def
= (break,⊤).Poler_group_1

Poler_group_1
def
= (break,⊤).Poler_group_2

+ (recover,⊤).Poler_group_0

Poler_group_2
def
= (recover_all, δ)

.Poler_group_0

SM [11/08] – p. 65

M/M/2/3 Queue

From tutorial sheet, asked to design a
M/M/2/3 queue in PEPA

There are two possible architectures
depending on the type of M/M/2 queue

fully parallel client – client can be
processed by as many servers as are
available concurrently
fully serial client – client is allocated to a
particular server and dealt with solely by
that server until complete

SM [11/08] – p. 66

M/M/2/3 Queue: Parallel Client

Arrival
def
= (arrive, λ).Arrival

Server1
def
= (service, µ).Server1

Server2
def
= (service, µ).Server2

Buff0
def
= (arrive,⊤).Buff1

Buff1
def
= (arrive,⊤).Buff2 + (service,⊤).Buff0

Buff2
def
= (arrive,⊤).Buff3 + (service,⊤).Buff1

Buff3
def
= (service,⊤).Buff2

Sysp
def
= Arrival ¤¢

L
(Buff0 ¤¢

M
(Server1 ‖ Server2))

where L = {arrive}, M = {service}

SM [11/08] – p. 67

M/M/2/3 Queue: Parallel Client

(Server1 ‖ Server2) is shorthand notation for
(Server1 ¤¢

∅
Server2)

The model Sysp would be analogous to
having a single server serving at twice the
rate, i.e. 2µ

...so why not have a single server serve at
rate 2µ?

...because it allows us to model breakdowns
or hetereogeneous servers i.e. in some way
give each server individual behaviour

Serveri = (service, µ).Servicei + (break, γ).(recover, χ).Serveri

SM [11/08] – p. 68



M/M/2/3 Queue: Serial Client

Client is allocated to a particular server (first
one free) e.g. post-office counters

Arrival
def
= (arrive, λ).Arrival

Server1
def
= (to_server ,⊤).(service, µ).Server1

Server2
def
= (to_server , µ).(to_server ,⊤).Server2

B0
def
= (arrive,⊤).B1

B1
def
= (arrive,⊤).B2 + (to_server , ρ).B0

B2
def
= (arrive,⊤).B3 + (to_server , ρ).B1

B3
def
= (to_server , ρ).B2

SM [11/08] – p. 69

M/M/2/3 Queue: Serial Client

Compose servers with B components

B0 ¤¢
{to_server}

(Server1 ‖ Server2)

Now 3 customers can arrive in succession
initially but while 2 are being serviced, a
further 2 customers could arrive – making 5
i.e. not strictly a M/M/2/3 queue

Need to have a further counting process,
Buff , to check buffer not exceeded

SM [11/08] – p. 70

M/M/2/3 Queue: Serial Client

Buff0
def
= (arrive,⊤).Buff1

Buff1
def
= (arrive,⊤).Buff2 + (service,⊤).Buff0

Buff2
def
= (arrive,⊤).Buff3 + (service,⊤).Buff1

Buff3
def
= (service,⊤).Buff2

Now overall composed process looks like:

Arrival ¤¢
{arrive}

(Buff0 ¤¢
{arrive,service}

(B0 ¤¢
{to_server}

(Server1 ‖ Server2)))

SM [11/08] – p. 71

Steady-state reward vectors

Reward vectors are a way of relating the
analysis of the CTMC back to the PEPA
model

A reward vector is a vector, ~r, which
expresses a looked-for property in the
system:

e.g. utilisation, loss, delay, mean buffer
length

To find the reward value of this property at
steady state – need to calculate:

reward = ~π · ~r

SM [11/08] – p. 72



Constructing reward vectors

Typically reward vectors match the states
where particular actions are enabled in the
PEPA model

Client = (use,⊤).(think, µ).Client

Server = (use, λ).(swap, γ).Server

Sys = Client ¤¢
use

Server

There are 4 states – enumerated as 1 : (C, S),
2 : (C ′, S ′), 3 : (C, S ′) and 4 : (C ′, S)

SM [11/08] – p. 73

Constructing reward vectors

If we want to measure server usage in the
system, we would reward states in the global
state space where the action use is enabled
or active

Only the state 1 : (C, S) enables use

So we set r1 = 1 and ri = 0 for 2 ≤ i ≤ 4,
giving:

~r = (1, 0, 0, 0)

These are typical action-enabled rewards,
where the result of ~r · ~π is a probability

SM [11/08] – p. 74

Mean Occupation as a Reward

Quantities such as mean buffer size can also
be expressed as rewards

B0 = (arrive, λ).B1

B1 = (arrive, λ).B2 + (service, µ).B0

B2 = (arrive, λ).B3 + (service, µ).B1

B3 = (service, µ).B2

For this M/M/1/3 queue, number of states is 4

SM [11/08] – p. 75

Mean Occupation as a Reward

Having a reward vector which reflects the
number of elements in the queue will give the
mean buffer occupation for M/M/1/3

i.e. set ~r = (0, 1, 2, 3) such that:

mean buffer size = ~π · ~r =
3∑

i=0

πiri

SM [11/08] – p. 76



Useful facts about queues

Little’s Law: N = τW

N – mean buffer length; τ – arrival rate;
W – mean waiting time/passage time
only applies to system in steady-state; no
creating/destroying of jobs

For M/M/1 queue:
λ – arrival rate, µ – service rate
Stability condition, ρ = λ/µ < 1 for steady
state to exist
Mean queue length = ρ

1−ρ

IP(n jobs in queue at s-s) = ρn(1 − ρ)

SM [11/08] – p. 77

Small bit of queueing theory

Going to show for M/M/1 queue, that:
1. steady-state probability for buffer having k

customers is:

πk = (1 − ρ)ρk

2. mean queue length, N , at steady-state is:

ρ

1 − ρ

SM [11/08] – p. 78

Small bit of queueing theory

As N =
∑∞

k=0 kπk, we need to find πk:
Derive steady-state equations from
time-varying equations
Solve steady-state equations to get πk

Calculate M/M/1 mean queue length, N

(In what follows, remember ρ = λ/µ)

SM [11/08] – p. 79

Small bit of queueing theory

Write down time-varying equations for M/M/1
queue:

At time t, in state k = 0:

d

dt
π0(t) = −λπ0(t) + µπ1(t)

At time, t, in state k ≥ 1:

d

dt
πk(t) = −(λ+µ)πk(t)+λπk−1(t)+µπk+1(t)

SM [11/08] – p. 80



Steady-state for M/M/1

At steady-state, πk(t) are constant (i.e. πk)
and d

dt
πk(t) = 0 for all k

⇒ Balance equations:
−λπ0 + µπ1 = 0

−(λ + µ)πk + λπk−1 + µπk+1 = 0 : k ≥ 1

Rearrange balance equations to give:

π1 = λ
µ
π0 = ρπ0

πk+1 = λ+µ
µ

πk −
λ
µ
πk−1 : k ≥ 1

Solution: πk = ρkπ0 (proof by induction)

SM [11/08] – p. 81

Normalising to find π0

As these πk are probabilities which sum to 1:

∞∑

k=0

πk = 1

i.e.
∑∞

k=0 πk =
∑∞

k=0 ρkπ0 = π0

1−ρ
= 1

⇒ π0 = 1 − ρ as long as ρ < 1

So overall steady-state formula for M/M/1
queue is:

πk = (1 − ρ)ρk

SM [11/08] – p. 82

M/M/1 Mean Queue Length

N is queue length random variable

N could be 0 or 1 or 2 or 3 ...
Mean queue length is written N :
N = 0.IP(in state 0) + 1.IP(in state 1) + 2.IP(in state 2) + · · ·

=

∞∑

k=0

kπk

= π0

∞∑

k=0

kρk = π0ρ

∞∑

k=0

kρk−1 = π0ρ

∞∑

k=0

d

dρ
ρk

= π0ρ
d

dρ

∞∑

k=0

ρk = π0ρ
d

dρ

(
1

1 − ρ

)

=
π0ρ

(1 − ρ)2
=

ρ

1 − ρ

SM [11/08] – p. 83

M/M/1 Mean Queue Length

 0

 10

 20

 30

 40

 50

 60

 0  0.2  0.4  0.6  0.8  1
E

(N
),

 m
ea

n 
qu

eu
e 

le
ng

th

rho

E(N) for M/M/1 queue

SM [11/08] – p. 84



Queueing Networks

Individual queue nodes represent contention
for single resources

A system consists of many inter-dependent
resources – hence we need to reason about a
network of queues to represent a system

SM [11/08] – p. 85

Example: Post office queueing

Exam 2006:

A customer enters a Post Office and queues for
service. After being served by a cashier, the
customer either requires further service and
returns to the back of the queue with probability
p, or departs the Post Office with probability
(1 − p).

SM [11/08] – p. 86

Example: Post office queueing

1 − p

p

1. Find the mean number of times that the
customer has to enter the queue.

SM [11/08] – p. 87

Example: Post office queueing

2. Assuming that the queue in the Post Office is
an M/M/1 queue with service rate µ, and that
customers arrive at the Post Office with rate
λ. Find the mean number of customers in the
queue and the mean time spent in the Post
Office.

1 − p

p

λ
µ

SM [11/08] – p. 88



Open Queueing Networks

A network of queueing nodes with
inputs/outputs connected to each other

Called an open queueing network (or OQN)
because, traffic may enter (or leave) one or
more of the nodes in the system from an
external source (to an external sink)

An open network is defined by:
γi, the exponential arrival rate from an
external source
qij, the probability that traffic leaving node i
will be routed to node j

µi exponential service rate at node i
SM [11/08] – p. 89

OQN: Notation

A node whose output can be probabilistically
redirected into its input is represented as:

p

or...

p

probability p of being rerouted back into buffer
SM [11/08] – p. 90

OQN: Network assumptions

In the following analysis, we assume:

Exponential arrivals to network

Exponential service at queueing nodes

FIFO service at queueing nodes

A network may be stable (be capable of
reaching steady-state) or it may be unstable
(have unbounded buffer growth)

If a network reaches steady-state (becomes
stationary), a single rate, λi, may be used to
represent the throughput (both arrivals and
departure rate) at node i

SM [11/08] – p. 91

OQN: Traffic Equations

The traffic equations for a queueing network
are a linear system in λi

λi represents the aggregate arrival rate at
node i (taking into account any traffic
feedback from other nodes)

For a given node i, in an open network:

λi = γi +
n∑

j=1

λjqji : i = 1, 2, . . . , n

SM [11/08] – p. 92



OQN: Traffic Equations

Define:
the vector of aggregate arrival rates
~λ = (λ1, λ2, . . . , λn)

the vector of external arrival rates
~γ = (γ1, γ2, . . . , γn)

the matrix of routeing probabilities Q = (qij)

In matrix form, traffic equations become:

~λ = ~γ + ~λQ

= ~γ(I − Q)−1

SM [11/08] – p. 93

OQN: Traffic Equations: example 1

1 2

3
γ

2γ

p

Set up and solve traffic equations to find λi:

~λ =






2γ

0

γ




 + ~λ






0 1 − p p

0 0 0

0 0 0






i.e. λ1 = 2γ, λ2 = (1 − p)λ1, λ3 = γ + pλ1

SM [11/08] – p. 94

OQN: Traffic Equations: example 2

1 2 3

4
γ

2γ
p

q r s

Set up and solve traffic equations to find λi:

~λ =








2γ

0

0

γ








+ ~λ








0 1 0 0

0 0 1 0

p 0 0 0

q r s 0








SM [11/08] – p. 95

OQN: Network stability

Stability of network (whether it achieves
steady-state) is determined by utilisation,
ρi < 1 at every node i

After solving traffic equations for λi, need to
check that:

ρi =
λi

µi

< 1 : ∀i

SM [11/08] – p. 96



Recall facts about M/M/1

If λ is arrival rate, µ service rate then ρ = λ/µ
is utilisation

If ρ < 1, then steady state solution exists

Average buffer length:

N =
ρ

1 − ρ

Distribution of jobs in queue is:

IP(k jobs is queue at steady-state) = (1− ρ)ρk

SM [11/08] – p. 97

OQN: Jackson’s Theorem

Where node i has a service rate of µi, define
ρi = λi/µi

If the arrival rates from the traffic equations
are such that ρi < 1 for all i = 1, 2, . . . , n, then
the steady-state exists and:

π(r1, r2, . . . , rn) =
n∏

i=1

(1 − ρi)ρ
ri

i

This is a product form result!

SM [11/08] – p. 98

OQN: Jackson’s Theorem Results

The marginal distribution of no. of jobs at
node i is same as for isolated M/M/1 queue:
(1 − ρ)ρk

Number of jobs at any node is independent of
jobs at any other node – hence product form
solution

Powerful since queues can be reasoned
about separately for queue length – summing
to give overall network queue occupancy

SM [11/08] – p. 99

OQN: Mean Jobs in System

If only need mean results, we can use Little’s
law to derive mean performance measures

Product form result implies that each node
can be reasoned about as separate M/M/1
queue in isolation, hence:

Av. no. of jobs at node i = Ni =
ρi

1 − ρi

Thus total av. number of jobs in system is:

N =
n∑

i=1

ρi

1 − ρi

SM [11/08] – p. 100



OQN: Mean Total Waiting Time

Applying Little’s law to whole network gives:

N = τW

where τ is total external arrival rate, W is
mean response time.

So mean response time from entering to
leaving system:

W =
1

τ

n∑

i=1

ρi

1 − ρi

SM [11/08] – p. 101

OQN: Intermediate Waiting Times

ri represents the the average waiting time
from arriving at node i to leaving the system

wi represents average response time at node
i, then:

ri = wi +
n∑

j=1

qijrj

which as before gives a vector equation:

~r = ~w + Q~r

= (I − Q)−1 ~w

SM [11/08] – p. 102

OQN: Average node visit count

vi represents the average number of times
that a job visits node i while in the network

If τ represents the total arrival rate into the
network, τ =

∑

i γi:

vi =
γi

τ
+

n∑

j=1

vjqji

so for ~γ′ = ~γ/τ :

~v = ~γ′ + ~vQ

= ~γ′(I − Q)−1

SM [11/08] – p. 103

OQN: Average node visit count

Compare average visit count equations with
traffic equations:

~v = ~γ′(I − Q)−1

~λ = ~γ(I − Q)−1

We can see that: ~v = ~λ/τ , so if we have
solved the traffic equations, we needn’t
perform a separate linear calculation

SM [11/08] – p. 104



Transient Analysis of CTMCs

What is transient analysis?

Transient analysis finds, πi(t), the probability
of being in a state i, at time t.

For irreducible Markov chains, the limit of the
transient probability is the steady-state
probability for that state.

SM [11/08] – p. 105

Transient Analysis of CTMCs

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0  5  10  15  20  25  30

P
ro

ba
bi

lit
y

Time, t

PEPA model: transient X_1 -> X_1
Steady state: X_1

Blue line: steady-state, πX1

Red line: transient-state, πX1
(t)

SM [11/08] – p. 106

Transient Analysis: Notation

{X(t) : t ≥ 0}: the state of the MC at time t

pij(t) = IP(X(t) = j | X(0) = i}: probability of
being in state j at time t, given that was in
state i at time 0 (time-homogeneous)

πj(t) = IP(X(t) = j): transient-state distn.

πj(t) =
∑

i

pij(t)πi(0)

πj: steady-state probability of being in state j

lim
t→∞

pij(t) = lim
t→∞

πj(t) = πj

for irreducible Markov chains
SM [11/08] – p. 107

Transient Analysis

For a CTMC with generator matrix A with
elements, aij

Transient equation:

d

dt
~π(t) = ~π(t)A (∗)

At steady-state:

d

dt
~π(t) = ~πA = 0

where ~π = {π1, π2, · · · , πN},
~π(t) = {π1(t), π2(t), · · · , πN(t)}

SM [11/08] – p. 108



Transient Analysis

Solving equation (∗) gives:

~π(t) = ~π(0)eAt (∗∗)

where:

eAt =
∞∑

k=0

(At)k

k!

Why not calculate (∗∗) directly?
A has negative and positive entries –
numerically unstable
∑∞

k=0 needs to be truncated

SM [11/08] – p. 109

Transient Analysis

Why not calculate (∗∗) directly?

Ak is computationally expensive and has
fill-in for large k. If A is sparse, Ak will be
dense!

To get round first problem, we scale ~π(t) by
~y(t) = eqt~π(t), where q > maxi(−aii)

d

dt
~y(t) = eqt d

dt
~π(t) + qeqt~π(t)

= eqt~π(t)A + qeqt~π(t) :by eqn (∗)

= eqt~π(t) (A + qI)
︸ ︷︷ ︸

+ive diagonal elements

SM [11/08] – p. 110

Transient Analysis

We get an equation analogous to (∗) in ~y(t):

d

dt
~y(t) = ~y(t)qA∗

where A∗ = A/q + I

for which the solution is:

~y(t) = y(0)eqA∗t

eqt~π(t) = ~π(0)eqA∗t

~π(t) = ~π(0)
∞∑

k=0

(qt)ke−qt

k!
A∗k

SM [11/08] – p. 111

Transient Analysis

Now let ~θ(k) = ~θ(k − 1)A∗ and ~θ(0) = ~π(0)

This prevents having to calculate A∗k directly
and having fill-in

Our final formula for the transient state
probability is:

~π(t) =
∞∑

k=0

~θ(k)
(qt)ke−qt

k!

Summation can be truncated effectively

Number iterations: O(qt)

SM [11/08] – p. 112



Uniformization: Interpretation

A∗ is a DTMC transition matrix, so
~θ(k) = ~θ(k − 1)A∗ is kth transition vector

Constructing A∗ from A can be seen as
sampling the CTMC at regular intervals

The probability of being in a given CTMC
state at one of these sample times is dictated
by the DTMC

The time taken between state changes can
be seen as a uniformized exponential
distribution of rate, q

SM [11/08] – p. 113

Transient Analysis

~π(t) =
∞∑

k=0

~θ(k)
(qt)ke−qt

k!

This can be interpreted as:

IP(in state i at time, t)

=
∑

k

IP(in state i | k transitions) · IP(num. transitions = k)

If X ∼ Poisson(qt), number of exponential
transitions of rate q in a time period, t:

IP(X = k) =
(qt)ke−qt

k!
SM [11/08] – p. 114


	Queues at Keil Ferry Terminal
	Quantitative modelling
	Available modelling languages
	Available modelling languages
	Available modelling languages
	Available mathematical models
	Available mathematical models
	An exponential distribution
	A non-exponential distribution
	An exponential distribution
	An exponential CDF
	Memoryless property
	Markov property
	Stochastic Petri nets
	Petri nets: summary
	Petri nets: definitions
	Petri nets: enabling and firing
	Simple process transition
	Process choice
	Process forking
	Process joining
	Duplicate behaviour
	Duplicate behaviour
	Multiple token enabling
	SPN Example: Voting model
	Stochastic Petri nets
	Stochastic Petri nets: racing
	Generalised Stochastic Petri nets
	Generalised Stochastic Petri nets
	Continuous Time Markov Chains
	Continuous Time Markov Chains
	Generating a CTMC from an SPN
	Creating a Generator Matrix
	Steady state analysis of a CTMC
	Steady state
	Steady-state example [1]
	Steady-state example [2]
	Steady-state example [3]
	Steady-state example [4]
	Steady-state example [5]
	PEPA: Stochastic process algebra
	Tool Support
	Types of Analysis
	Passage-time Quantiles
	PEPA Syntax
	Prefix: $(a,lambda ).A$
	Choice: $P_1 + P_2$
	Choice: $P_1 + P_2$
	Cooperation: $P_1cooperate {L}P_2$
	Cooperation: $P_1cooperate {L}P_2$
	Cooperation: $P_1cooperate {L}P_2$
	Simplified Cooperation: $P_1cooperate {L}P_2$
	Hiding: $P/L$
	Constant: $A$
	PEPA: A Transmitter-Receiver
	T-R: Global state space
	Expansion law for 2 Components
	Possible Evolutions of 2 Cpts
	Extracting the CTMC
	Extracting the CTMC (2)
	Extracting the CTMC (3)
	Voting Example I
	Voting Example II
	Voting Example III
	M/M/2/3 Queue
	M/M/2/3 Queue: Parallel Client
	M/M/2/3 Queue: Parallel Client
	M/M/2/3 Queue: Serial Client
	M/M/2/3 Queue: Serial Client
	M/M/2/3 Queue: Serial Client
	Steady-state reward vectors
	Constructing reward vectors
	Constructing reward vectors
	Mean Occupation as a Reward
	Mean Occupation as a Reward
	Useful facts about queues
	Small bit of queueing theory
	Small bit of queueing theory
	Small bit of queueing theory
	Steady-state for M/M/1
	Normalising to find $pi _0$
	M/M/1 Mean Queue Length
	M/M/1 Mean Queue Length
	Queueing Networks
	Example: Post office queueing
	Example: Post office queueing
	Example: Post office queueing
	Open Queueing Networks
	OQN: Notation
	OQN: Network assumptions
	OQN: Traffic Equations
	OQN: Traffic Equations
	OQN: Traffic Equations: example 1
	OQN: Traffic Equations: example 2
	OQN: Network stability
	Recall facts about M/M/1
	OQN: Jackson's Theorem
	OQN: Jackson's Theorem Results
	OQN: Mean Jobs in System
	OQN: Mean Total Waiting Time
	OQN: Intermediate Waiting Times
	OQN: Average node visit count
	OQN: Average node visit count
	Transient Analysis of CTMCs
	Transient Analysis of CTMCs
	Transient Analysis: Notation
	Transient Analysis
	Transient Analysis
	Transient Analysis
	Transient Analysis
	Transient Analysis
	Uniformization: Interpretation
	Transient Analysis

