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Chemical Reactions and Simulation
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Simulating Large Stochastic Models

Examples: Chemical reactions, biological
systems, epidemic models and parallel and
distributed systems

Underlying genuinely stochastic models,
often reasonable to assume Markovian
behaviour, reactions between elements
consitute synchronisation in a model

SM [11/08] – p. 3



Reaction: Mass action

Reaction between e.g. well-mixed fluids and
gases

Molecules diffuse (Brownian motion)

Molecules can potentially react with any other
co-reagant molecule

Example reaction:

A + B
λ

−→ AB

Initially m A molecules, n B molecules

SM [11/08] – p. 4



Reaction: Mass action
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Reaction: Mass action
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Reaction: Mass action
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Total number of possible interactions: mn
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Reaction: Mass action
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Total number of actual AB products: min(m, n)
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Reaction: Local action

Reaction between e.g. surface of two solids,
two jellies, two very viscous fluids

No molecule diffusion

Molecules react with closest local neighbour

No reaction competition

Example reaction:

A + B
λ

−→ AB

Initially m A molecules, n B molecules
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Reaction: Local action
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Total number of possible reactions: min(m, n)
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Reaction: Local action

Total number of AB products: min(m, n)
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Reaction: Passive action

Reaction catalysed by one or more passive
molecules

Heavily spatially dependent on catalyst
shape/configuration

Example reaction:

A + B
λ

−→ A + B′

Initially 1 A molecule, n B molecules
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Reaction: Passive action

A

B

Total number of possible reactions: I(m > 0) n

SM [11/08] – p. 11



Reaction: Catalyst

A

B′

Total number of B′ products: I(m > 0) n
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Chemical Systems

Consider a system of molecules of N
chemical species {S1, . . . , SN}, which interact
through M reaction channels {R1, . . . , RM} in
reaction vessel of volume Ω

The state of a general chemical system
requires giving the instantaneous position,
velocity, and species of each molecule in the
system
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Chemical Systems

Specifying the state of a well-stirred system is
much easier – we need only specify the
vector

~X(t) = (X1(t), . . . , XN(t))

where Xi(t) is the number of Si molecules
contained in a container at time t

The state-change vector ~νj = (ν1j, . . . , νNj)
where νij is defined to be the change in the Si

molecular population caused by one Rj

reaction event
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Propensity

So now we can say that reaction Rj produces
the following change in the system state

~x → ~x + ~νj

where xi is the number Si molecules in a
particular state

Propensity function aj(~x) represents, for a given
system state ~x, the propensity of reaction Rj

to occur
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Propensity

Fundamental premise of stochastic chemical
kinetics, for a given system state ~x:

aj(~x)δt = IP(for state ~x, reaction Rj will occur
inside Ω in the next infinitesimal
time interval [t, t + δt) | ~X(t) = ~x)

Used to express Chemical Master Equation
(CME) for finding P (~x, t), probability system is
in state ~x at time t:

P (~x, t) = IP( ~X(t) = ~x | ~X(t0) = ~x0 for t0 ≤ t)
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Example Propensity Functions

Under reaction Rj happening with reaction rate
constant cj, there are 3 possibilities (assuming
no n-way reactions for n > 2):

If S1
cj

−→ products aj(~x) = cjx1

If S1 + S2
cj

−→ products aj(~x) = cjx1x2

If 2S1
cj

−→ products aj(~x) = cj
1
2x1(x1 − 1)
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Chemical Master Equation

Consider the possible ways that a system can
reach state ~x by time t + δt:

P (~x, t + δt) = P (~x, t) ×

(

1 −

M∑

j=1

(aj(~x)δt)

)

︸ ︷︷ ︸

IP(System does not undergo a reaction in δt)

+
M∑

j=1

P (~x − ~νj, t) × (aj(~x − ~νj)δt)

︸ ︷︷ ︸

IP(System does undergo a reaction Rj in δt)

(∗)
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Chemical Master Equation

Subtracting P (~x, t) from both sides of (∗),
dividing by δx and letting δx → 0, we get a partial
derivative expression:

∂P (~x, t)

∂t
=

M∑

j=1

[aj(~x − ~νj)P (~x − ~νj, t) − aj(~x)P (~x, t)]

This is the Chemical Master Equation (CME) for the
system

In theory the CME completely defines the
behaviour of the system – in practice difficult to
solve analytically for all but the simplest of aj(·)

SM [11/08] – p. 19



Average Behaviour

If we define the mean behaviour of ~X to be:

IE(f( ~X)) =
∑

~x

f(~x)P (~x, t)

We can sum CME over all possible states ~x to
get a simpler expression defining the average
evolution of the system:

dIE( ~X)

dt
=

M∑

j=1

~νjIE(aj( ~X))
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Reaction Rate Equation

If we assume that there is no variance in the
individual trajectories of Xi, we can rewrite the
previous equation as:

dIE( ~X)

dt
=

M∑

j=1

~νj(aj(IE( ~X)))

This is the Reaction Rate Equation. It assumes that
the mean trajectory dominates the system and
any fluctations in ~X decay

This is the standard set of ODEs used to model
many biochemical systems.
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Gillespie’s Algorithm

Instead of trying to solve the CME, Gillespie’s
Algorithm produces a simulated trace of
execution of ~X(t)

Looking at the mean of many such traces will
usually give a good approximation to IE( ~X)
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Gillespie’s SSA

1. Initialization: Initialize no. of molecules in
the system, reactions constants, and random
number generators

2. Monte Carlo Step: Generate random nos. to de-
termine next reaction to occur as well as time
interval

3. Update: Increase the time step by the ran-
domly generated time in Step 2. Update the
molecule count based on reaction that oc-
curred

4. Iterate: Go back to Step 2 unless no. of reac-
tants is zero or the simulation time is exceeded
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SSA in Action
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