
Distributed Algorithms 1

Resource Allocation - Dining Philosophers

Lynch – Chapter 11

Five philosophers sit around a
circular table. Each philosopher
spends his life alternately
thinking and eating. In the centre
of the table is a large bowl of
spaghetti. A philosopher needs
two forks to eat a helping of
spaghetti.

4

3

21

5

One fork is placed between each
pair of philosophers and they agree
that each will only use the fork to his
immediate right and left.

Distributed Algorithms 2

Dining Philosophers - Properties

Safety:
Freedom from deadlock
Mutual exclusion

A philosopher may not eat until he has exclusive
use of the two forks adjacent to him.

assert EXCLUSION = forall [i:1..N]
[]!(EATING[i] &&

EATING[(i%N)+1])

Liveness:
Freedom from starvation - for individual and all

assert SOMEEAT = exists [i:1..N] []<> EATING[i]
assert NoSTARVATION = forall [i:1..N] [] <> EATING[i]

Lynch – Chapter 10

OK?

Distributed Algorithms 3

Naïve algorithm
Philospher (i): Loop

think; sitdown;
snd get to right fork;
rcv ok;
snd get to left fork;
rcv ok;

eat;
snd put to right fork;
snd put to left fork;

arise; …

1

2

3

5

4

Fork: Loop
{rcv get from right phil;
snd ok to right phil}

or
{rcv get from left phil;
snd ok to left phil}

Properties?
Safety?
Liveness?

LTSA demo
Distributed Algorithms 4

Impossibility Result for Symmetric Algorithm
Theorem: There is no deterministic, distributed and
symmetric solution to the Dining Philosophers Problem.
Informal Proof:

Assume there is a system A which solves the
problem for n processes.
Consider an execution of A that begins with all
processes in the same initial state. Each process
proceeds “round-robin” by executing a step at a
time.
By induction on the number r of round-robin
rounds, all processes are in identical states after r
rounds. Therefore if any process is able to eat
(liveness property), then all process will be able to
eat. This violates the exclusion property.

Distributed Algorithms 5

Impossibility Result for Symmetric Algorithm
How do we overcome this?

Algorithms must have the following basic properties:

1. Distinguishability
In every state of the system, at least one
process in every set of conflicting (competing)
processes must be distinguishable from the
others in the set (asymmetry).

2. Fairness
Conflicts should be resolved without detriment to
a particular process.

Distributed Algorithms 6

Asymmetric algorithm - using IDs
Philospher (i):
…

Even(i): snd get to left fork first,
then right;

or
Odd(i): snd get to right fork first,
then left;

…

1

2

3

5

4

Distinguishability?
id (odd and even)

Fairness?
can impose different conditions

Distributed Algorithms 7

Asymmetric algorithm - using IDs

Properties?

demo

1

2

3

5

4

Safety:
Freedom from deadlock
EXCLUSION

Liveness:
STARVATION-FREEDOM

Strong fairness?
Weak fairness?
No fairness?

Distributed Algorithms 8

Probabilistic algorithm -
Philospher (i):

Loop {…
gotforks:=False;
While !gotforks

{Random choice:
getforks(left, right)

or getforks(right,left)}
eat;
…}

getforks(first,second):
{snd wait to first fork: rcv ok;
snd get to second fork; rcv m;

if m!=ok snd put to first fork:
else gotforks:=True
}

Identical
Philosophers, but
randomly choose
which fork to take
first, and replace it
if unable to also take
the second fork.

Lehmann and Rabin

1

2

3

5

4

Distributed Algorithms 9

Probabilistic algorithm

Forks refuse requests if the
fork is already taken.

1

2

3

5

4

Fork:
Loop {

rcv get or wait from first phil;
snd ok;
loop { rcv put; break

or rcv get from second phil;
snd !ok

}
}

Distinguishability?
identical yet probabilistic to
break the symmetry.

Fairness?
different conditions

Distributed Algorithms 10

Probabilistic algorithm

•What if philosophers don’t replace
forks, but retain them, as before?
•
•Can we improve fairness of
allocation? (eg. cf. Peterson)

1

2

3

5

4

Properties?

Safety:
Freedom from deadlock
EXCLUSION

Liveness:
STARVATION-FREEDOM

Strong fairness?
Weak fairness?
No fairness?

demo

Distributed Algorithms 11

Probabilistic algorithm
Violation of LTL property: @WEAK_NoSTARVATION
Trace to terminal set of states:

phil.1.think
phil.1.sitdown

tau
phil.1.left.wait

phil.1.right.get.1

phil.1.eat EATING.1
phil.2.think EATING.1

phil.3.think EATING.1
phil.4.think EATING.1

phil.4.sitdown EATING.1
tau EATING.1

phil.4.right.wait EATING.1

Cycle in terminal set:
phil.1.left.put

phil.1.right.put
phil.1.arise

phil.1.think
phil.1.sitdown

tau
phil.2.sitdown

tau

phil.2.left.wait

phil.2.right.get.1
phil.2.eat EATING.2

phil.2.left.put
phil.2.right.put

phil.1.left.wait

phil.1.right.get.1
phil.1.eat EATING.1

phil.2.arise EATING.1
phil.2.think EATING.1

phil.3.sitdown EATING.1
tau EATING.1

phil.4.left.get.0 EATING.1

phil.4.right.put EATING.1
tau EATING.1

phil.3.left.wait EATING.1
phil.3.right.get.1 EATING.1

phil.3.eat EATING.1 && EATING.3
phil.3.left.put EATING.1

phil.3.right.put EATING.1
phil.3.arise EATING.1

phil.3.think EATING.1

phil.4.right.wait EATING.1
LTL Property Check in: 2516ms

Distributed Algorithms 12

Probabilistic (courteous) algorithm
Philospher (i):
Loop {…

Set flags in left and right forks;
gotforks:=False;
While !gotforks

{Random choice:
getforks(left, right)

or getforks(right,left)}
eat;
…}

getforks(first,second):
{snd wait to first fork; rcv ok;
snd get to second fork; rcv m;
if m!=ok snd replace to first fork
else gotforks:=True
}

Philosophers set
flags to indicate
hunger, and
behave as
probabilistic
philosophers.

Lehmann and Rabin

1

2

3

5

4

Distributed Algorithms 13

Probabilistic (courteous) algorithm

Lehmann and Rabin

Fork: (initially flags unset and turn=neutral)
Loop

set {left/right} flag whenever rcv
setflag from phil;

Snd ok to wait req iff available and
(only one flag set or
turn=neutral or
turn=philosopher side).

Snd ok to get req iff available
else snd !ok.

reset {left/right} flag and turn to
other side when rcv put.

{null} when rcv replace;

-> ! available

-> available

1

2

3

5

4

Distributed Algorithms 14

Probabilistic (courteous) algorithm

1

2

3

5

4

Properties?

Safety:
Freedom from deadlock
EXCLUSION

Liveness:
STARVATION-FREEDOM

Strong fairness?
Weak fairness?
No fairness?

Probability Vs
Absolute certainty?
(practice Vs theory?)

demo

Distributed Algorithms 15

Hygienic Philosophers algorithm

1

2

3

5

4

Chandy and Misra

Philosophers communicate
directly with one another,
passing forks and request tokens
between them.

the algorithm maintains an
acyclic precedence graph
which ensures freedom from
deadlock, exclusion and
starvation.

Distributed Algorithms 16

Hygienic Philosophers algorithm

Chandy and Misra

Clean forks are passed between philosophers

A fork is either clean or dirty.
A fork being used to eat with is dirty and remains
dirty until it is cleaned. A clean fork remains clean
until it is used for eating. A philosopher cleans a
fork when passing it (he is hygienic).

An eating philosopher does not satisfy requests
for forks until he has finished eating.

When not eating, philosophers defer requests
for forks that are clean and satisfy requests for
forks that are dirty.

Distributed Algorithms 17

Hygienic Philosophers algorithm
Preserve a precedence graph, where an edge from P1 to
P2 indicates that P1 has precedence over P2.

P1

P3 P2

Pi has precedence over Pj iff
(i) Pi has the fork and it is clean
(ii) Pj has the fork and it is dirty.
(iii) the fork is in transit from Pi to Pj

P1 hungry and
has precedence

P1

P3 P2
P1 eating

Depth
Maximum number of edges
from a process with no
predecessors, which has
depth 0.

Depth for
each Pi?

Distributed Algorithms 18

Hygienic Philosophers algorithm
Distinguishability is provided by acyclicity. It has been proven
that…

An acyclic graph ensures no starvation or deadlock.
At least one philosopher has precedence over both his
neighbours. He eventually receives each (clean) fork and retains
it until he eats, since (by precedence) his requests are eventually
satisfied by a finishing or thinking philosopher yielding to his
request.
if initially all forks are dirty and the graph is acyclic, then

it remains acyclic.
The direction of an arc only changes when a philosopher starts
eating, which results in both edges being simultaneously directed
towards him.

Fairness:
A process in conflict will rise to the top (to zero depth).

Each philosopher with precedence - at zero depth - redirects
both arcs so as to yield precedence to its neighbours.

Distributed Algorithms 19

Hygienic Philosophers algorithm
messages:

forktokenf : passes fork f to neighbour which shares f
(f can take the value left or right)

reqtokenf : passes request token for fork f to neighbour

boolean variables:
fork(f): philosopher holds fork f
reqf(f): philosopher holds request token for fork f
dirty(f): fork f is at philosopher and is dirty
thinking/hungry/eating: state of philosopher

Initialisation:
1) all forks are dirty
2) forks distributed among philosophers such that the
precedence graph is acyclic.
3) if u and v are neighbours then either u holds the fork and v
the request token or vice versa.

Distributed Algorithms 20

Hygienic Philosophers algorithm
The algorithm for each philosopher is described as a set of rules
guard=>action which form a single guarded command.
1. Requesting a fork f:

hungry,reqf(f),~fork(f) => SEND(reqtokenf); reqf(f):=false
2. Releasing a fork f:

~eating,reqf(f),dirty(f) => SEND(forktokenf)
dirty(f):=false; fork(f):=false

3. Receiving a request token for f:
receive(reqtokenf) => reqf(f):=true

4. Receiving a fork token for f:
receive(forktokenf) => fork(f):=true {~dirty(f)}

5. Philosopher hungry to eating transition:
hungry,fork(left),fork(right), (~reqf(f) or ~dirty(f)) =>

eating:=true; hungry:=false; dirty(left):=true; dirty(right):=true;
6. Philosopher eating to thinking transition:

eating,eating time expired => thinking:=true; eating:=false
7. Philosopher thinking to hungry transition

thinking,thinking time expired => hungry:=true; thinking:=false

Distributed Algorithms 21

Hygienic Philosophers

Properties?

Safety:
Freedom from deadlock
EXCLUSION

Liveness:
STARVATION-FREEDOM
Strong fairness?
Weak fairness?
No fairness?

1

2

3

5

4

demo

P1

P3 P2

Distributed Algorithms 22

Hygienic Philosophers
Violation of LTL property: @WITNESS_WEAK_NoSTARVATION

Trace to terminal set of states:

phil.1.think
phil.2.think

phil.2.sitdown
phil.2.eat EATING.2

phil.2.arise
phil.3.think

phil.3.sitdown
phil.4.think

phil.4.sitdown

phil.3.rcvLreq
phil.4.rcvRight

phil.4.rcvRreq
phil.4.eat EATING.4

phil.4.arise
phil.4.think

phil.3.rcvLeft

phil.4.sitdown
phil.3.rcvLreq

Cycle in terminal set:
phil.1.sitdown

phil.4.rcvLreq
phil.1.rcvRight

phil.1.rcvRreq

phil.2.think

phil.2.rcvRreq

phil.1.rcvLeft

phil.1.eat EATING.1

phil.1.arise

phil.1.think

phil.4.rcvLeft

phil.2.rcvLreq

phil.2.sitdown

phil.1.rcvLreq

phil.2.rcvRight

phil.3.rcvRight

phil.3.rcvRreq

phil.3.eat EATING.3

… ...

phil.2.eat EATING.2

… ...

phil.4.eat EATING.4

… ...

Distributed Algorithms 23

Notes

This section has introduced asynchronous resource
algorithms which must avoid deadlock, provide
exclusion and prevent starvation.

Symmetry, Distinguishability and Fairness are
important properties.

Probabilistic algorithms can provide a sound practical
means for the avoiding deadlock and starvation, with
probability 1.

Distributed precedence provides an asymmetric state
with symmetric code, distinguishability and fairness.

