
Concurrency - Roller Coaster Laboratory Exercise

Submit by Wednesday 9th March 2005

JMC3, ISE3, MSc Computing Laboratory

1 Overview

A Roller Coaster at a fairground has two cars that carry passengers around the ride. One
car can carry two passengers the other three. The cars proceed independently around the
track. Passengers wait for the coaster cars at a platform that can accommodate a maximum
of nine passengers. When a coaster car arrives at the platform, it waits until there are enough
passengers to fill its capacity (i.e. two or three passengers). The car then sets off around the
track, deposits its passengers and returns to the platform. Only one of the two cars can be
waiting at the platform at any one time. The FSP model of this system is given below.

/* roller coaster - simple version */

const Max = 9

const MCar = 4

//models passenger arrival at the platform

PASSENGERS = (newPassenger -> PASSENGERS).

//limits passengers on the platform to Max & allocates passengers to coaster cars

CONTROLLER

= CONTROL[0][0],

CONTROL[count:0..Max][carSize:0..MCar]

= (when (count<Max)

newPassenger -> CONTROL[count+1][carSize]

|requestPassenger[n:1..MCar] -> CONTROL[count][n]

|when (carSize>0 && count>=carSize)

getPassenger[carSize] -> CONTROL[count-carSize][0]

).

//the coaster car requests N passengers and departs when the

// controller responds with getPassenger

COASTERCAR(N=MCar)

= (arrive->requestPassenger[N] -> getPassenger[i:1..MCar] ->

if (i>N) then ERROR else (depart -> COASTERCAR))

+{{requestPassenger,getPassenger}[1..MCar]}.

//controls access to the platform

PLATFORMACCESS = ({arrive,depart}->PLATFORMACCESS).

//system with two coaster cars with capacity two and three

||ROLLERCOASTER

= (PASSENGERS

|| car[1..2]::(CONTROLLER || PLATFORMACCESS)

|| car[1]:COASTERCAR(2)

|| car[2]:COASTERCAR(3)

)/{

newPassenger/car[1..2].newPassenger

}.

2 What to do

There are three files at the location: /vol/lab/conv/java lab/ ; /vol/lab/jmc3/java lab/
; /vol/lab/ise3/java lab/

• simple coaster.lts A copy of the FSP model above.

• src.zip A zip containing a partial implementation of the model as a concurrent Java
program.

• labcoasterwin.cmd Double click this to run the lab solution under windows.

Copy them into your working area.

Unzip src.zip by using the linux command unzip src.zip.
A subdirectory called src will appear containing the java files. Compile the files. Run the
partial implementation by typing java RollerCoaster. You can run the lab version of the
solution by typing the command labcoaster under Unix.

2.1 Part I

a) The model has a bug which means that more passengers can get into a coaster car than its
set capacity. Find this bug by performing a safety check on the model and modify the model
such that no safety violations occur. Copy the error trace produced by LTSA on the original
model into a file error trace.txt and save your modified model in a file correct coaster.lts.

b) You must complete the implementations of Controller.java and PlatformAccess.java.
Note that the requestPassenger and getPassenger model actions are combined into a sin-
gle method getPassenger() in the Controller class. You will modify Controller.java

again in Part II so once you have finished this section copy your Controller.java to
ControllerPartI.java. You will not need to modify PlatformAccess.java in Part II so
there is no need to save it under a new name.

2

2.2 Part II

The Roller Coaster system has the disadvantage that passengers may wait a long time if there
are not enough of them to fill a coaster car. To overcome this problem, a button is installed
on the platform that when pressed by an operator releases the coaster car even if it is not
full. The button should only have an effect if there is a car waiting at the platform i.e. a
button press should not be remembered after the car has left. In addition, a car should not
leave the platform empty.

a) Update the model to include the behaviour of this button by adding a process:

BUTTON = (goNow -> BUTTON).

and by modifying CONTROLLER and ROLLERCOASTER. Check that your modified model has the
required behaviour. Save your modified model in a file with go coaster.lts.

b) Update the implementation of the Controller class to reflect the additional behaviour.
Check that it runs correctly.

3 Submission and Assessment

Submit the following files, make sure the filenames are exactly as below:

• error trace.txt produced in Part Ia.

• correct coaster.lts produced in Part Ia.

• ControllerPartI.java produced in Part Ib.

• PlatformAccess.java produced in Part Ib.

• with go coaster.lts produced in Part IIa.

• Controller.java produced in Part IIb.

Submit the above files using CATE.

Mark distribution:

Part I a) 15%
Part I b) 35%
Part II a) 25%
Part II b) 25%

4 Optional

For interest - extend the Java program with a third coaster car (do not submit it, but if you
would like feedback you can discuss it with one of the lab demonstrators).

END.

3

