Concurrency: State Models and Java Programs
4

Chapter 1 - exercises

This is not really meant as an exercise, but as a way for you to get a first contact with the LTSA tool, which you will be using extensively in this course.

1.1
Start the LTSA, and type the following in the Edit window:

BOMB = (start -> timeout -> explode -> STOP).

This is a simplified model of a bomb. The timer of the bomb is started, and when it expires (action timeout) the bomb explodes. Now from the “Build” menu option, select “Parse”. This lets you know if your specification contains syntax errors.

If you have no syntax errors, then select “Check – Compile”. This will generate the state machine (Labelled Transition System - LTS) that corresponds to your specification. You want to see what it looks like? Select “Window – Draw”. Is this what you expected?

You can also experiment with actually “animating” the model of the bomb. Select “Check - Run – Default”. An animator window comes up. On the right, you have the actions that can be performed by the Bomb. The “ticked” ones are those that are eligible at the current state. Select an action that you would like the bomb to perform (by clicking in its corresponding box). Can all actions be selected? What happens when you select an eligible action? Does anything change on the displayed LTS?

1.2
Perform all of the above steps for the following specification of a lamp:
LAMP = (switch_on -> switch_off -> LAMP).

Can you see an important difference from the first model?

Chapter 2 - exercises
2.1 For each of the following processes, give the Finite State Process (FSP) description of the Labeled Transition System (LTS) graph. The FSP process descriptions may be checked by generating the corresponding state machines using the analysis tool, LTSA.

I. MEETING:[image: image1.wmf]hello

converse

goodbye

0

1

2

3

II. JOB: [image: image2.wmf]arrive

work

leave

0

1

2

III. GAME: [image: image3.wmf]one

two

three

lose

win

0

1

2

IV. MOVE: [image: image4.wmf]ahead

left

right

0

1

2

V. DOUBLE[image: image5.wmf]in.1

in.2

in.3

out.2

out.4

out.6

0

1

2

3

VI. FOURTICK:[image: image6.wmf]tick

tick

tick

tick

0

1

2

3

4

VII. PERSON:[image: image7.wmf]weekday

weekend

sleep

sleep

work

shop

play

0

1

2

3

4

For each of the following exercises 2.2 to 2.6, draw the state machine diagram that corresponds to your FSP specification and check that it can perform the required actions. The state machines may be drawn manually or generated using the analysis tool, LTSA. LTSA may also be used to animate (run) the specification to produce a trace.

2.2 A variable stores values in the range 0..N and supports the actions read and write. Model the variable as a process, VARIABLE, using FSP.

For N=2, check that it can perform the actions given by the trace:

write.2 (read.2 (read.2 (write.1 (write.0 (read.0
2.3 A bistable digital circuit receives a sequence of trigger inputs and alternately outputs 0 and 1. Model the process BISTABLE using FSP, and check that it produces the required output i.e. it should perform the actions given by the trace:

trigger (1 (trigger (0 (trigger (1 (trigger (0 …

(Hint: the alphabet of BISTABLE is [0],[1],trigger).

2.4 A sensor measures the water level of a tank. The level (initially 5) is measured in units 0..9. The sensor outputs a low signal if the level is less than 2 and a high signal if the level is greater than 8 otherwise it outputs normal. Model the sensor as an FSP process, SENSOR.

(Hint: the alphabet of SENSOR is level[0..9], high, low, normal).

2.5 A drinks dispensing machine charges 15p for a can of Sugarola. The machine accepts coins with denominations 5p, 10p and 20p and gives change. Model the machine as an FSP process, DRINKS.

2.6 A miniature portable FM radio has three controls. An on/off switch turns the device on and off. Tuning is controlled by two buttons scan and reset which operate as follows. When the radio is turned on or reset is pressed, the radio is tuned to the top frequency of the FM band (108 MHz). When scan is pressed, the radio scans towards the bottom of the band (88 MHz). It stops scanning when it locks on to a station or it reaches bottom (end). If the radio is currently tuned to a station and scan is pressed then it starts to scan from the frequency of that station towards bottom. Similarly, when reset is pressed the receiver tunes to top. Using the alphabet (on, off, scan, reset, lock, end) model the FM radio as an FSP process, RADIO.
2.7 Program the radio of 2.6 in Java, complete with graphic display.

