
Distributed Algorithms 1

Logical Time in Asynchronous Systems

In a distributed system, it is often necessary to
establish relationships between events occurring at
different processes:

was event a at P1 responsible for causing b at P2?
is event a at P1 unrelated to b at P2?

We discuss the partial ordering relation “happened
before” defined over the set of events

“Time, Clocks and Ordering of Events in a Distributed
Systems”, Leslie Lamport, Comm. ACM, Vol 21, No 7, July
1978, pp 558-565

Distributed Algorithms 2

Email example

the king
is dead

1. long live the king
2. the king is dead

A

B

C

time

long live
the king

Distributed Algorithms 3

(i) Processes communicate only via messages.

(ii) Events of each individual process form a totally
ordered sequence:

Assumptions:

(local) Time
a b c

(iii) Sending or receiving a message is an event.

Distributed Algorithms 4

Happens Before relation →
The relation → on the set of events of
a system satisfies the following three
conditions:

(i) if a and b are events in the same
process, and a comes before b
then a → b

(ii) if a is sending of a message by one
process and b is the receipt of the
same message by another process,
then a → b

(iii) if a → b and b → c then a → c
- transitive

a b

a

b

Note: a → a -
irreflexive

/

Distributed Algorithms 5

Concurrent events

→ defines a partial order over the set of
events.

Partial since there could be concurrent events in
the set, that by definition are not related by →.

a → b means that it is possible for
a to causally affect b

Two distinct events a and b are said to be
concurrent (a || b) if a → b and b → a./ /

Distributed Algorithms 6

Space – Time Diagram

p1 p2 p3 p4

r1 r2 r3 r4

q1 q2 q3 q4 q5 time

a → b : path from a to b in the diagram moving forward in time
along the process and message lines.

p1 → r4, q4 → r3, p2 → p4, q3 || p3, q3 || r2

P

Q

R

Distributed Algorithms 7

Logical Clocks – assigning numbers to events

A clock Ci for each process Pi is a function which
assigns a number Ci(a) to event a in Pi.
(a timestamp).

The entire system of clocks is represented by the
function C which assigns to any event b the number
C(b), where C(b) = Cj(b) if b is an event in Pj.

Clock Condition:
For any events a, b: if a → b then C(a) < C(b)

Distributed Algorithms 8

Satisfying the clock condition

The clock condition can be satisfied if the
following two conditions hold:

CL1: if a and b are events in Pi and a → b, then
Ci(a) < Ci(b).

CL2: if a is the sending of a message by Pi and b is
the receipt of that message by Pj, then
Ci(a) < Cj(b).

Hence: For any events a, b: if a → b then C(a) < C(b).

also? : For any events a, b: if C(a) < C(b) then a → b ?

Distributed Algorithms 9

Implementing Logical Clocks
Each process Pi has a counter Ci and Ci(a) is the value
contained in Ci when event a occurs.

Implementation Rules:
IR1: each process Pi increments Ci immediately after

the occurrence of a local event.

IR2: (i) if a is an event representing the sending of
a message m by Pi to Pj, then m contains the
timestamp Tm = Ci(a)
(ii) receiving m by process Pj :

Cj := max(Cj,Tm+1)
execute receive(m) - event b occurs.

Distributed Algorithms 10

Virtual Time

P

Q

p1

q1

(1)

(1)

p2

(2)

p3

(3)

p4

(4)

q2

(2)

q3

(5)

q3

(3)

p5

(5)
Clock
values

Virtual time, as implemented by logical clocks,
advances with the occurrence of events and is
therefore discrete. If no events occur, virtual
time stops. Waiting for virtual time to pass is
therefore risky!

Distributed Algorithms 11

Total Order relation ⇒

Lamport’s Clocks place a partial ordering on events
that is consistent with causality.

In order to place a total ordering, we simply use a
total order < over process identities to break ties.

If a is an event in Pi and b is an event in Pj, define
total order relation ⇒ by:

a ⇒ b iff either (i) Ci(a) < Ci(b)
or (ii) Ci(a) = Ci(b) and Pi < Pj

Note : if a → b then a ⇒ b
Distributed Algorithms 12

Distributed Mutual Exclusion Problem

Conditions:
(I) A process which has been granted the resource

must release it before it is granted to another
process.

(II) Different requests must be granted in the
order they are made.

(III) If every process that is granted the resource
eventually releases it, then every request is
eventually granted.

A fixed set of processes share a single resource.
Only one process at a time may use the resource.

S
afety

L
iven

ess

Distributed Algorithms 13

Centralized solution

P

Q

Allocater

requestp

requestq

grantq

This allocation violates condition (II) since
requestp → requestq

Distributed Algorithms 14

Distributed Solution using ⇒

Assume point to point FIFO channels between
processes P0 .. Pn.

Each process maintains its
own request queue.
Initially, the queues are
empty except for P0 which
currently holds the
resource and has the
message
req:T0:P0 where
timestamp T0 is less than
the value of any clock.

P0

P2

P1

req:T0:P0

Distributed Algorithms 15

Algorithm
1. Requesting the resource at process Pi:

send req:Tm:Pi to every other process

2. Receipt of req:Tm:Pi at process Pj:
place in request queue and send ack:Tm’:Pj to Pi

3. Releasing the resource at process Pi:
remove any req:Tm:Pi from request queue
send rel:Tm’:Pi to every other process

4. Receipt of rel:Tm:Pi at process Pj:
remove any req:Tx:Pi from request queue

continued…
Distributed Algorithms 16

Algorithm (continued)

5. Grant the resource at process Pi:

if

(i) there is req:Tm:Pi in the request queue
which is ordered before any other
request by total order ⇒

(ii) has received a message from every other
process time stamped later than Tm

Distributed Algorithms 17

Example

P1

P2

P3

req:1:2

req:2:1

req:1:2 req:2:1

req:1:2 req:2:1

req:1:2 req:1:2 req:2:1

P2 granted
resource

P2 releases
resource

req:2:1

req:2:1

P1 granted
resource

req:2:1

Distributed Algorithms 18

Proof – Mutual Exclusion
By contradiction:

Assume Pi & Pj have been granted the resource concurrently.
Therefore 5(i) & 5(ii) must hold at both sites.
Implies that at some instant t, both Pi & Pj have their requests
at the top of their respective queues 5(i).
Assume Pi’s request has smaller timestamp than Pj.
By 5(ii) and the FIFO property of channels, at instant t, the
request of Pi must be present in the queue of Pj.
Since it has a smaller timestamp it must be at the top of
Pj’s request queue.

However, by 5(i), Pj’s request must be at the top of Pj’s
request queue – a contradiction!

Therefore Lamport’s algorithm achieves mutual exclusion.

Distributed Algorithms 19

Communication Complexity

Cycle of acquiring and releasing the shared resource
i.e. entering and leaving critical section:

3(n-1) messages

= (n-1) request messages
+ (n-1) acknowledgements
+ (n-1) release messages

Improved Performance.........

Distributed Algorithms 20

Ricart - Agrawala Mutual Exclusion Algorithm

Optimization of Lamport’s algorithm achieved by
dispensing with release messages by merging them
with acknowledgements.

Communication Complexity:
2(n-1) messages

G. Ricart and A.K. Agrawala, “An Optimal Algorithm for Mutual
Exclusion in Computer Networks”, Comm ACM, Jan 1981.

Distributed Algorithms 21

Ricart – Agrawala Algorithm
1. Requesting the resource at process Pi:

send req:Tm:Pi to every other process

2. Receipt of req:Tm:Pi at process Pj:
if Pj has resource, defer request
if Pj requesting and reqj ⇒ reqi, defer request
else send ack:Tm’:Pj to Pi

3. Releasing the resource at process Pi:
send ack:Tm:Pi to deferred requests

4. Grant the resource at process Pi:
When got ack from all other processes.

Distributed Algorithms 22

Ricart – Agrawala Example

P1

P2

P3

req:2:1

P2 granted resource

P2 release resource

P1 granted resource

Distributed Algorithms 23

Ricart – Agrawala Proof
By contradiction:

Assume Pi & Pj have been granted the resource concurrently,
and that Pi’s request has smaller timestamp.

Therefore, Pi received Pj’s request after it made its request.
Pj can concurrently be granted the resource with Pi only if Pi
returns an ack to Pj before Pi releases the resource.

However, this is impossible since Pj has a larger timestamp.

Therefore, the Ricart-Agrawala implements mutual exclusion.

Distributed Algorithms 24

Limitation of Lamport’s Clocks
If a → b then C(a) < C(b); however, if a and b are in
different processes, then it is not necessarily the
case that if C(a) < C(b) then a → b.

P

Q

p1

q1
(1)

(1)

p2

(2)
q2

(3)

R
r1

(1)

r2

(2)

r3

(3)

If C(a) < C(b) then b → a ; the future cannot influence
the past. In general, we cannot say if two events in
different processes are causally related or not from
their timestamps.

/

C(p1)< C(q2)
and
C(p1)< C(r2)
however
p1 → q2
and
p1 → r2/

Distributed Algorithms 25

Vector Time

Mattern (Proc. of Int. Conf. on Parallel and Dist, Algorithms, 1988)
Fidge (Proc. of 11th Australian Computer Sc. Conf. 1988)

Each process Pi has a vector VCi with an entry for
each process.
Implementation Rules:
IR1: Process Pi increments VCi[i] immediately after the

occurrence of a local event.

IR2: (i) message m (send event a) from Pi to Pj, is
timestamped with VTm = VCi(a)

(ii) receiving m by process Pj :
∀k, VCj[k]:= max(VCj[k],VTm[k])
execute receive(m) - event b occurs.

Distributed Algorithms 26

Example

P

Q

p1

q1

(1,0,0)

(0,1,0)

p2

(2,0,0)

q2

(2,2,0)

R
r1

(0,0,1)

r2

(0,0,2)

q4

(2,3,1)

q3

(2,4,1)

p3

(3,4,1)

r3

(0,0,3)

Distributed Algorithms 27

Causally Related Events
For two vector timestamps Ta & Tb:

Ta ≠ Tb iff ∃i, Ta[i] ≠ Tb[i]
Ta ≤ Tb iff ∀i, Ta[i] ≤ Tb[i]
Ta < Tb iff (Ta ≤ Tb ∧ Ta ≠ Tb)

Events a and b are causally related,
if Ta < Tb or Tb < Ta.
Otherwise they are concurrent.

Vector timestamps represent causality precisely.

a → b iff Ta < Tb.

Distributed Algorithms 28

Example

We can observe that p1 || r3
since ¬ (1,0,0) < (0,0,3)
and ¬ (0,0,3) < (1,0,0)

P

Q

p1

q1

(1,0,0)

(0,1,0)

p2

(2,0,0)

q2

(2,2,0)

R
r1

(0,0,1)

r2

(0,0,2)

q4

(2,3,1)

q3

(2,4,1)

p3

(3,4,1)

r3

(0,0,3)

Also that r1 → p3
since (0,0,1) < (3,4,1)

Distributed Algorithms 29

Applications of Causal Ordering
Consistent Distributed Snapshots
Find a set of local snapshots such that:
If b is in the union of all local snapshots, and a → b
then a must be included in the global snapshot too.
(ie. Consistent snapshots should be left-closed with
respect to causality)

Causal Ordering of Messages
Preserves causal ordering in the delivery of messages
in a distributed system. Delay delivery (buffer) unless
message immediately preceding it has been delivered.
(eg. For replicated data bases, updates are applied in
same order to maintain consistency).

Chandy and Lamport (ACM TOCS, 1985)

Birman, Schiper and Stephenson (ACM TOCS, 1991)

