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Logical Time in Asynchronous Systems

In a distributed system, it is often necessary to 
establish relationships between events occurring  at 
different processes:

was event a at P1 responsible for causing b at P2?
is event a at P1 unrelated to b at P2?

We discuss the partial ordering relation “happened 
before” defined over the set of events

“Time, Clocks and Ordering of Events in a Distributed 
Systems”, Leslie Lamport, Comm. ACM, Vol 21, No 7, July 
1978, pp 558-565
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Email example

the king 
is dead

1. long live the king
2. the king is dead

A

B

C

time

long live 
the king

Distributed Algorithms 3

(i)  Processes  communicate only via messages. 

(ii) Events of each individual process form a totally 
ordered sequence:

Assumptions:

(local) Time 
a b c

(iii) Sending or receiving a message is an event.
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Happens Before relation →
The relation → on the set of events of 
a system satisfies the following three 
conditions:

(i) if a and b are events in the same 
process, and a comes before b
then a → b

(ii) if a is sending of a message by one 
process and b is the receipt of the 
same message by another process, 
then a → b

(iii) if a → b and b → c then a → c
- transitive

a b

a

b

Note: a → a -
irreflexive

/
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Concurrent events

→ defines a partial order over the set of 
events.

Partial since there could be concurrent events in 
the set, that by definition are not related by →.

a → b means that it is possible for
a to causally affect b

Two distinct events a and b are said to be 
concurrent (a || b) if a → b and b → a./ /
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Space – Time Diagram

p1 p2 p3 p4

r1 r2 r3 r4

q1 q2 q3 q4 q5 time

a → b : path from a to b in the diagram moving forward in time 
along the process and message lines.

p1 → r4,    q4 → r3,      p2 → p4,  q3 || p3,  q3 || r2

P

Q

R
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Logical Clocks – assigning numbers to events

A clock Ci for each process Pi is a function which 
assigns a number Ci(a) to event a in Pi.
(a timestamp).

The entire system of clocks is represented by the 
function C which assigns to any event b the number 
C(b), where C(b) = Cj(b) if b is an event in Pj.

Clock Condition:
For any events a, b: if a → b then C(a) < C(b)
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Satisfying the clock condition

The clock condition can be satisfied if the 
following two conditions hold:

CL1: if a and b are events in Pi and a → b, then 
Ci(a) < Ci(b).

CL2: if a is the sending of a message by Pi and b is 
the receipt of that message by Pj, then 
Ci(a) < Cj(b).

Hence: For any events a, b: if a → b then C(a) < C(b).

also? : For any events a, b: if C(a) < C(b) then a → b ?
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Implementing Logical Clocks
Each process Pi has a counter Ci and Ci(a) is the value 
contained in Ci when event a occurs.

Implementation Rules:
IR1: each process Pi increments Ci immediately after 

the occurrence of a local event.

IR2: (i) if a is an event representing the sending of 
a message m by Pi to Pj, then m contains the 
timestamp Tm = Ci(a) 
(ii) receiving m by  process Pj :       

Cj := max( Cj,Tm+1 )
execute receive(m) - event b occurs. 
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Virtual Time

P

Q

p1

q1

(1)

(1)

p2

(2)

p3

(3)

p4

(4)

q2

(2)

q3

(5)

q3

(3)

p5

(5)
Clock
values

Virtual time, as implemented by logical clocks, 
advances with the occurrence of events and is 
therefore discrete. If no events occur, virtual 
time stops. Waiting for virtual time to pass is 
therefore risky!
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Total Order relation ⇒

Lamport’s Clocks place a partial ordering on events 
that is consistent with causality. 

In order to place a total ordering, we simply use a 
total order < over process identities to break ties.

If a is an event in Pi and b is an event in Pj, define 
total order relation ⇒ by:

a ⇒ b  iff either (i) Ci(a) < Ci(b)
or (ii) Ci(a) = Ci(b)  and Pi < Pj

Note : if a → b then a ⇒ b
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Distributed Mutual Exclusion Problem

Conditions:
(I) A process which has been granted the resource 

must release it before it is granted to another 
process.

(II) Different requests must be granted in the 
order they are made.

(III) If every process that is granted the resource 
eventually releases it, then every request is 
eventually granted.

A fixed set of processes share a single resource. 
Only one process at a time may use the resource.

S
afety

L
iven

ess
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Centralized solution

P

Q

Allocater

requestp

requestq

grantq

This allocation violates condition (II) since
requestp → requestq
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Distributed Solution using ⇒

Assume point to point FIFO channels between 
processes P0 .. Pn. 

Each process maintains its 
own request queue. 
Initially, the queues are 
empty except for P0 which 
currently holds the 
resource and has the 
message 
req:T0:P0 where 
timestamp  T0 is less than 
the value of any clock.

P0

P2

P1

req:T0:P0
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Algorithm
1. Requesting the resource at process  Pi:

send req:Tm:Pi to every other process

2. Receipt of  req:Tm:Pi at process  Pj:
place in request queue and send ack:Tm’:Pj to Pi

3. Releasing the resource at process  Pi:
remove any req:Tm:Pi from request queue
send rel:Tm’:Pi to every other process

4. Receipt of  rel:Tm:Pi at process  Pj:
remove any req:Tx:Pi from request queue

continued…
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Algorithm (continued)

5. Grant the resource at process  Pi:

if 

(i) there is  req:Tm:Pi in the request queue
which is ordered before any other 
request by total order ⇒

(ii) has received a message from every other
process time stamped later than Tm



Distributed Algorithms 17

Example  

P1

P2

P3

req:1:2

req:2:1

req:1:2 req:2:1

req:1:2 req:2:1

req:1:2 req:1:2 req:2:1

P2 granted 
resource

P2 releases 
resource

req:2:1

req:2:1

P1 granted 
resource

req:2:1
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Proof – Mutual Exclusion
By contradiction:

Assume Pi & Pj have been granted the resource concurrently.
Therefore 5(i) & 5(ii) must hold at both sites.
Implies that at some instant t, both Pi & Pj have their requests
at the top of their respective queues 5(i).
Assume Pi’s request has smaller timestamp than Pj.
By 5(ii) and the FIFO property of channels, at instant t, the
request of Pi must be present in the queue of Pj.
Since it has a smaller timestamp it must be at the top of 
Pj’s request queue.

However, by 5(i), Pj’s request must be at the top of Pj’s 
request queue – a contradiction!

Therefore Lamport’s algorithm achieves mutual exclusion.
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Communication Complexity

Cycle of acquiring and releasing the shared resource
i.e. entering and leaving critical section:

3(n-1) messages

= (n-1) request messages
+ (n-1) acknowledgements
+ (n-1) release messages

Improved Performance.........
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Ricart - Agrawala Mutual Exclusion Algorithm

Optimization of Lamport’s algorithm achieved by 
dispensing with release messages by merging them 
with acknowledgements.

Communication Complexity:
2(n-1) messages

G. Ricart and A.K. Agrawala, “An Optimal Algorithm for Mutual 
Exclusion in Computer Networks”, Comm ACM, Jan 1981.
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Ricart – Agrawala Algorithm
1. Requesting the resource at process  Pi:

send req:Tm:Pi to every other process

2. Receipt of  req:Tm:Pi at process  Pj:
if Pj has resource, defer request 
if Pj requesting and reqj ⇒ reqi, defer request
else send ack:Tm’:Pj to Pi

3. Releasing the resource at process  Pi:
send ack:Tm:Pi to deferred requests

4. Grant the resource at process  Pi:
When got ack from all other processes.
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Ricart – Agrawala Example

P1

P2

P3

req:2:1

P2 granted resource

P2 release resource

P1 granted resource
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Ricart – Agrawala Proof
By contradiction:

Assume Pi & Pj have been granted the resource concurrently,
and that Pi’s request has smaller timestamp.

Therefore, Pi received Pj’s request after it made its request.
Pj can concurrently be granted the resource with Pi only if  Pi
returns an ack to Pj before Pi releases the resource.

However, this is impossible since Pj has a larger timestamp.

Therefore, the Ricart-Agrawala implements mutual exclusion.
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Limitation of Lamport’s Clocks
If a → b then C(a) < C(b); however, if a and b are in 
different processes, then it is not necessarily the 
case that if C(a) < C(b) then a → b.

P

Q

p1

q1
(1)

(1)

p2

(2)
q2

(3)

R
r1

(1)

r2

(2)

r3

(3)

If C(a) < C(b) then b → a ; the future cannot influence 
the past. In general, we cannot say if two events in 
different processes are causally related or not from 
their timestamps.

/

C(p1)< C(q2)
and
C(p1)< C(r2)
however
p1 → q2
and
p1 → r2/
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Vector Time

Mattern (Proc. of Int. Conf. on Parallel and Dist, Algorithms, 1988)
Fidge (Proc. of 11th Australian Computer Sc. Conf. 1988)

Each process Pi has a vector VCi with an entry for 
each process.
Implementation Rules:
IR1: Process Pi increments VCi[i] immediately after the 

occurrence of a local event.

IR2: (i)  message m (send event a) from Pi to Pj, is
timestamped with VTm = VCi(a) 

(ii) receiving m by  process Pj :       
∀k, VCj[k]:= max( VCj[k],VTm[k] )
execute receive(m) - event b occurs. 
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Example

P

Q

p1

q1

(1,0,0)

(0,1,0)

p2

(2,0,0)

q2

(2,2,0)

R
r1

(0,0,1)

r2

(0,0,2)

q4

(2,3,1)

q3

(2,4,1)

p3

(3,4,1)

r3

(0,0,3)
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Causally Related Events
For two vector timestamps Ta & Tb:

Ta ≠ Tb iff  ∃i, Ta[i] ≠ Tb[i]
Ta ≤ Tb iff ∀i, Ta[i] ≤ Tb[i]
Ta < Tb iff   ( Ta ≤ Tb ∧ Ta ≠ Tb )

Events a and b are causally related, 
if Ta < Tb or Tb < Ta.
Otherwise they are concurrent.

Vector timestamps represent causality precisely.

a → b iff Ta < Tb.
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Example

We can observe that p1 || r3
since ¬ (1,0,0) < (0,0,3) 
and   ¬ (0,0,3) < (1,0,0) 

P

Q

p1

q1

(1,0,0)

(0,1,0)

p2

(2,0,0)

q2

(2,2,0)

R
r1

(0,0,1)

r2

(0,0,2)

q4

(2,3,1)

q3

(2,4,1)

p3

(3,4,1)

r3

(0,0,3)

Also that r1 → p3
since (0,0,1) < (3,4,1)
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Applications of Causal Ordering
Consistent Distributed Snapshots
Find a set of local snapshots such that:
If b is in the union of all local snapshots, and a → b 
then a must be included in the global snapshot too.
(ie. Consistent snapshots should be left-closed with 
respect to causality)

Causal Ordering of Messages
Preserves causal ordering in the delivery of messages 
in a distributed system.  Delay delivery (buffer) unless 
message immediately preceding it has been delivered.
(eg. For replicated data bases, updates  are applied in 
same order to maintain consistency).

Chandy and Lamport (ACM TOCS, 1985)

Birman, Schiper and Stephenson (ACM TOCS, 1991)


