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Abstract
Graphical choreographies, or global graphs, are general multiparty
session specifications featuring expressive constructs such as fork-
ing, merging, and joining for representing application-level proto-
cols. Global graphs can be directly translated into modelling nota-
tions such as BPMN and UML. This paper presents an algorithm
whereby a global graph can be constructed from asynchronous in-
teractions represented by communicating finite state machines (CF-
SMs). Our results include: a sound and complete characterisation
of a subset of safe CFSMs from which global graphs can be con-
structed; an algorithm to translate CFSMs to global graphs; a time
complexity analysis; and an implementation of our theory, as well
as an experimental evaluation.

Keywords multiparty session types, choreography, communicat-
ing finite state machines, global graphs, theory of regions

1. Introduction
Context Choreographies, models of interactions among software
components from a global point of view, have been advocated as
a conceptual and practical tool to tackle the complexity of de-
signing, analysing, and implementing modern applications (see
e.g., [3, 10, 16, 25]). As noted in [16], besides yielding a global
perspective of the coordination of applications supporting the de-
velopment and verification of single components, a global specifi-
cation can also be projected so to obtain the local behaviour of com-
ponents. The software engineering methodology associated with
choreographies is usually a uni-directional (top-down) approach
to software development life cycle (SDLC). Such a methodology
appeals to industry [3, 4, 16] since it allows developers to check
components against the corresponding projections of the choreog-
raphy. However, choreography-based approaches do not fully sup-
port SDLC. For example, the ’conform direction’ of testable archi-
tectures [3] lacks algorithms to obtain global models when modi-
fying local projections.

To address this limitation we propose an algorithm to construct
choreographies from a set of behavioural specifications of compo-
nents interacting through asynchronous message passing. We con-
sider the following two scenarios to motivate the practical applica-
bility of our algorithm.

• Distributed service architectures envisage software as a provi-
sion made available (through a public interface that hides im-
plementation details) to be dynamically searched by and com-
posed. The choreography of such systems cannot therefore be
designed in advance and has to be established and checked at
binding-time to attain automatic composition.

• A frequent problem practitioners have to face is the integration
of newly developed software with legacy code. Typically, The
latter often do not come with a global specification and changes
with time. Therefore, it is difficult to assess how modifications
to newly developed components fit within the system.
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Figure 1. Communicating System Sre

Relying on a modelling notations used in industry, our algorithm
enables a bi-directional (top-down and bottom-up) choreography-
driven SDLC: a developer can visualise a global viewpoint; thus,
when an unexpected choreography emerges, either existing com-
ponents or the global specification may be refined. Modified chore-
ographies can be projected again so to be compared with the origi-
nal projections.

Our approach We adopt communicating finite state machines
(CFSMs) as suitable behavioural specifications of distributed com-
ponents from which a choreography can be built. CFSMs are a
conceptually simple model, based on asynchronous FIFO message-
passing communication, and are well-established for analysing
properties of distributed systems. They are also widely used in
industry tools and can be seen as end-point specifications.

We define an algorithm that, given a set of CFSMs, yields a
choreography expressed as a global graph [18], which are closely
related to BPMN 2.0 Choreography, advocated as a suitable nota-
tion for services [1]. The system Sre in Figure 1 will be the running
example to illustrate our approach; Sre consists of four CFSMs,
each having three buffers to communicate with the other partici-
pants, that realise a protocol of a fictive game where:

1. Alice (A) sends either bwin to Bob (B) or cwin to Carol (C)
to decide who wins the game. In the former case, A fires the
transition AB!bwin whereby the message bwin is put in the FIFO
buffer AB from A to B, and likewise in the latter case.

2. If B wins (that is the message bwin is on top of the queue AB
and B consumes it by taking the transition AB?bwin), then he
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AÑC :cwin

CÑB :blose

AÑB :bwin
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CÑD :busy
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CÑA :msg

AÑD : free

Figure 2. Global Graph Gre

sends a notification (close) to C to notify her that she has lost.
Symmetrically, C notifies B of her victory (blose).

3. During the game, C notifies Dave (D) that she is busy.

4. After B and C have been notified of the outcome of the game, B
sends a signal (sig) to A, while C sends a message (msg) to A.

5. Once the result is sent, A notifies D that C is now free and a new
round starts.

The underlying protocol of Sre shows that CFSMs capture many
coordination constructs: in 1, A (non-deterministically) chooses the
winner; in 2, B has a sequential behaviour; in 3, the parallel be-
haviour of C is rendered with the interleaving of transition CD!busy;
in 4 and 5, threads join and finally the protocol loops.

Understanding the global model of Sre is not easy. A much
clearer specification is given by the global graph Gre (constructed
by our algorithm) in Figure 2. There, the choreography of the
four components is explicit and it is possible to identify sequen-
tially ordered, independent, or exclusive interactions. For instance,
from Gre, it is evident that interaction AÑB :bwin must precede
BÑC :close, while interaction CÑD :busy is independent of the
former two. On the other hand, AÑB :bwin and AÑC :cwin are
exclusive, i.e., only one of them may be executed in each round of
the game.

Establishing properties of CFSMs such as

Is Sre deadlock-free? will any sent message be eventually
consumed? will each participant eventually receive any
message s/he is waiting for?

is generally undecidable [12] or computationally hard, and not
immediate even for the simple scenario in Figure 1. We give a
decidable condition, called generalised multiparty compatibility
(GMC) that characterises a set of systems for which the questions
above can be decided. Our algorithm can produce a global graph
from any set of generalised multiparty compatible CFSMs. The
global graph is constructed through a transformation of the CFSMs
into a safe Petri net. The transformation preserves the original
CFSMs, which can be recovered by projecting the global graph.
Noteworthy, most of the systems we found in the literature enjoy
GMC and very of them do not (cf. § 5).

Contributions To the best of our knowledge, this is the first work
to build graphical choreographies from CFSMs and to characterise
the set of CFSMs from which such choreographies can be built. Our
theory is supported by a tool (which we evaluated against protocols
from the literature).

Recently the construction of syntactic (non-graphical) multi-
party session types [22] from local specifications has been studied
in [19, 23] for a less general framework with no support for lo-
cal concurrency; for instance in Figure 1, C can send message busy
while concurrently receiving either cwin or close (similarly A can
execute input actions CA?msg and BA?sig in parallel). We argue that
catering for a general form of local concurrency (which is in fact
supported by threads in many programming languages) is crucial
for modelling real-world systems.

In [9, 10] conditions for communicating systems to be safe are
given; however, they do not address the problem of constructing
choreographies and consider a form of local concurrency more re-
strictive than ours due to a single receiving buffer per participant.
We use two uni-directional queues for each couple of participants
so that a component can concurrently communicate with many
other components accessing different FIFO queues (as, e.g., sup-
ported in the TCP protocol suite).

Synopsis § 2 reviews CFSMs. § 3 defines generalised multi-
party compatibility, analyses its complexity (Proposition 3.1 and
Proposition 3.2), and its soundness (Theorem 3.1). § 3.3 discusses
how our condition can be used to suggest amendments to fix non-
GMC systems. The construction algorithm, its complexity (Propo-
sition 4.1), and its completeness (Theorem 4.1) are in § 4. The tool
and experimental evaluation are in § 5. We conclude and discuss
future work in § 7, after discussing more related work in § 6. Sup-
plementary materials include full proofs of our results, our tool, and
benchmark protocols.

2. Communicating Finite State Machines
This section reviews definitions and properties of CFSMs. Through-
out the paper we use the following sets and notations. Fix a finite
set P of participants (ranged over by p, q, r, s, etc.) and a finite
alphabet A. The set of channels is C def

“ tpq
ˇ

ˇ p,q PP and p ‰ qu

while Act def
“ Cˆt!,?uˆA is the set of actions (ranged over by `),

A˚ (resp. Act˚, ranged over by ϕ) is the set of finite words on A
(resp. Act). Also, ε (R AYAct) is the empty word, |ϕ| denotes the
length of ϕ, and ϕϕ1 is the concatenation of ϕ and ϕ1 (we overload
these notations for words over A).

Definition 2.1 (CFSM). A communicating finite state machine
is a finite transition system given by a 4-tuple M “ pQ,q0,A,δq
where Q is a finite set of states, q0 P Q is the initial state, and
δ Ď QˆActˆQ is a set of transitions. ˛

The transitions of a CFSM are labelled by actions; label sr!a rep-
resents the sending of message a from machine s to r and, dually,
sr?a represents the reception of a by r. We write LpMq Ď Act˚
for the language on Act accepted by the automaton corresponding
to machine M where each state of M is an accepting state. A state
q P Q with no outgoing transition is final; q is a sending (resp. re-
ceiving) state if all its outgoing transitions are labelled with sending
(resp. receiving) actions, and q is a mixed state otherwise.

A CFSM M“ pQ,q0,A,δq is deterministic if for all states q PQ
and all actions ` P Act, if pq, `,q1q,pq, `,q2q P δ then q1 “ q2.1 A
CFSM M is minimal if there is no machine M1 with fewer states

1 Sometimes, a CFSM is considered deterministic when pq,sr!a,q1q P δ

and pq,sr!a1,q2q P δ then a“ a1 and q1 “ q2. Here, we follow a different
definition [15] in order to represent branching type constructs.
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than M such that LpMq “ LpM1q. Hereafter, we only consider
deterministic and minimal CFSMs.

Definition 2.2 (Communicating systems). Given a CFSM Mp “

pQp,q0p,A,δpq for each p PP, the tuple S “ pMpqpPP is a com-
municating system (CS). A configuration of S is a pair s “ p~q;~wq
where ~q “ pqpqpPP with qp P Qp and where ~w “ pwpqqpqPC with
wpq PA˚; component~q is the control state and qp PQp is the local
state of machine Mp. The initial configuration of S is s0 “ p~q0;~εq
with ~q0 “ pq0pqpPP. ˛

Hereafter, we fix a machine Mp “ pQp,q0p,A,δpq for each partici-
pant p PP and let S“ pMpqpPP be the corresponding system.

Definition 2.3 (Reachable states and configurations). A configura-
tion s1 “ p~q1;~w1q is reachable from another configuration s“ p~q;~wq
by firing transition `, written s `

ÝÑs1 (or sÝÑ s1 if the label is imma-
terial), if there is a P A such that either:

1. `“ sr!a and pqs, `,q1sq P δs and
(a) q1p “ qp for all p‰ s, and
(b) w1sr “ wsr.a and w1pq “ wpq for all pq‰ sr; or

2. `“ sr?a and pqr, `,q1rq P δr and
(a) q1p “ qp for all p‰ r, and
(b) wsr “ a.w1sr and w1pq “ wpq for all pq‰ sr.

The reflexive and transitive closure of Ñ is Ñ˚. We write
s1

`1 ¨ ¨ ¨`mÝÝÝÝÑsm`1 when, for some s2, . . . ,sm, s1
`1ÝÑs2 ¨ ¨ ¨sm

`mÝÑsm`1. A
sequence of transitions is k-bounded if no channel of any interme-
diate configuration on the sequence contains more than k messages.
The set of reachable configurations of S is RSpSq “ ts

ˇ

ˇ s0 Ñ
˚ su.

The k-reachability set of S is the largest subset RSkpSq of RSpSq
within which each configuration s can be reached by a k-bounded
execution from s0. ˛

Condition (1b) in Definition 2.3 puts a on channel sr, while (2b)
gets a from channel sr. Note that, for every integer k, the set RSkpSq
is finite and computable.

We now recall several definitions about communicating systems
S and their configurations s “ p~q;~wq. We say that s is a deadlock
configuration [15, Def. 12] if ~w “~ε, there is r P P such that
pqr,sr?a,q1rq P δr, and for every p PP, qp is a receiving or final
state, i.e., all the buffers are empty, there is at least one machine
waiting for a message, and all the other machines are either in
a final or receiving state. Configuration s is an orphan message
configuration if all qp P~q are final but ~w ‰~ε, i.e., there is at least
a non-empty buffer and each machine is in a final state. Finally,
s is an unspecified reception configuration [15, Def. 12] if there
exists r PP such that qr is a receiving state, and pqr,sr?a,q1rq P δr

implies that |wsr| ą 0 and wsr R aA˚, i.e., qr is prevented from
receiving any message from any of its buffers.

Definition 2.4 (Safe CS). System S is safe if for each s P RSpSq, s
is not a deadlock, an orphan message, nor an unspecified reception
configuration. ˛

The following definitions are new and instrumental for § 3
where we characterise a subset of safe CS from which a global
graph can be constructed. A key point to give our condition for
a CS to be safe is to identify sets of concurrent actions. Below,
we define an equivalence relation on transitions of a CFSM. Given
q,q1 P Q, let actpq,q1q def

“ t`
ˇ

ˇ pq, `,q1q P δu and define ˛,˛Ď δˆδ

as the smallest equivalence relations that respectively contain the
relations ˛ and ˛ where

• pq1, `,q2q˛pq11, `,q
1
2q iff ` R actpq1,q11q “ actpq2,q12q ‰H

• pq1, `,q2q˛pq11, `,q
1
2q iff pq1, `,q2q˛pq11, `,q

1
2q and for all pq, `,q1q P

rpq1, `,q2qs
˛, actpq1,qq “ actpq2,q1q ^ actpq11,qq “ actpq12,q

1q

where rpq, `,q1qs˛ denotes the equivalence class of pq, `,q1q wrt ˛.
Intuitively, two transitions are ˛-related if they refer to the same

action up-to interleaving.

Example 2.1. Consider the CFSM below.

q0 q1

q2 q3

q5

q6

sr!asr!a

sr1!b

sr!a

sr1!b sr1!b

sr!a

sr!c

pq0,sr!a,q1q˛pq2,sr!a,q3q p1q

pq0,sr!a,q1q˛pq2,sr!a,q3q p2q

 ppq0,sr!a,q1q˛pq1,sr!a,q5qq p3q

pq0,sr
1!b,q2q˛pq1,sr

1!b,q3q p4q

 ppq0,sr
1!b,q2q˛pq1,sr

1!b,q3qq p5q

The relations in p1-2q hold since both transitions are interleaved
with sr1!b. The relation in p3q does not hold since the transition
between the source of one (q0) and the source of the other (q1)
passes through sr!a itself. The two transitions in p3q are sequential
rather than concurrent. The relation in p4q holds, but the relation
in p5q does not because there is pq5,sr

1!b,q6q in the ˛-equivalence
classes of pq0,sr

1!b,q2q for which the condition does not hold (due
to the transition with label sr!c).

In Figure 1, pC0,AC?cwin,C1q˛pC2,AC?cwin,C4q since both
transitions represent the same action interleaved with CD!busy.
In each machine in Figure 1, a set of transitions pq, `,q1q with
the same label ` forms a ˛-equivalence class, e.g., in Alice,
tpA1,CA?msg,A3q, pA2,CA?msg,A4qu is a ˛-equivalence class la-
belled by CA?msg.

3. CFSMs Characterisation of Global Graphs
3.1 Synchronous transition system
Systems amenable to be transformed into global graphs are identi-
fied through their synchronous transition system (cf. Definition 3.2)
where nodes consist of a vector of local states and transitions are
labelled by elements in the set of events E def

“
Ť

s,rPP QsˆQrˆ

tps,rquˆAu. Intuitively, an event pqs,qr,s,r,aq PE , pqs,qr,sÑ
r :aq for short, indicates that machines s and r can exchange mes-
sage a when they are respectively in state qs and qr. Indexing
events with the local states of the machines permits to distinguish
two occurrences of the same communication at two different points
in a global graph. To single out parallelism at the machine level, we
introduce an equivalence relation over events that identifies events
whose underlying local transitions are ˛-equivalent.

Definition 3.1 (E-equivalence). The event equivalence is the rela-
tion ’

def
“’s X’rĎ EˆE where

pq1,q2, sÑr :aq’s pq11,q
1
2, sÑr :aq ðñ

@pq1,sr!a,q3q,pq11,sr!a,q13q P δs : pq1,sr!a,q3q˛pq11,sr!a,q13q

pq1,q2, sÑr :aq’r pq11,q
1
2, sÑr :aq ðñ

@pq2,sr?a,q4q,pq12,sr?a,q14q P δr : pq2,sr?a,q4q˛pq12,sr?a,q14q

We let res denote the ’-equivalence class of event e. ˛

Example 3.1. Consider the communicating system below:

q0 q1

q2 q3

p

pr!a

sp?b

pr!a

sp?b

q0

q1

r

pr?a

q0

q1

s

sp!b
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pA0,C0,AÑC :cwinq

pC1,D0,CÑD :busyq pB1,C0,BÑC :closeqpC1,B0,CÑB :bloseqpA0,C2,AÑC :cwinq pC0,D0,CÑD :busyq

pC5,A1,CÑA :msgq

pA0,B0,AÑB :bwinq

pA0,B0,AÑB :bwinq

pB2,A1,BÑA :sigq

pB2,A1,BÑA :sigq

pB1,C2,BÑC :closeq

pC3,D0,CÑD :busyq

pC4,B0,CÑB :bloseq

pB2,A3,BÑA :sigq

pC3,D0,CÑD :busyq

pA4,D1,AÑD : freeq

pC0,D0,CÑD :busyq

pC5,A2,CÑA :msgq

A0,B0,C2,D1

A0,B0,C0,D0

A1,B0,C1,D0

A1,B1,C2,D1

A1,B1,C0,D0

A1,B2,C3,D0

A2,B0,C5,D1

A2,B0,C3,D0

A3,B2,C0,D1

A4,B0,C0,D1

A1,B0,C4,D1

A1,B2,C5,D1

The transition system δ̂ of Sre (cf. Figure 1),
where events are ’-equivalent if they have the
same interaction sÑr :a.

Figure 3. Transition graph of δ̂ and TSpSreq

Its synchronous transition system (cf. Definition 3.2 below) is the
labelled transition system:

pq0,q0,pÑr :aq

pq0,q0,sÑp :bq

pq2,q0,pÑr :aq

pq0,q3,sÑp :bq

We have pq0,q0,pÑr : aq ’ pq2,q0,pÑr : aq and pq0,q0,sÑp :
bq ’ pq0,q3,sÑp : bq. Considering these pairs of event as being
equivalent (respectively) allows us to identify a pair of concurrent
interactions; while still differentiating them from other occurences
of communications pÑr :a and sÑp :b.

In our running example (cf. Figure 1), we have pC5,A2,CÑ
A : msgq ’ pC5,A1,CÑ A : msgq since the underlying transitions
of A are ˛-equivalent, i.e., pA1,CA?msg,A3q˛pA2,CA?msg,A4q, and
the underlying transition of C is the same for both events, i.e.,
pC5,CA!msg,C0).

Hereafter, we let n,n1, . . . denote vectors of local states and nrps
denote the state of p PP in n.

Definition 3.2 (Synchronous transition system). Given a system
S“ pMpqpPP, let N def

“ t~q
ˇ

ˇ p~q;~εq P RS1pSqu,

δ̂
def
“

!

pn,e,n1q
ˇ

ˇ pn;~εq sr!a
ÝÝÑ

sr?a
ÝÝÑpn1;~εq^ e“ pnrss,nrrs, sÑr :aq

)

and E def
“ te

ˇ

ˇ Dn,n1 P N : pn,e,n1q P δ̂u Ď E .
The synchronous transition system of S is TSpSq“ pN,n0,E{’,Ùq

where n0 “~q0 is the initial state, and n
res
Ù n1 ðñ pn,e,n1q P δ̂. We

fix a set Ê of representative elements of each ’-equivalence class

(i.e., Ê Ď E and @e P E D!e1 P Ê : e1 P res) and write n
e1
Ù n1 for

n
res
Ù n1 when e1 P resX Ê. Sequences of events are ranged over by

π and we extend the notation on ÝÑ in Definition 2.3 to Ù (e.g., if
π“ e1 ¨ ¨ ¨ek, n1

π
Ù nk`1 iff n1

e1
Ù n2

e2
Ù ¨ ¨ ¨

ek
Ù nk`1). ˛

TSpSq represents all the possible synchronous executions of sys-
tem S; and each transition is labelled by an event e, taken up-to ˛-
equivalence so to distinguish different occurrences of a same com-
munication, while preserving the parallelism of local machines.

The synchronous transition system for our running example is
given in Figure 3.

Definition 3.3 (Projections). The projection of an event e onto
participant p, denoted by eçp, is defined as follows:

pqs, qr, sÑr :aqçp
def
“

$

’

&

’

%

pr!a if s“ p

sp?a if r“ p

ε otherwise

Projection is defined on sequences of events in the obvious way.
The projection of TSpSq “ pN,n0, Ê,Ùq on participant p, written
TSpSqçp, is the automaton pQ,q0,A,δq where Q“ N, q0 “ n0, and
δĎ QˆActYtεuˆQ is s.t. pn1,eçp,n2q P δ ðñ n1

e
Ù n2. ˛

3.2 Generalised multiparty compatibility
We introduce generalised multiparty compatibility (GMC) as a
sound and complete condition for constructing global graphs. Here-
after, we fix a system S“ pMpqpPP with TSpSq “ pN,n0, Ê,Ùq. Es-
sentially, GMC relies on two conditions, (1) representability (cf.
Definition 3.4): for each machine, each trace and each choice are
represented in TSpSq; and (2) branching property (Definition 3.5):
whenever there is a choice in TSpSq, a unique machine takes the
decision and each of the other participants is either made aware
of which branch was chosen or not involved in the choice. Rep-
resentability guarantees that TSpSq contains enough information to
decide safety properties of any (asynchronous) execution of S; and
the branching property ensures that, if a branching in TSpSq repre-
sents a choice, then this choice is “well-formed”.

For a language L , hd pLq returns the first actions of L (if any).

hd pLq def
“ t`

ˇ

ˇ Dϕ P Act˚ : ` ¨ϕ P Lu hd ptεuq def
“ tεu

Given n P N, let TSpSqxny be the transition system TSpSq where
the initial state n0 is replaced by n. We write LTpS,n,pq for
LpTSpSqxnyçpq; that is LTpS,n,pq is the language obtained by
setting the initial node of TSpSq to n and then projecting this new
transition system onto p.

Definition 3.4 (Representability). System S is representable if
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1. LpMpq “ LTpS,n0,pq and
2. @q PQp Dn PN : nrps “ q^

Ť

pq,`,q1qPδp
t`u Ď hd pLTpS,n,pqq.

for all p PP. ˛

Condition (1) in Definition 3.4 is needed to ensure that each
trace of each machine is represented in TSpSq; while condition
(2) is necessary to ensure that every choice in each machine is
represented in TSpSq.

Proposition 3.1. Given a system S “ pMpqpPP, checking whether
S satisfies the representability condition is computable in

Op
ÿ

pPP
2|N|`|Qp|q time, with |N|“

ź

pPP

∣∣Qp

∣∣
In the worst case, the time complexity of checking the rep-

resentability of S is exponential. This is solely due to the lan-
guage equivalence check (condition (1) in Definition 3.4) between
each machine and its projection from TSpSq. However, as observed
in [11], in practice algorithms for language equivalence behave
very efficiently. In addition, we can remove some states from the
projection of TSpSq, e.g., those that are on chains of ε-transitions
only, while preserving its language, thus reducing the exponent |N|.

We give a few auxiliary definitions before formalising the
branching property. For n ‰ n1 P N, we define n ă n1 iff n Ù

˚ n1
and for all paths n0 Ù n1 Ù . . . Ù nk´1 Ù nk “ n in TSpSq such
that n0, . . . ,nk are pairwise distinct, n1 ‰ nh for all 0 ď h ď k. In-
tuitively, n ă n1 holds if n1 is reachable from n and no simple path
from n0 to n goes through n1; note that ă is not a preorder in
general. The last nodes reachable from n P N with e1 ‰ e2 P Ê are

lnpn,e1,e2q
def
“

$

&

%

pn1,n2q
Dn1 P N : @i P t1,2u : n Ù

˚ n1
ei
Ù ni

^ @n2 P N : n1Ù n2

ùñ @ j P t1,2u :  pn1 ă n2
e j
Ùq

,

.

-

If pn1,n2q P lnpn,e1,e2q, then ni is a
ei
Ù-successor (i “ 1,2) of a

node n1 on a path from n whose successors are either not able to
fire both e1 and e2 or not ă-related to n1.

Example 3.2. Consider the synchronous transition system below.

n0 n1

n2 n3

pq0,q3,sÑr1 :xq

pq0,q10,sÑr :aq pq0,q10,sÑr :bq

pq1,q11,sÑr :aq pq1,q11,sÑr :bq

pq2,q3,sÑr1 :xq

If q0“ q1 and q10“ q11, we have lnpn0,pq0,q10,sÑr:aq,pq0,q10,sÑ
r : bqq “ tpn3,n3qu. In this case, both branches on a and b from
nodes n0 and n1 are considered equivalent (they are only inter-
leaved with the exchange of message x). However, if the edge from
n2 to n3 is removed and q0‰ q1 and q10‰ q11, then lnpn0,pq0,q10,sÑ
r :aq,pq0,q10,sÑr :bqq “ tpn2,n2qu. In this case the two branches
are not equivalent since one of them prevents x to be ever ex-
changed.

In our running example (cf. Figure 3), we have:

lnppA0,B0,C0,D0q,pA0,B0,AÑB :bwinq,pA0,C0,AÑC :cwinqq
“ tppA1,B1,C2,D1q,pA1,B0,C4,D1qqu

Recall that pA0,C2,AÑC:cwinq’ pA0,C0,AÑC:cwinq; i.e., the pair
of event can be fired from both pA0,B0,C0,D0q and pA0,B0,C2,D1q.

For an event e“ pqs,qr,sÑr :aq P E , let ιpeq “ sÑr :a and
define a dependency relation CĎ EˆE on events:

eCe1 ðñ ιpeq“ sÑr:a ^ pιpe1q“ sÑr:a1 _ ιpe1q“ rÑr1 :a1q

Intuitively, e and e1 are C-related if there exists a dependency
relation between the two interactions, from the point of view of
the receiver. We define a relation eđe1 in π if there is a C-relation
between e and e1 in π, i.e.,

eđe1 in π ðñ

#

peC e2^ e2đe1 in π1q_ eđe1 in π1 if π“ e2 ¨π1

eC e1 otherwise

also, deppιpeq,π, ιpe1qq iff
`

π“ π1 ¨ e ¨π2 ¨ e1 ¨π1 ^ p , , ιpeqq R π1 ^ p , , ιpe1qq R π2
˘

ùñ eđe1 in π2

which checks whether there is a dependency between two interac-
tions on a path π (if these interactions do appear in π). Below we
give the second condition for GMC.

Definition 3.5 (Branching property). System S has the branching
property if for all n P N and for all e1 ‰ e2 P Ê such that n

e1
Ù n1

and n
e2
Ù n2, then we have that

1. either there is n1 P N such that n1
e2
Ù n1 and n2

e1
Ù n1, or

2. for each pn11,n
1
2q P lnpn,e1,e2q, letting

Li
p

def
“ hd

` 

eiçp ¨ϕ
ˇ

ˇ ϕ P LTpS,n1i ,pq
(˘

with i P t1,2u and p PP,

conditions (2a), (2b), and (2c) below hold.
(a) choice-awareness: @p PP : either

i. L1
pXL2

p Ď tεu and ε P L1
p ðñ ε P L2

p, or
ii. Dn1 P N, π1, π2 :

n11
π1
Ù n1 ^ n12

π2
Ù n1 ^ pe1 ¨π1qçp“ pe2 ¨π2qçp“ ε

(b) unique selector: D!s PP : L1
sXL2

s “H^ Dsr!a P L1
sYL2

s

(c) no race: @r PP : L1
rXL2

r “H

ùñ @s1r?a1 P L1
r,@s2r?a2 P L2

r : @i‰ j P t1,2u : n1i
πi
Ù

ùñ deppsiÑr :ai, ei ¨πi, s jÑr :a jq ˛

Definition 3.5 ensures that every branching either is (1) the
concurrent execution of two events; or, for each participant p,
(2(a)i) if p does not terminates before n, then the first actions of
p in two different branches are disjoint; or (2(a)ii) p is not involved
in the choice, i.e., the branches merge before p does any action;
(2b) there is a unique participant s making the decision; and (2c)
for each participant r involved in the choice, there cannot be a race
condition between the messages that r can receive. Note that if a
machine r receives all its messages from a same sender, then there
is a C-relation between all its actions.

In system Sre, case (1) of Definition 3.5 applies to all branching
nodes except n0 “ pA0,B0,C0,D0q and n “ pA0,B0,C2,D1q, high-
lighted in Figure 3, for which case (2) applies. For e1“pA0,B0,AÑ
B : bwinq and e2 “ pA0,C0,AÑ C : cwinq, we have lnpn0,e1,e2q “
lnpn,e1,e2q “ tppA1,B1,C2,D1q,pA1,B0,C4,D1qqu. Hence, case (2a)
holds for n0 iff it holds for n. Following (2a), we check that every
participant satisfies either (2(a)i) or (2(a)ii):

• A executes different (sending) actions in both branches (AB!bwin
and AC!cwin),

• B executes different (receiving) actions (AB?bwin and CB?blose),
• C executes different (receiving) actions (AC?cwin and BC?close),

hence case (2(a)i) applies to A, B, and C. While case (2(a)ii) applies
to D since there is a node n1 “ pA1,B2,C5,D1q such that D does
not execute any action on either path from n to n1 (through nodes
pA1,B1,C2,D1q and pA1,B0,C4,D1q, respectively). Also, condition
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(2b) is satisfied since A is the unique sender that executes different
actions in both branches e1 and e2.

Condition (2c) is satisfied for B and C due to the existence
of dependency chains from AB?bwin to CB?blose (and vice versa)
and from AC?cwin to BC?close (and vice versa). For instance, the
dependency chain BÑC :closeCCÑA :msgCAÑC :cwin prevents
C to delay the reception of close (sent by B) until she can receive
message cwin (sent by A); C must send a message msg (to A) before
she can receive the outcome of a new round of the game.

Finally, note that lnpn0,e1,e2q ensures that checking the branch-
ing between e1 and e2 at node n0 is delayed until the interaction
CÑ D : busy does not interfere with the choice. Hence, the be-
haviours of C and D are checked only once they have exchanged
the busy message.

Proposition 3.2. Given a system S “ pMpqpPP, checking whether
S satisfies the branching property is computable in

O

˜

|Ù|2ˆ |Ù|!ˆ
ÿ

rPP

´

|δr|2
¯

¸

time.

Checking the branching property is factorial in the size of TSpSq
because it requires the enumeration of paths of TSpSq (cf. (2c) of
Definition 3.5). We remark that the above is a rather coarse ap-
proximation obtained under worst case assumptions oblivious of
the typical structure of TSpSq; our experiments show good perfor-
mances (cf. § 5). Finally, we observe that TSpSq is generally much
smaller than, e.g., the one-bounded transition system of S (where
each queue may contain at most one message).

Definition 3.6 (Generalised multiparty compatibility). A system S
is generalised multiparty compatible (GMC) if it is representable
and has the branching property. ˛

Example 3.3. We show the interplay between the representability
and branching conditions by exhibiting unsafe systems satisfying
only one of the properties. Consider the following machines:

AB!a

AC!c1

BA?b

AB!y

AC!c

BA?b

AB!a

BA?x

AB?a

CB?d1

BA!b

AB?y

CB?d

BA!b

AB?a

BA!x

A B

AC?c AC?c1

CB!d

AC?c AC?c1

CB!d CB!d1

AC?c1AC?c

CB!d CB!d1

C1 C2 C3

(1) System S1 “ pA,B,C1q with d “ d1 is not safe: whenever the
left-hand side branch of A and the right-hand side branch of B are
taken in a same execution, S1 will reach an orphan message con-
figuration where messages x and y are never consumed. In fact, S1
is not GMC because there is a branching node from which B can
execute, as first actions, either AB?a or CB?d, and there is no depen-
dency between the reception of a and that of d1 (with d“ d1) in the
left-hand side branch, i.e., pAÑB:aCAÑC:c1CCÑB:d1q. Thus
the branching property does not hold.
(2) System S2 “ pA,B,C2q with d ‰ d1 is not safe: as before, when-
ever the left-hand side branch of A and the right-hand side branch
of B are taken in a same execution this system reaches an orphan

message configuration. These two branches are not mutually exclu-
sive since C2 can receive c1 then send d. This system is not GMC
since there is no node in TSpS2q such that actions CB!d and CB!d1
are the first actions executed by C. Hence the representability con-
dition does not hold.
(3) System S3 “ pA,B,C3q with d ‰ d1 is safe and is GMC. In S3,
the left-hand side branch of A and the right-hand side branch of B
are always mutually exclusive, while in S1 and S2 they are only
mutually exclusive in synchronous executions.

We remark that systems S1 and S2 may be easily changed so that
they are “safe” in any k-bounded execution but not safe in a k`1-
bounded execution. This may be done by making A and B exchange
k`1 messages consecutively, e.g., by replacing every AB!a (resp.
AB?a) transitions in A (resp. B) by a sequence of k`1 transitions
AB!ai (resp. AB?ai), for 1ď iď k`1.

Theorem 3.1 (Soundness). If S is GMC, then it is safe (no orphan
message, deadlock, and unspecified reception configurations).

Theorem 3.1 says that no (asynchronous) execution of S will
result in an orphan message, deadlock or unspecified reception
configurations. Relying on representability (every transition and
branching in each machine is represented in TSpSq), the proof
shows that, for each branching node n, the function lnpn,e1,e2q
allows enough branches to be verified against the branching prop-
erty. Then, it shows that any sent message is eventually received
and that a machine in a receiving state eventually receives a mes-
sage it expected, by Definition 3.5.

Example 3.4. The unsafe system below has the branching property
and validates condition (1) of Definition 3.4, but not condition (2).
This system can reach an orphan message configuration, where
messages x and y are never received.

A

AB!a

AB!a

AC!b

AC!b
AD!v

AD!x
AC!d

AD!v

DA?y
AB!c

AD!w

B

AB?cAB?a

C

AC?b AC?d

D

AD?v

DA!yAD?x

AD?w

This example illustrates the importance of condition (2) of Defini-
tion 3.4 to ensure safety. In the TS of this system (isomorphic to ma-
chine A), the branches corresponding to DA!y and AD?x of machine
D are not checked against each other for the branching property.

3.3 Amending communicating systems
When a system is not GMC, our algorithm can be used to suggest
different ways of transforming it, so to validate the condition. By
Definition 3.6, we first note:

Proposition 3.3. If S satisfies all but (1) in Definition 3.4, then the
system consisting of the (minimised) projections of TSpSq is GMC.

This means that, in such a case, a new safe system may be auto-
matically obtained from the projections of TS. For instance, system
S2 in Example 3.3 is not GMC because (1) in Definition 3.4 does
not hold. However, the system corresponding to the projections of
TSpS2q is exactly system S3, which is GMC.

In case the projections of TSpSq do not provide a viable alterna-
tive, then the language equivalence check allows to highlight which
transitions (or paths) of each machine are not represented in TSpSq.
Similarly, local states and transitions violating it can be singled out,
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CFSMs

Def. 2.2

Build
TSpSq

Def.
3.2

GMC
Check

Def.
3.6

Petri
Net

step
(1)

One-
Source

Net

step
(2)

Joined
Net

step
(3)

Pre-
Global
Graph

step
(4)

Global
Graph

Def.
4.1

Figure 4. Work-flow of the construction

according to condition (2) in Definition 3.4. For instance, in Exam-
ple 3.4, we can highlight all transitions over x and y, as well as the
states where they are enabled.

When the branching property (Definition 3.5) is violated, then
our analysis permits to give precise information on where the prob-
lem occurs. First, we can give the vector of local states and the two
branching events for which the problem occurs as well as a wit-
nessing execution that leads to the offending configuration.

• If the choice-awareness condition (2a) is violated, then we can
list the machines for which the condition is not satisfied. If a
machine has a first same receiving action in both branches, then
it may be corrected by simply renaming some messages. These
renamings can be automatically suggested while checking for
the branching property. If the condition fails because a machine
terminates in one branch but not in the other, then we can
suggest to add a new label and a transition to the final state in
the terminated branch; as well as a dual transition in a sending
machine.

• If condition (2b) is violated, we can highlight the set of ma-
chines sending messages at this branching node. A solution may
be found by identifying the genuine selecting machine and add
communications from this machine to the others.

• If condition (2c) is violated, then we can highlight, for each
machine violating the condition, on which messages a race
condition may occur; and suggest to add an acknowledgement
message between the two corresponding actions.

Note that since CFSMs are specification or abstraction of programs,
it is generally not desirable to automatically repair non-GMC sys-
tems. Indeed, some corrections may not be reflected easily in the
program or might have side effects in the corresponding implemen-
tation, analogously to concurrent programming where automatic
corrections are not generally appealing, even if some deadlocks
may be detected automatically (at run or compile time).

4. Building Global Graphs
In § 3, we construct the synchronous transition system TSpSq of a
communicating system S, and check whether it is GMC. We now
describe the construction algorithm and its properties; Figure 4
summarises the work-flow of the transformations.

The algorithm to construct a global graph G from a synchronous
transition system TSpSq consists of the following steps:

(1) we apply the algorithm of Cortadella et al. [17] to derive a Petri
net N from TSpSq;

(2) we transform N so that its initial marking consists of exactly
one place;

(3) we join transitions whenever possible, so to make explicit join
and fork points of the work-flow;

(4) we transform the net of (3) into a pre-global graph; finally, we
“clean-up” the pre-global graph of unnecessary vertexes so to
obtain a global graph.

For the sake of the presentation and because the transformations are
rather mechanical, we explain them through our running example.
The formal definitions of the transformations and additional results
are given in Appendix B.

For (1), it is enough for the reader to know that the algorithm
in Cortadella et al. [17] is based on the theory of regions [6]
and transforms a transition system into a safe and extended free-
choice labelled Petri net, whose reachability graph is bisimilar to
the original transition system. Basically, this algorithm transforms
events of TSpSq into transitions of N while the places are built out of
regions, i.e., sets of states having a uniform behaviour wrt events.
We assume in this section that each TSpSq is self-loop free2, i.e.,
@n,n1 PN : nÙ n1 ùñ n‰ n1. The algorithm of [17] is applicable
on a self-loop free TSpSq, since every event e P Ê has an occurrence
in TSpSq by construction and every state n is reachable from n0, as
stated in Lemma 4.1 below. The Petri net obtained from TSpSreq in
Figure 3 is given in Figure 5 (left).

Lemma 4.1. If S is GMC and TSpSq “ pN,n0, Ê,Ùq, then @n P
N : n0 Ù

˚ n.

In step (2), we transform a Petri net obtained from Cortadella’s
algorithm into a Petri net whose initial marking consists of exactly
one place. This allows us to construct a global graph that has a
unique starting point. In our running example, the Petri net on the
left of Figure 5 is transformed by adding a fresh place (p0), initially
marked, and a fresh (silent) transition (t0) connected to places p1
and p2 (this simple transformation is not illustrated in Figure 5).

In step (3), a transformation ensures that parallel gates are used
“as much as possible” in the graph (instead of mixing choice and
parallel gates). In fact, the transformation joins sets of places that
have the same preset or postset to minimise the number of choice
gates. The Petri net in the middle of Figure 5 is the net obtained
from the left-hand side net after applying step (2) and (3). In the
second transformation, we add (i) t1 and p11 so to join p1 and p2
which have the same preset, i.e., t0 and the transition with label
pA4,D1,AÑD : freeq; and (ii) we add t2 and p10 so to join p5 and
p6 which have the same preset, i.e., the transitions with labels
pC1,B0,CÑB : bloseq and pB1,C0,BÑC : closeq. Both t1 and t2 are
silent transitions.

Let « be the weak bisimilarity relation on reachability graphs
(i.e., « is the bisimilarity up-to silent transitions, cf. Appendix A).

Lemma 4.2. Let N1 be the Petri net obtained after step (1), let
N2 (resp. N3) be obtained by applying step (2) (resp. (3)) to N1
(resp. N2). If Ti is the reachability graph of Ni (for i“ 1,2,3) then
T1 « T2 « T3.

We now define global graphs (a superclass of the generalised
global types of [18] that allows each gate to be connected to more
than two predecessors or successors).

Definition 4.1 (Global graph). A global graph (over P and A)
is a labelled graph xV,A,Λy with set of vertexes V , set of edges
AĎV ˆV , and labelling function Λ from V to t , , , uYtsÑ
r:a | s,r PP^ a PAu such that, Λ´1p q is a singleton, and for each
v P V , if Λpvq is of the form sÑr : a then v has unique incoming
and unique outgoing edges, and if Λpvq P t , u, v has at least one
incoming and one outgoing edge while v has no outgoing edges if
Λpvq “ . ˛

Label sÑr : a represents an interaction where s sends a mes-
sage a to r. A vertex with label represents the source of the global
graph, represents the termination of a branch or of a thread,

2 In TSpSq, if an event e self-loops, then any transition labelled by e is
a self-loop. Hence, we can easily lift the self-loop free assumption by
decomposing each self-loop into two (pointed) transitions in TSpSq and
recompose them once the global graph is constructed.

7



p1

A0,B0,AÑB :bwin

p3

B1,C0,BÑC :close

p5

B2,A1,BÑA :sig

p7

A0,C0,AÑC :cwin

p4

C1,B0,CÑB :blose

p6

C5,A1,CÑA :msg

p8

A4,D1,AÑD : free

p2

C0,D0,CÑD :busy

p9

p1

A0,B0,AÑB :bwin

p3

B1,C0,BÑC :close

p10

t2

p5

B2,A1,BÑA :sig

p7

A0,C0,AÑC :cwin

p4

C1,B0,CÑB :blose

p6

C5,A1,CÑA :msg

p8

A4,D1,AÑD : free

p2

C0,D0,CÑD :busy

p9

t1

p11

t0

p0

p1

A0,B0,AÑB :bwin

p3

B1,C0,BÑC :close

p10

t2

p5

B2,A1,BÑA :sig

p7

A0,C0,AÑC :cwin

p4

C1,B0,CÑB :blose

p6

C5,A1,CÑA :msg

p8

A4,D1,AÑD : free

p2

C0,D0,CÑD :busy

p9

t1

p11

t0

p0

Figure 5. Derived net (left), net after transformations (middle), and pre-global graph (right)

indicates forking or joining threads, and marks vertexes corre-
sponding to branch or merge points, or to entry points of loops.

In step (4), a pre-global graph is obtained from the Petri net
obtained after step (3) via a transformation which consists in, firstly,
creating a vertex in the global graph for each place, transition, and
element of the flow relation. Then these vertexes are connected via
gates: a source vertex is connected to a vertex without predecessor,
a sink vertex is connected to any vertex without successors, while
transitions (resp. places) are connected to a -gate (resp. -gate)
if they have more than one predecessors or successors. Finally,
each component of the graph is connected by merging “ports”
corresponding to elements of the flow relation. The pre-global
graph for Sre (Figure 1) is given in Figure 5 (right).

A global graph is obtained from a pre-global graph by removing
all unnecessary nodes (i.e., former places and transitions such as
p0 and t0 in Figure 5) and relabelling events into interactions (e is
replaced by ιpeq); e.g., the pre-global graph in Figure 5 becomes
the global graph in Figure 2.

Proposition 4.1. Steps (2) to (4) are computable in polynomial
time in the size of N.

We give the main result regarding the construction of a global
graph from CFSMs. In Theorem 4.1 below, we formalise the rela-
tionship between the machines from which a global graph is con-
structed and its projections. Projecting a global graph G can be
done in two ways: (i) G can be transformed into a Petri net whose
reachability graph may be projected, similarly to the projection of
TSpSq (cf. Definition 3.3); or (ii) G can be transformed into an au-
tomaton whose states are the nodes of G and each transition is la-
belled by psÑr :aqçp if the source state corresponds to a vertex
with label sÑr : a, and by ε otherwise. In order to recover local
concurrency, we take the parallel composition of the automata re-
sulting of the projection of each successor of a -gate. Finally, the

‘0 ppsig,�2q, busyq

pp�3,�2q, busyq ppsig,�3q, freeq

free

AB!bwin

AC!cwin
BA?sig

CA?msg

CA?msg
BA?sigAD!free

Figure 6. Projection of Gre onto A

resulting automaton is minimised wrt. language equivalence. We
write Gçp for the projection of G onto p, and give the formal defini-
tion in Appendix C. As an example, Figure 6 shows the minimised
projection of Gre (cf. Figure 2) onto A.

Theorem 4.1 (Completeness). Given a GMC system S“ pMpqpPP,
let G be the global graph built from S and let TSpSq “ pN, n0, Ê,Ù
q. If TSpSq is self-loop free (i.e. @n,n1 P N : n Ù n1 ùñ n ‰ n1),
then S is isomorphic to pGçpqpPP, the system made of the projection
of G.

The proof of Theorem 4.1 (given in the supplementary mate-
rial) relies on the fact that each machine is preserved during the
construction, i.e., (1) the projection of TSpSq onto each p is lan-
guage equivalent with Mp, (2) the net obtained from TSpSq via the
algorithm in [17] is bisimilar to TSpSq, (3) each transformation pre-
serves (weak) bisimilarity with the derived net, cf. Lemma 4.2, and
(4) the transformation to a global graph is sound since the net is
extended free choice.
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S |P| |N| |Ù| GMC |G| Time (s)
Running Example 4 12 19 X 16 0.184
Running Exampleˆ2 8 144 456 X 32 22.307
Bargain 3 4 4 X 8 0.103
Bargainˆ2 6 16 32 X 16 0.161
Alternating 2-bit [18] 2 8 12 X 13 0.161
Alternating 2-bitˆ2 4 64 192 X 24 0.355
Alternating 3-bit [18] 2 24 48 X 18 3.164
Alternating 3-bitˆ2 4 576 2304 X 34 12.069
TPMContract v2 [21] 2 5 8 X 15 0.142
TPMContract v2ˆ2 4 25 80 X 30 0.362
Sanitary Agency [29] 4 17 21 X 22 0.241
Sanitary Agencyˆ2 8 196 476 X 44 3.165
Health System [13] 6 10 11 X 14 0.17
Health Systemˆ2 12 100 220 X 28 1.702
Filter Collaboration [31] 2 3 5 X 10 0.118
Filter Collaborationˆ2 4 9 30 X 20 0.178
Logistic [1] 4 13 17 X 27 0.276
Logisticˆ2 8 169 442 X 54 2.155
Cloud System v4 [20] 4 7 8 X 12 0.14
Cloud System v4ˆ2 8 49 112 X 24 0.432

Table 1. Experiment results; |P| is the number of machines, |N|
(resp. |Ù|) is the number of nodes (resp. transitions) in TSpSq, and
|G| is the number of vertices in G.

5. Implementation and Experimental Evaluation
In order to assess the applicability of our work and to estimate
the effectiveness of checking for the GMC condition as well as
constructing a global graph, we have developed a prototype tool
supporting our theory. The tool (implemented in Haskell) takes as
input a textual representation of a communicating system S, then
builds TSpSq on which the representability condition and branching
property are concurrently checked for (using HKC [11] to check
for language equivalence). Then the tool constructs a global graph
from TSpSq relying on Petrify [2] (to derive a Petri net from TSpSq),
and Graphviz (to render global graphs).

Table 1 summarises the results of experiments conducted on a
few real-world protocols mainly taken from the literature. For each
protocol, the table reports the number of machines, the number
of nodes and transitions in TSpSq, whether it validates the GMC
condition, the size of the constructed global graph, and the time it
takes to check the condition and render its global graph (executions
were on a 3.40GHz Intel i7 CPU with 16GB of RAM).

On most of the protocols the execution takes only a few sec-
onds. To generate larger interesting examples, we tested systems
consisting of the parallel composition of two protocols, e.g., Run-
ning Example ˆ2 is the parallel composition of two instances of
the running example. Graphical representations of these protocols
are given in the supplementary material. Observe that in general
the size of the constructed global graph (i.e., the number of ver-
tices) is significantly smaller than the size of TSpSq, see Running
Exampleˆ2 for instance. We note that it is slightly more expensive
to check the Running Example and the Logistic protocols. This is
due to the fact that each of these protocols features at least one par-
ticipant for which checking condition (2c) of Definition 3.5 is not
trivial, because they receive information about a choice from dif-
ferent participants, e.g., Carol in Sre. On the other hand, checking
the Alternating 3-bit protocol is more time consuming due to larger
˛-equivalence classes.

6. Related Work
Session Types In the context of multiparty session types, [26] first
suggested a construction of a global protocol from a set of local

session types, up to asynchronous sub-typing. A typing system
which infers a global type [22] from a set of session types is given
in [23]. Recursive constructions are restricted in this work, due
to an inherently syntax-driven typing system, and multi-threaded
participants are not supported (i.e., in terms of CFSMs, this means
that mixed states are not allowed).

Example 6.1. Consider the GMC system of three machines below.
Machine s chooses to either continue interacting with machine r
(sending cont), or notify r that it wants to terminate (sending end),
before collecting some information from machine p (collect).

ssr!cont

sr!end

ps?collect
r

sr?cont
sr?end

p

ps!collect

Global graph:
sÑr :cont sÑr :end

pÑs :collect

This system is not accepted by the typing system in [23] because
machine p is not involved in the recursion (cf. rules rµs and rxs
in [23]).

In [19], the authors study the synthesis of global types from
basic CFSMs, that is deterministic, non-mixed (each state is either
sending or receiving), and directed (for each state, its outgoing
transitions are all labelled by an action sending to, or receiving
from, the same participant). Basic CFSMs do not allow to model
general concurrency at the local level, since a machine cannot have
mixed states. Note that machines A, B, and C in Figure 1 are not
directed. The present work covers a much larger set of global
protocols than [19, 23, 26]: we support mixed and non-directed
states (hence, multi-threaded participants are allowed), recursive
protocols are no longer restricted by a syntax oriented formalism,
and explicit fork/join control points may be constructed.

The first translation from generalised global types into CFSMs
was given in [18], where only sound properties were presented.
The generalised global types of [18] are strictly included in GMC
systems (Definition 3.6). The complete characterisation of global
graphs and a construction algorithm were left as open problems.
This paper solves these problems.

Choreographies Other recent works [8–10, 14, 21] study the re-
lationship between global and local specifications, but do not con-
sider the problem of building global specifications from local ones.
Namely, in [9], synchronisable systems are shown to preserve some
reachability properties regardless the communication being asyn-
chronous or synchronous. Essentially, systems are synchronisable
if their synchronous behaviour is equivalent to their one-bounded
asynchronous behaviour (considering send actions only). In [10],
the authors tackle the problem of determining whether a choreog-
raphy is realisable. Essentially, a choreography is realisable if “it
is possible to build a distributed system that communicates exactly
as the choreography specifies”. Choreographies in their work take
the form of conversation protocols, that are finite state machines
specifying the allowable sequence of interactions. A conversation
protocol is akin to a global graph but without explicit construct for
concurrent interactions, i.e., concurrent interactions must be speci-
fied by interleaving them.

We observe that both synchronisability and realisability condi-
tions require strong properties on message ordering. In comparison,
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the GMC condition requires (i) the existence of a synchronous ex-
ecution that encompasses all paths in each machine, and (ii) that
each machine is either made aware every time a choice occurs or is
not involved in the choice. In addition, a subtle difference between
our machines and the machines in [9, 10] is that each of the latter
machines has a unique buffer from which it can receive messages.
Namely, their model is not suitable to reason about a CS as the
interleaving of several multiparty sessions (where each participant
has different receiving buffers in each session). In particular, their
model cannot be used to represent programs which communicate
via point-to-point communications, such as TCP connections be-
tween pairs of participants. We now discuss a few examples that
illustrate the major differences between the two communication
models.

Example 6.2. Consider the GMC system below. In our model,
machine r has two input buffers, to receive messages from s and p,
respectively.

s

sr!a

r

sr?a

pr?b
p

pr!b sÑr :a

pÑr :b

In our model, this system is safe since, no matter whether p sends its
message before s does, machine r will always be able to read mes-
sage a from its dedicated buffer, then consume b. In a model where
machine r has only one FIFO buffer to receive both messages from
s and p, machine r will end up in an unspecified reception config-
uration if message b reaches the queue before a. The system above
is not synchronisable, since its synchronous execution differs from
its one-bounded asynchronous execution (considering send actions
only). Symmetrically, its choreography is not realisable.

Observe that the system pA,B,C1q, from Example 3.3, is unsafe
in our communication model, but safe in theirs (where it is synchro-
nisable). In that model, safety follows from the fact that machine B
would have only one buffer. Hence, if A chooses the left-hand side
branch, message a will be in B’s queue before, thus B must execute
its left-hand side branch; while if A chooses the right-hand side
branch, d will appear on B’s queue first and the latter will then exe-
cute its right-hand side branch. Finally, note that the GMC system
(resp. choreography) in Example 6.2 is not synchronisable (resp.
realisable) due to the “race” between the send actions from ma-
chines s and p.

Automata & MSC The term synthesis of CFSMs has been used to
describe the reduction of CS to a more manageable (and decidable)
model, e.g., with partial order approaches (see [28] for a summary
of recent results). The acceptation of the term synthesis in this con-
text is to identify a system of CFSMs that realises a protocol de-
scribed by an incomplete specification (such as in [7, 27]). These
approaches do not yield a global specification as instead achieved
by our algorithm. In addition, our approach enables the verification
of trace-based properties surveyed in [28]. For instance, the closed
synthesis of CFSMs can be reduced to the construction from a reg-
ular language L of a machine satisfying certain conditions related
to buffer boundedness, deadlock-freedom, and words swapping.

In [25] a tool chain is given to synthesise an orchestrator (i.e.,
a message forwarder) from a set of finite state machines commu-
nicating synchronously. This is transformed into a BPMN diagram
via a Petri net transformation based on [17]. The work [30] gives
an algorithm to compose several services. Each service is presented
as an automaton and a set of automata are composed by a parallel
product. The composite automaton is then transformed into a Petri

net, using [17]. In both works, no result regarding safety or preser-
vation of the behaviour of the original machines is given.

The work [5] studies whether Message Sequence Charts (MSC)
imply unspecified scenarios (where MSCs are implemented by con-
current automata, but do not necessarily feature order-preserving
communications). It gives conditions on MSCs for their implemen-
tation to be deadlock-free and realisable. MSCs are realisable if no
other MSC may be inferable from them. It does not attempt to give
an exhaustive global view of a distributed system, but focuses on
identifying its possible misbehaviour.

7. Conclusions & Future Work
We have given a complete algorithm whereby one can build a
global graph (choreography) from any generalised multiparty com-
patible (GMC) system. GMC systems form a new class of commu-
nicating systems, and we have proved that any system in this class
is safe and there exist efficient algorithms to check GMC. Our work
effectively uses the theory of regions [17], bridging a gap between
a set of distributed uncontrolled behaviours (represented by CF-
SMs) and well-structured graphical session types, while offering a
scalable implementation for the synthesis.

Since the original machines can be recovered by projecting
the constructed global graph (by Theorem 4.1), we can use our
framework to develop a software development life cycle based
on choreographies: a specification written as a choreography is
projected onto a set of local models which will then be refined
against their implementations. Such an approach can also be used
to reverse-engineer existing distributed systems. We are currently
collaborating with the Zero Deviation Lifecyle project [4] which
proposes a platform to attain “near-zero defect leakage across the
various phases of the software development lifecycle”. Updating
global scenarios against local models plays an important role in
different stages of software life cycle in this architecture. Our
framework applies naturally to this platform, which notably uses
BPMN 2.0 Choreography [1] specifications and tools.

We also plan to investigate a relaxed version of the GMC con-
dition which would allow to build global graphs whose projections
are equivalent to the original system, up-to asynchronous order-
preserving communication [26].
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A. Appendix: Equivalences between Petri Nets
We give the formal definitions of the reachability graph of a Petri
net and weak-bisimulation, which are used in Section 4.

Definition A.1 (Reachability graph [17]). Given N“ pP,T,F,m0q,
we say that a transition t P T is enabled at marking m1 if all its input
places are marked. An enabled transition t may fire, producing
a new marking m2 with one less token in each input place and
one more token in each output place. We write m1

t
Ñ m2, if m2

is reachable from m1 by firing t, and write Ñ˚ for the reflexive
transitive closure ofÑ.

The reachability graph of N is the transition system RGpNq “
pM,m0, Ê,Ñq such that M “ tm

ˇ

ˇ m0 Ñ
˚ mu;

• Ñ“tpm1, labptq,m2q
ˇ

ˇm1,m2 PM^m1
t
Ñm2u (where labptq“

ε if the label of t is ε, and return the label e of t otherwise); and
• Ê “ te

ˇ

ˇ Dpm1,e,m2q PÑ^e‰ εu;

We write m e
Ñ m1 if pm,e,m1q PÑ and m

e
ñ m1 if mp ε

Ñq˚
e
Ñ p

ε
Ñ

q˚m1, with e‰ ε. ˛

In Definition A.2 (adapted from [24]) we give a definition of
weak bisimulation between two transition systems.

Definition A.2 (Weak bisimulation). Let T “ pM,m0, Ê,Ñq be
a transition system. A weak bisimulation on T is an equivalence
relation B ĎMˆM s.t. for all pm1,m2q P B , the following holds

• m1
e
Ñ m11 implies that there is m12 such that m2

e
ñ m12 and

pm11,m
1
2q P B; and

• m2
e
Ñ m12 implies that there is m11 such that m1

e
ñ m11 and

pm11,m
1
2q P B .

Two states m1 and m2 are called weakly bisimilar on T , written
m1 «T m2, iff pm1,m2q P B for some weak bisimulation B .

Two transition systems Ti “ pMi,mi
0, Êi,Ñiq, i P t1,2u, such

that M1XM2 “H, are weakly bisimilar, written T1 « T2, if given

• M1 “M1YM2Ytm0u and Ê1 “ Ê1Y Ê2,
• T 1 “ pM1,m0, Ê1,Ñ1 YÑ2 Ytpm0,ε,m1

0q,pm0,ε,m2
0quq

m1
0 «T 1 m2

0 holds. ˛

B. Appendix: From Petri Nets to Global Graphs
In this section we give the detailed transformations omitted in Sec-
tion 4. The algorithm to construct a global graph G from a syn-
chronous transition system TSpSq consists of the following steps:
(1) using the algorithm of Cortadella et al. [17], we derive a Petri
net N from TSpSq; (2) we transform N so that its initial marking
consists of exactly one place (Transformation B.1 below); (3) we
join transitions whenever possible, so to make joins and forks ex-
plicit (Transformation B.2 below); (4) we transform the net of (3)
into a pre-global graph (Transformation B.3 below); finally, we
“clean-up” the pre-global graph of any unnecessary vertexes so to
obtain a global graph (Transformation B.4 below).

Definition B.1 (Labelled net). A labelled Petri net, or net, N is a
quadruple pP,T,F,m0q with P a set of places (ranged over by p), T
a set of transitions (ranged over by t), F Ď pPˆT qY pT ˆPq the
flow relation, and m0 the initial marking. Each transition t P T is
labelled with an event e P Ê, or marker ε (the latter representing a
silent transition). We let x range over elements of PYT . As usual,
‚x (resp. x‚) is the preset (resp. postset) of x. A net is called safe
if no more than one token can appear in all reachable markings,
in which case the reachable markings (including m0) are sets of
places. A net is extended free-choice if @p P P, @t P T : pp, tq P
F ùñ p‚tˆ p‚q Ď F . ˛

In the second step (2), we transform a Petri net obtained from
Cortadella’s algorithm into a Petri net whose initial marking con-
sists of exactly one place. This allows us to construct a global graph
that has a unique starting point (source).

Transformation B.1 (One-source net). Given a labelled Petri net
N “ pP,T,F,m0q, the one-source net of N is N1 “ pPYtp0u,T Y
tt1u,F 1,tp0uq such that p0 R P, t1 R T is labelled by ε, and F 1 “
FYtpp0, t1quY

Ť

pPm0
tpt1, pqu.

Proposition B.1. Transformation B.1 is computable in linear time
in the size of m0.
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We can now state the following result, formalising the sound-
ness of Transformation B.1.

Lemma B.1. If T is the reachability graph of the Petri net N ob-
tained from TSpSq via the algorithm in [17], and T 1 is the reach-
ability graph of the Petri net obtained after applying Transforma-
tion B.1, then T « T 1.

Next, Transformation B.2 ensures that parallel gates are used
“as much as possible” in the graph (instead of mixing choice and
parallel gates). In fact, Transformation B.2 joins sets of places
having the same preset or postset to decrease the number of choice
gates.

Transformation B.2 (Joined net). The joined net of N“pP,T,F,m0q
is a net N1 “ pP1,T 1,F 1,m0q such that the following transforma-
tions are applied repeatedly:

1. for all maximal X Ď P s.t. |X | ą 1 and @p1, p2 P X : ‚p1 “
‚p2^|

‚p1| ą 1, P1“PYtp1u and T 1“ TYtt1uwith p1 RP and
t1 R T and labelled by ε; also, chosen p P X , F 1 “

 

pp1, t1q
(

Y

p‚pˆtp1uqYptt1uˆXqYFz
Ť

xPX
‚xˆtxu

2. for all maximal X Ď P s.t. |X | ą 1 and @p1, p2 P X : p1
‚ “

p2
‚^ |p1

‚| ą 1, P1 “ PYtp1u and T 1 “ T Ytt1u with p1 R
P and t1 R T and labelled by ε; also, chosen p P X , F 1 “
 

pt1, p1q
(

Yptp1uˆ p‚qYpXˆtt1uqYFz
Ť

xPXtxuˆ x‚.

Note that the definition of F 1 does not depend on the choice of p.

Proposition B.2. Transformation B.2 is computable in polynomial
time in the size of N.

Since we are working with safe nets, we have the result below.

Lemma B.2. If T (resp. T 1) is the reachability graph of the
Petri net N obtained after Transformation B.1 (resp. Transforma-
tion B.2), then T « T 1.

Definition B.2 (Graph composition). Let Ni “ pPi,Ti,Fi,m0iq with
i P t1,2u be two nets and Gi “ xVi,Ai,Λiy two graphs such that
Vi “ PiYTiYFi, i P t1,2u, the composition of G1 and G2, denoted
by G1ZG2 is a graph xV,A,Λy defined as:

• V “ tv PV1
ˇ

ˇ v P F1 ùñ v RV2uYtv PV2
ˇ

ˇ v P F2 ùñ v RV1u

• A“ppA1YA2qXVˆV qYtpv,v1q
ˇ

ˇ Dv2 PFi : pv,v2q PAi,pv2,v1q P
A j^ i‰ j P t1,2uu ˛

Intuitively, the composition of the graphs consists of (1) the
union of the two sets of vertexes, except flow elements pp, tq and
pt, pq if they appear in both V1 and V2; and (2) the union of the two
sets of arcs between vertexes in V , and each pair of arcs of the form
pv,px,x1qq or ppx,x1q,v1q is replaced by a single arc pv,v1q.

Transformation B.3 (Pre-global graph). The pre-global graph of
N“ pP,T,F,tp0uq is a tuple xV,A,Λy such that V “PYTYF , Λ is
a labelling function such that Λpvq “ v if v P PYF or v P T labelled
by ε, and Λpvq P ÊYt , , , u otherwise; and A is given by:

TgpNq “
ě

xPPYT

TipxqZTopxq where, given x P PYT :

Tipxq
def
“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

x if ‚x“H
px1,xq x if ‚x“ tx1u

xpxi,xq

px1,xq

pxk,xq

if ‚x“ tx1, ...,xku

Topxq
def
“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

x if x‚ “H
x px,x1q if x‚ “ tx1u

x px,xiq

px,x1q

px,xkq

if x‚ “ tx1, ...,xku

with ką 1, “ if x P P, and “ if x P T .

The pre-global graph of Sre (Figure 1) is given in Figure 5
(right). Observe that all the vertexes of the form px,x1q, correspond-
ing to an element of the flow relation, are removed as part of the
graph composition (Definition B.2).

Proposition B.3. Transformation B.3 is computable in polynomial
time in the size of N.

We define the final transformation which cleans up a pre-global
graph by removing unnecessary vertexes and arcs.

Transformation B.4. A global graph G “ xV,A,Λy is obtained
from a pre-global graph xPYT YF,A1,Λ1y by applying the follow-
ing transformation: (1) replace each pair of transition px, pq,pp,x1q P
A1 by px,x1q PA; (2) replace each pair of transition px, tq,pt,x1q PA1,
with t labelled by ε, by px,x1q P A; and (3) label each t which is la-
belled by pqs,qr,sÑr :aq in N, by sÑr :a.

Proposition B.4. Transformation B.4 is computable in polynomial
time in the size of N.

C. Appendix: Projections of Global Graphs
The definition of the projection of a global graph onto a participant,
used in Section 4, is given below. We first define a parallel compo-
sition of automata, which is required to project global graphs with a
participant appearing in different threads. We define the ‹ function
on pair of states: q‹ “ q1 if q “ pq1,q1q and q‹ “ q otherwise; we
overload it on sets of states, i.e., Q‹ def

“
 

q‹
ˇ

ˇ q P Q
(

. We define:

qŤ q1 ðñ

#

q“ q1, or
q1 “ pq1,q2q^qŤ qi^ i P t1,2u

We write q Ű q1 iff  pq Ť q1) and we overload the operator Ť on
set of states such that qŤ Q ðñ Dq1 P Q : qŤ q1.

Definition C.1 (Parallel composition). The composition of Mi “

pQi,qi0,δiq, i P t1,2u, written M1 ‖ M2, is the automaton ppQ1ˆ

Q2q
‹, pq10,q

2
0q
‹, δq s.t.

ppq1,q2q‹, `, pq11,q
1
2q
‹q P δ

ðñ

#

pqi, `,q1iq P δi if qj “ q1j,qi Ű Qj and i‰ j P t1,2u

pqi, `,q1iq P δi if qi Ť Qj and i‰ j P t1,2u ˛

Notice that ‖ is a commutative and associative operation. Below,
we give the definition of the projection function.

Definition C.2 (Projection). Given G“ xV 1,A,Λy and v P V 1, the
projection of pG,v,V q onto p, denoted by pG,v,V qçp, is defined as
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follows:
pG,v,V qçp“
$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

xtvu,v,Hy if Λpvq “ or v PV

xQYtvu,v,δYtpv, `,v1quy if v1 P v‚, `“ sÑr :açp
and xQ,v1,δy “ pG,v1,V Ytvuqçp

xtvuY
ď

v1Pv‚
Qv1 ,v,

ď

v1Pv‚
δv1 Ypv,ε,v

1qy if Λpvq P t , u

and xQv1 ,v1,δv1y “ pG,v1,V Ytvuqçp

xQ,v,δYpv,ε,v2qy if Λpvq “
and xQ,v2,δy “‖v1Pv‚ pG,v1,V Ytvuqçp

Given a vertex v P V 1 such that Λpvq “ , the projection of G
onto p, written Gçp, is the automaton, minimised wrt. language
equivalence, pQ,q0,δ,Aq with pG,v,Hqçp“ xQ,q0,δy. ˛

The projection of a global graph onto p uses the auxiliary
function pG,v,V qçp. The function takes the following parameter,
p: the identifier of the participant onto the projection is invoked, G:
the global graph to be projected, v: a node in G used as an initial
node for the projection, and V : a set of visited nodes.

If v has already been visited or it is a sink node, then a single
state automaton is returned. If v is labelled by sÑr:a, then the pro-
jection of it successor is connected to v by a transition labelled by
either pr!a, sp?a, or ε. If v is a choice gate or the source node, then
the projection of each successor of v, connected by an ε transition
from v, is returned. If v is a parallel gate, then the parallel composi-
tion of the projections of its successors are returned, connected to v
by an ε transition. The parallel composition of automata uses Defi-
nition C.1, so that state identities are normalised and visited nodes
are comparable with nodes produced by composing automata.
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