
Distributed Algorithms 1

Analyzing Synchronous Distributed Algorithms

Linear Temporal Logic

Fluents

Atomic Commitment specification using fluents

Synchronous Models

Distributed Algorithms 2

Linear Temporal Logic

LTL formulas built from:

atomic propositions in P and standard Boolean operators
temporal operators:-

X next time
U strong until
W weak until
F eventually <>
G always []

Interpreted on infinite words w = 〈 x0 x1 x2 … 〉 over 2P

xi is the set of atomic propositions that hold at time instant i
In other words, an interpretation maps to each instant of time a set of
propositions that hold at that instant.

Distributed Algorithms 3

Linear Temporal Logic

• w |= p iff p ∈ x0, for p ∈ P

• w |= ¬ ϕ iff not w |= ϕ

• w |= ϕ ∨ ψ iff (w |= ϕ) or (w |= ψ)

• w |= ϕ ∧ ψ iff (w |= ϕ) and (w |= ψ)

• w |= X ϕ iff w1 |= ϕ

• w |= ϕ U ψ iff ∃ i ≥ 0, such that:
wi |= ψ and ∀ 0 ≤ j < i , wj |= ϕ

Distributed Algorithms 4

Linear Temporal Logic

• true ≡ ϕ ∨ ¬ϕ

• false ≡ ¬true

• ϕ ⇒ ψ ≡ ¬ϕ ∨ ψ

• F ϕ ≡ true U ϕ -- eventually

• G ϕ ≡ ¬F¬ϕ -- always

• ϕ W ψ ≡ ((ϕ U ψ) ∨ G ϕ) -- weak until

Using ¬ , ∨ , ∧ , X , U

What are the atomic propositions?

Distributed Algorithms 5

Fluents

Fluents (time-varying properties of the world) are true at
particular time-points if they have been initiated by an action
occurrence at some earlier time-point, and not terminated by
another action occurrence in the meantime. Similarly, a fluent is
false at a particular time-point if it has been previously
terminated and not initiated in the meantime

[Sandewall 94]; [Kowalski, Sergot 86]; [Miller, Shanahan 99]

Distributed Algorithms 6

Fluent LTL (FLTL)

Set of atomic propositions is set of fluents Φ

We define fluents as follows: Fl ≡ 〈 IFl , TFl 〉

IFl , TFl are sets of initiating and terminating actions accordingly,
such that IFl ∩ TFl = ∅

A fluent Fl may initially be true or false at time zero as denoted
by the attribute InitiallyFl

For LTS M, an action a defines implicitly:

Fluent(a) ≡ 〈 {a} , αM – {a}〉 Initiallya = false

Distributed Algorithms 7

Fluent Propositions

Defined in terms of sets actions

Time

fluent
LIGHT = <{on},{power_cut,off}> initially False

on off

TRUE FALSEFALSE

Distributed Algorithms 8

Atomic Commitment

range ID = 0..N-1
vote[i:ID].yes // process i votes yes
vote[i:ID].no // process i votes no
decide[i:ID].yes // process i decides yes
decide[i:ID].no // process i decides no
fail[i:ID] // process i fails

Alphabet

Fluents – default is initially false

fluent VOTE[i:ID][v:{yes,no}] = <vote[i][v],never>
fluent DECIDED[i:ID] = <decide[i].{yes,no},never>
fluent COMMIT [i:ID] = <decide[i].yes, never>
fluent ABORT [i:ID] = <decide[i].no, never>

The declaration ABORT[i:ID] above is simply declaring a set of fluents,
ABORT[0], ABORT[1], ABORT[2] and ABORT[3], for N = 4.

Distributed Algorithms 9

FLTL syntax

Binary operators(binop):

U strong until
&& logical AND
|| logical OR
-> implication
<->equivalence

Unary operators (unop):

[] always (G)
<> eventually (F)
X next time
! logical negation

FLTL formula Φ := True | False | prop | (Φ) | unop Φ | Φ binop Φ,
where prop is a fluent, action or set of actions.

exists[i:1..N] Φ(i) ≡ Φ(1) || …|| Φ(N)
-- short form FL[1..N] ≡ FL[1] || …|| FL[N]

forall[i:1..N] Φ[i] ≡ Φ(1) && …&& Φ(N)
Distributed Algorithms 10

Atomic Commitment Properties - safety

Agreement: No two processes (whether correct or crashed) should
decide on different values.

assert AGREEMENT = []!(COMMIT[ID] && ABORT[ID])

-- it is always not (never) the case that one of the processes 0..N-1
can have committed and also one of these processes can have
aborted i.e. have decided on different values.

Distributed Algorithms 11

AGREEMENT property LTS

AGREEMENT

never

decide[0..3].yes

decide[0..3].no

never

decide[0..3].yes

decide[0..3].no never

decide[0..3].yes

decide[0..3].no
-1 0 1 2

Distributed Algorithms 12

Atomic Commitment Properties - safety
Validity - 1:

If any process votes no, then no is the only possible decision value.

assert VALID_1 = [](VOTE[ID]['no] -> !COMMIT[ID])

The reading of this formula is that it is always the case that if one of
the processes 0..N..1 has voted no then it can not be the case that one
of these processes has committed i.e. decided other than no.

Distributed Algorithms 13

Atomic Commitment Properties - safety
Validity – 2:
If all processes vote yes, and there are no failures, then yes is the
only possible decision value.

assert VALID_2 = [](forall[i:ID]
(VOTE[i]['yes] && !CRASHED[i])
-> !ABORT[ID])

This reads that it is always the case that if all processes vote yes and
are not crashed (i.e. correct) then it cannot be the case that one of the
processes is aborted (i.e. decides other than yes). We use not aborted
rather than directly using the committed fluent since commitment is
not true initially and may never be true due to failure.

Distributed Algorithms 14

Atomic Commitment Properties - liveness

Strong Termination:

All correct processes eventually decide.

assert
STRONGTERM = <>(forall[i:ID]

(!CRASHED[i]-> DECIDED[i])
)

This reads: it is eventually the case that if a process has not crashed
then it will decide.

Distributed Algorithms 15

Atomic Commitment Properties - liveness

•Weak Termination: If there are no failures, then all processes
eventually decide.

assert
WEAKTERM = ([]forall[i:ID] !CRASHED[i]

-> <>forall[i:ID] DECIDED[i])

This reads: if its always the case that all processes do not crash then
eventually all processes reach the decided state.

Distributed Algorithms 16

Synchronous model

ROUND step1 step2

0 1 E

ROUND = (step1 -> step2 -> END).

CLOCK step1

step2

0 1

CLOCK = ROUND;CLOCK+{never}.

Distributed Algorithms 17

Network
CHAN(From=0, To =1)

=(chan[From][To].send[m:Msg] -> CHAN[m]
| step1 -> CHAN
| step2 -> CHAN['null]
),

CHAN[m:Msg]
=(chan[From][To].recv[m] -> CHAN
| step1 -> CHAN
| step2 -> CHAN[m]
).

||NETWORK = (forall[i:0..N-1][j:0..N-1]
if (i!=j) then CHAN(i,j)

||CLOCK
).

Distributed Algorithms 18

SEND_ALL

SEND_ALL sends a message from a process numbered Id to all processes numbered
Id+1..N-1, thus for Id=1 and N=4, the process sends a message to the processes
numbered 2 and 3.

SEND_ALL(From=0,M='null)
= if ((N-1)>From)

then TX[N-1-From]
else (step2->END),

TX[n:0..N-1-From]
= (when (n>0)

chan[From][From+1..N-1].send[M] -> TX[n-1]
|when (n>0)

fail[From] -> ENDED
|when (n==0)

step2 -> END
),

ENDED
= ({step1,step2}->ENDED).

Distributed Algorithms 19

Two-phase commit - participant
const N = 4
set Msg = {yes,no, null}
DECIDE(Id=0, D='null)
= if (D=='yes || D=='no) then (decide[Id][D]->END) else END.
PARTICIPANT(Id=1) = ROUND1,
ROUND1
= (vote[Id][v:{yes,no}]->step1->SEND[v]),

SEND[v:Msg]
= (chan[Id][0].send[v] -> step2 ->

if (v=='no) then DECIDE(Id,v);ENDED else ROUND;ROUND2
|fail[Id] -> ENDED),

ROUND2
= (chan[0][Id].recv[m:Msg] -> DECIDE(Id,m);ENDED
|fail[Id] -> ENDED),

ENDED
= ({step1,step2}->ENDED)
+{chan[ID][Id].recv[Msg],chan[Id][ID].send[Msg]}.

Distributed Algorithms 20

Two-phase commit - coordinator

COORDINATOR(Id=0)
= (vote[Id][v:{yes,no}]->ROUND;ROUND1[v]),

ROUND1[v:{yes,no}]
= (chan[Id+1..N-1][Id].recv[m:Msg]

-> if (v =='no) then ROUND1['no]
else if (m == 'no || m == 'null) then ROUND1['no]
else if (m == 'yes && v == 'yes) then ROUND1['yes]

|step1 -> ROUND2[v]
),

ROUND2[v:{yes,no}]
= DECIDE(Id,v);SEND_ALL(Id,v);ENDED,

ENDED
= ({step1,step2}->ENDED)

+{chan[ID][Id].recv[Msg],chan[Id][ID].send[Msg]}.

Distributed Algorithms 21

Two-phase commit - system

//constrain number of failures
FCONSTRAINT(F=0) = FAIL[0],
FAIL[f:0..F] = (when (f<F) fail[0..N-1] -> FAIL[f+1]

)+{fail[0..N-1]}.
||SYS = (COORDINATOR(0)

|| forall[i:1..N-1] PARTICIPANT(i)
|| NETWORK
|| FCONSTRAINT(2)
)>>{step1,step2}.

Making step1 & step 2 low priority forces all communication to
occur within rounds.

Distributed Algorithms 22

Analysis
Check to see if all properties hold

Strong Termination?
For properties that do hold, example or witness
executions can be obtained by checking the negation of
a property:

assert WITNESS_AGREEMENT = !AGREEMENT

Check the same properties for three-phase commit.

