
Analyzing Synchronous Distributed Algorithms

 Jeff Magee

Department of Computing, Imperial College London,
South Kensington campus, London SW7 2AZ, UK

j.magee@imperial.ac.uk

Abstract. Synchronous distributed systems are those in which there is assumed
to be a known upper bound on each processing step, a known upper bound on
message transmission and processes have perfectly synchronized physical
clocks. When these assumptions hold for a system, execution can be arranged to
proceed in synchronous rounds. This paper is a tutorial on modeling and
analyzing these systems using finite state machines to model processes and
communication links, linear temporal logic to express required properties and
model-checking to demonstrate that models satisfy the required properties. The
paper focuses on models of Atomic Commitment protocols and illustrates the
use of the LTSA tool in analyzing these models.

1 Introduction

A model is a simplified representation of the real world. This simplified
representation lets us focus on some aspects of a problem while deferring the
consideration of others. The synchronous model of distributed systems provides an
idealized version of distributed computation that is a good basis for studying Atomic
Commitment algorithms. Atomic Commitment is by far the distributed agreement
protocol most commonly used in practice. In the following, we model both two-phase
and three-phase commit protocols as a way of gaining a detailed understanding of the
operation and properties of these protocols. The paper also discusses the aspects that
need to be addressed when translating models into implementations. The objectives of
this paper are twofold; firstly, to provide a detailed exposition of Atomic
Commitment protocols and secondly, and perhaps more importantly, to explain a
modeling approach and its associated tools that can be applied to synchronous
distributed algorithms in general.

The approach adopted for modeling is essentially that outlined in [1] except the
book looks at models for concurrent programs whereas here we are concerned with
distributed algorithms. Processes and communication links are modeled using a form
of state machine known as a Labeled Transition System (LTS). For other than small
problems, it is cumbersome to directly specify LTSs, so as in [1], we use the Finite
State Process (FSP) notation to specify processes and use the LTSA tool [2] to
generate the corresponding LTSs. In the following, we will only briefly and
informally describe FSP, the reader is referred to [1] for a comprehensive treatment.

2 Jeff Magee

To specify properties, we use a form of linear temporal logic called fluent linear
temporal logic (FLTL). The focus in this paper is on using FLTL to express the
properties required of atomic commitment protocols. The reader is referred to [3] for
more information. In essence, we model systems using actions and events and FLTL
lets us specify properties in terms of abstract states of these systems. The LTSA
model-checking tool is used to mechanically verify that systems satisfy the properties
required of them.

The treatment of synchronous distributed algorithms follows that outlined in Nancy
Lynch’s book [4]. We adopt a model checking approach to analyzing algorithms
while [4] uses a proof theoretic approach. We view the approaches as complementary
rather than competitive. Our approach has the advantage of mechanically providing
example executions as counter-examples to property violations and witnesses to
property satisfaction, as an aid to understanding. The proof theoretic approach has the
advantage of showing that all system configurations satisfy the required properties
rather than only a specific configuration as in model-checking.

In the following, section 2 develops a precise model for synchronous networks,
section 3 develops a precise specification using FLTL for the Atomic Commitment
(AC) problem and sections 4 & 5 model the two-phase and three-phase AC protocols.
Finally, section 6 discusses the approach and its extension to other distributed system
models.

2 Synchronous Network Model

A network consists of a set of point-to-point connections or links that permit
processes to exchange messages. A network is synchronous if there is a known upper
bound for the time it takes a process to execute a local processing step and a known
upper bound on message transmission delay. We also assume that processes have
access to perfectly synchronized physical clocks. In practice, when the first two
properties hold, approximately synchronized (with a known bounded drift ε > 0, from
each other or from real time) clocks can be implemented. However, for modeling
purposes, it is simpler to assume perfectly synchronized clocks. The consequence of
these properties are firstly that we can use timeouts to detect link and process failures
and secondly that we can organize computation into rounds. A round consists of
sending messages to a set of processes, receiving all messages that have been sent and
then changing state. More precisely, following Lynch [4], a round consists of two
steps; in step1, processes send messages and in step 2, processes receive messages
and change state. We model a round as consisting of two actions step1 and step2
that are shared by all processes that constitute a model of a synchronous system. A
single round is modeled in FSP as shown in Figure 1 together with the LTS that it
generates. The FSP “->” denotes action-prefix and means that a process engages in
the action preceding the arrow and then becomes the process following the arrow –
which in the case of ROUND is another action-prefix.

Analyzing Synchronous Distributed Algorithms 3

ROUND step1 step2

0 1 E

ROUND = (step1 -> step2 -> END).

Fig. 1. FSP for ROUND and associated LTS

A synchronous distributed system continuously executes rounds as modeled by the
process CLOCK shown in Figure 2 together with its LTS. The process is constructed
from ROUND using sequential composition “;” and recursion. In addition to the actions
step1 and step2, CLOCK has the action never added to its alphabet. This action is
never executed by CLOCK or any other process that shares the action. The need for the
action will be seen in the next section concerned with specifying properties.

CLOCK step1

step2

0 1

CLOCK = ROUND;CLOCK+{never}.

Fig. 2. FSP for CLOCK and associated LTS.

The process CHAN, shown in Figure 3, models a communication link between the
process numbered From and the process numbered To. A message m, which takes a
value from the set Msg, is sent to the channel by the action
chan[From][To].send[m:Msg] and received from the channel by the action
chan[From][To].recv[m]. From the LTS of Figure 3, it can be seen that Msg has
been defined to be the set of actions {null, yes, no}. The channel can buffer at
most one message. This is sufficient for a synchronous model since messages are
always received in the same round that they are sent. To model the effect of a
timeout, if a sending process crashes, CHAN delivers a null message in step 2 of a
round if no message has been input to the channel in step 1. Similarly, if a message is
not received in step 2, it is deleted from the channel when the next step 1 commences.
The definition of CHAN uses the FSP choice operator “|” which specifies an alternative
set of actions that a process may in engage in.

Using CHAN , we can now define a synchronous network to fully interconnect N
processes numbered 0..N-1 by the following parallel composition:

||NETWORK = (forall[i:0..N-1][j:0..N-1]
 if (i!=j) then CHAN(i,j)
 ||CLOCK
).
For N = 3, this composition is exactly equivalent to the parallel composition:

||NETWORK = (CHAN(0,1) || CHAN(0,2) || CHAN(1,0)

 || CHAN(1,2) || CHAN(2,0) || CHAN(2,1) || CLOCK).

4

CHAN(0,1)

chan[0][1].send.yes

chan[0][1].send.no

{chan[0][1].send.null, step2}

step1

{chan[0][1].recv.null, step1}

step2

{chan[0][1].recv.no, step1}

step2

{chan[0][1].recv.yes, step1}

step2
0 1 2 3

CHAN(From=0, To =1)
 =(chan[From][To].send[m:Msg] -> CHAN[m]
 | step1 -> CHAN
 | step2 -> CHAN['null]
),
CHAN[m:Msg]
 =(chan[From][To].recv[m] -> CHAN
 | step1 -> CHAN
 | step2 -> CHAN[m]
).

Fig. 3. FSP for CHAN(0,1) and associated LTS

Process Failure
For reasons that we will discuss later, we initially do not permit channels to fail,
however we permit processes to fail by stopping somewhere in the middle of their
execution. This is sometimes known as crash failure. Process failure is signaled for a
process Id by the action fail[Id]. This action may occur before or after step 1 or
step 2 and in addition may occur in the middle of performing step 1 – meaning that a
process may succeed in putting only a subset of the messages it is supposed to
produce into message channels. Figure 4 lists a process SEND_ALL that sends a
message from a process numbered Id to all processes numbered Id+1..N-1, thus for
Id=1 and N=4, the process sends a message to the processes numbered 2 and 3. We
use this utility process in sections 4 & 5 in modeling two- and three-phase commit
protocols. Note that after a failure, a process may only engage in the actions step1 &
step2. It may not send or receive messages – that is, it has crashed. In the following,
we will refer to a process that has not failed as correct and a process that has failed as
crashed.

Analyzing Synchronous Distributed Algorithms 5

SEND_ALL(From=0,M='null)
 = if ((N-1)>From) then TX[N-1-From] else (step2->END),
TX[n:0..N-1-From]
 = (when (n>0) chan[From][From+1..N-1].send[M] -> TX[n-1]
 |when (n>0) fail[From] -> ENDED
 |when (n==0) step2 -> END
),
ENDED
 = ({step1,step2}->ENDED).

Fig. 4. SEND_ALL process

3 Atomic Commitment

Atomic Commitment (AC) is important in the implementation of distributed database
systems where it is important that a transaction takes effect in all participating sites or
none of them. We formulate the problem as follows.

We assume we have a set of N processes numbered 0 to N-1 that participate in the
execution of a distributed transaction. After processing its own part of the transaction
(some actions), each process has its own initial “opinion” about whether the
transaction should be committed (its results become permanent in the distributed
database state) or aborted (results discarded). This opinion (or “vote”) of the process
is represented by the values yes and no respectively. A process will generally favor
committing the transaction if all its local computations regarding that transaction have
been completed successfully; otherwise will it favor abort. The processes
communicate amongst each other to decide on the final outcome, commit or abort. If
possible, the outcome should be commit. Again, we use the values yes and no to
represent commit and abort respectively.

Correctness Conditions
Any algorithm that provides a solution to the AC problem must satisfy the following
correctness conditions or properties. In other words, these are the specifications of
any such algorithm.

• Agreement: No two processes (whether correct or crashed) should decide on

different values.
• Validity:

1. If any process votes no, then no is the only possible decision value.
2. If all processes vote yes, and there are no failures, then yes is the only possible

decision value.
• Termination: (there are two types)

• Strong Termination: All correct processes eventually decide.
• Weak Termination: If there are no failures, then all processes eventually

decide.

6

Note that the agreement and validity conditions are safety properties and that the
termination property is a liveness property. Informally, a safety property asserts that
something “bad” does not happen during system execution and a liveness property
asserts that eventually something “good” happens. The two types of termination give
rise to two different AC problems termed the Strong AC problem (strong termination)
and the Weak AC problem (weak termination). An atomic commitment algorithm is
said to be non-blocking if it permits transaction termination to proceed at correct
participants despite failures of some participants or failures of links. Such an
algorithm must obviously satisfy the strong termination property above. Surprisingly,
it has been proved that there is no non-blocking algorithm that solves AC in the
presence of persistent link failures [5]. Consequently, as mentioned in the previous
section, we have chosen not to model link failures initially. Although Weak AC can
be solved for both process and link failure, Strong AC can be solved only for process
failures. We examine the effect of link failures on a Strong AC algorithm in section 5.

Fluent Linear Temporal Logic (FLTL)
We use FLTL as defined in [3] to encode the correctness properties for AC so that
they can be directly checked against models of AC protocols. Fluents (time-varying
properties of the world) are true at particular time-points if they have been initiated by
an action occurrence at some earlier time-point, and not terminated by another action
occurrence in the meantime. Similarly, a fluent is false at a particular time-point if it
has not been previously terminated and not initiated in the meantime [6]. We define a
fluent by a pair of sets, a set of initiating actions and a set of terminating actions. To
allow us to specify fluents relevant to the AC problem, we identify the following
actions to record votes and decisions made by models:

range ID = 0..N-1
vote[i:ID].yes // process i votes yes
vote[i:ID].no // process i votes no
decide[i:ID].yes // process i decides yes
decide[i:ID].no // process i decides no
fail[i:ID] // process i fails

Given these actions, we can declare the follow fluents that record the abstract state

of models. The occurrence of any action in the first set of actions defining affluent
makes the fluent true and the occurrence of any action in the second set makes the
fluent false. In all the declarations, the second set consists of the single action never,
which as discussed in the previous section can never occur. Consequently, when the
fluents declared below become true, they remain true. This modeling “trick” means
that we can model check single instances of protocol executions rather than
continuous repetitive executions.

fluent VOTE[i:ID][v:{yes,no}] = <vote[i][v],never>
fluent DECIDED[i:ID] = <decide[i].{yes,no},never>
fluent COMMIT [i:ID] = <decide[i].yes, never>
fluent ABORT [i:ID] = <decide[i].no, never>

The declaration ABORT[i:ID] above is simply declaring a set of fluents,

ABORT[0], ABORT[1], ABORT[2] and ABORT[3].

Analyzing Synchronous Distributed Algorithms 7

The concrete syntax for FLTL formulas used in the LTSA follows as closely as
possible the LTL syntax used in SPIN [7]. The following operators are defined:

Unary operators (unop):

[] always (G)
<> eventually (F)
X next time
! logical negation

Binary operators(binop):
U strong until
&& logical AND
|| logical OR

 -> implication
<-> equivalence

An FLTL formula Φ := True | False | prop | (Φ) | unop Φ | Φ binop Φ, where

prop is a fluent, action or set of actions. In the following, we use exists and forall
replicators where:
 exists[i:1..N] Φ[i] ≡ Φ[1] || …|| Φ[N]
and
 forall[i:1..N] Φ[i] ≡ Φ[1] && …&& Φ[N].

In addition, a fluent proposition of the form FL[1..N] ≡ FL[1] || …|| FL[N]. We are
now in a position to encode the correctness conditions for the AC problems as
follows:

• Agreement: No two processes (whether correct or crashed) should decide on

different values.

assert AGREEMENT = []!(COMMIT[ID] && ABORT[ID])

This formula is read as: it is always not (never) the case that one of the processes
0..N-1 can have committed and also one of these processes can have aborted i.e.
have decided on different values.

• Validity:
1. If any process votes no, then no is the only possible decision value.

assert VALID_1 = [](VOTE[ID]['no] -> !COMMIT[ID])

The reading of this formula is that it is always the case that if one of the
processes 0..N..1 has voted no then it can not be the case that one of these
processes has committed i.e. decided other than no.

2. If all processes vote yes, and there are no failures, then yes is the only possible
decision value.

assert VALID_2 = [](forall[i:ID]
 (VOTE[i]['yes] && !CRASHED[i])
 -> !ABORT[ID])

This reads that it is always the case that if all processes vote yes and are not
crashed (i.e. correct) then it cannot be the case that one of the processes is

8

aborted (i.e. decides other than yes). We use not aborted rather than directly
using the committed fluent since commitment is not true initially and may never
be true due to failure.

• Termination:
• Strong Termination: All correct processes eventually decide.

assert
STRONGTERM = <>(forall[i:ID](!CRASHED[i]-> DECIDED[i]))

This reads: it is eventually the case the if a process has not crashed then it will
decide.

• Weak Termination: If there are no failures, then all processes eventually
decide.

assert
WEAKTERM = ([]forall[i:ID] !CRASHED[i]
 -> <>forall[i:ID] DECIDED[i])

This reads: if its always the case that all processes do not crash then eventually
all processes reach the decided state.

In the next section we model the two-phase commit protocol and examine which of

the above properties it satisfies.

4 Two-phase commit

The most used practical algorithm for atomic commitment is the two-phase commit. It
consists of two rounds and assumes a distinguished process usually termed the
coordinator, which we number 0. The algorithm description below is adapted from [4]
following [8].

Round 1: All processes except for the coordinator send their vote∈{yes,no} to the
coordinator, and any process whose vote is no decides no. The coordinator collects all
these votes together with its own initial vote. If all the votes are yes then the
coordinator decides yes. If there is a no vote or a missing vote – because a vote was
not received from the sending process – then the coordinator decides no.

Round 2: The coordinator broadcasts its decision to all the other processes. Any
process, other than the coordinator, that receives a message at round 2 and has not
already decided at round 1 decides on the value it receives in that message.

The communication pattern for a failure free run of two-phase commit is depicted

in Figure 5. Note that in practical implementations of the two-phase commit, a extra
round is added at the beginning in which the coordinator requests votes from the other

Analyzing Synchronous Distributed Algorithms 9

participating processes. In the interests of simplicity, we chose not to model this
additional round since its does not alter the properties of the algorithm.

0

1

2

3
1 2

round

process

0

1

2

3
1 2

round

process

Fig. 5. Communication pattern for Two-phase Commit

We model the behavior of the two-phase commit protocol using two processes, a
COORDINATOR numbered 0 and PARTICIPANT processes numbered 1..N-1. Figure 6
lists the FSP definition of the PARTICIPANT process together with some declarations
and the auxiliary process DECIDE.

const N = 4
set Msg = {yes,no, null}

DECIDE(Id=0, D='null)
 = if (D=='yes || D=='no) then (decide[Id][D]->END) else END.

PARTICIPANT(Id=1) = ROUND1,
ROUND1
 = (vote[Id][v:{yes,no}]->step1->SEND[v]),
SEND[v:Msg]
 = (chan[Id][0].send[v] -> step2 ->
 if (v=='no) then DECIDE(Id,v);ENDED else ROUND;ROUND2
 |fail[Id] -> ENDED),
ROUND2
 = (chan[0][Id].recv[m:Msg] -> DECIDE(Id,m);ENDED
 |fail[Id] -> ENDED
),
ENDED
 = ({step1,step2}->ENDED)
 +{chan[ID][Id].recv[Msg],chan[Id][ID].send[Msg]}.

Fig. 6. FSP definition of PARTICIPANT process.

10

Note that the PARTICIPANT process decides immediately in round 1 if it votes no
otherwise the decision is based on receiving a message from the coordinator, via
chan[0][Id] in round 2. Figure 7, below lists the COORDINATOR process.

COORDINATOR(Id=0)
 = (vote[Id][v:{yes,no}]->ROUND;ROUND1[v]),
ROUND1[v:{yes,no}]
 = (chan[Id+1..N-1][Id].recv[m:Msg]
 -> if (v =='no) then ROUND1['no]
 else if (m == 'no || m == 'null) then ROUND1['no]
 else if (m == 'yes && v == 'yes) then ROUND1['yes]
 |step1 -> ROUND2[v]
),
ROUND2[v:{yes,no}]
 = DECIDE(Id,v);SEND_ALL(Id,v);ENDED,
ENDED
 = ({step1,step2}->ENDED)

 +{chan[ID][Id].recv[Msg],chan[Id][ID].send[Msg]}.

Fig. 7. FSP definition of COORDINATOR process.

In round 1, step 2, the coordinator receives messages from all participant
processes. The end of this receiving phase is signaled by round 2, step 1. If at this
point all yes messages have been received and the coordinator decision was yes then it
decides yes otherwise, the decision is no. The actions signaling step 1 and step 2 are
lower priority than receive actions so all messages that are sitting in channels are
received before round 2. The actions are marked as low priority as shown below in
the composition that combines the coordinator and participant processes with the
network to form the system to be model-checked:

||SYS = (COORDINATOR(0)
 || forall[i:1..N-1] PARTICIPANT(i)
 || NETWORK
 || FCONSTRAINT(2)
)>>{step1,step2}.

The process FCONSTRAINT is used to constrain the number of failures that are

allowed to occur in the model. With a parameter of 2 as above, a maximum of 2 of the
N processes may fail. The process is defined below:

FCONSTRAINT(F=0) = FAIL[0],
FAIL[f:0..F] = (when (f<F) fail[0..N-1] -> FAIL[f+1]
)+{fail[0..N-1]}.

Model-checking
We are now in a position to check that the model defined by SYS satisfies the
properties for AC algorithms specified in section 3. As is well known, two-phase
commit satisfied all the properties with the exception of Strong Termination. Two-
phase commit solves only the Weak AC problem. When model-checking

Analyzing Synchronous Distributed Algorithms 11

STRONGTERM with processes constrained to vote yes and a single failure permitted,
the LTSA tool produces the following counter-example:

Violation of LTL property: @STRONGTERM
Trace to terminal set of states:
 vote.0.yes
 vote.1.yes
 vote.2.yes
 vote.3.yes
 step1
 chan.1.0.send.yes
 chan.2.0.send.yes
 chan.3.0.send.yes
 step2
 chan.1.0.recv.yes
 chan.2.0.recv.yes
 chan.3.0.recv.yes
 step1
 decide.0.yes DECIDED.0
 fail.0 CRASHED.0 && DECIDED.0
 step2 CRASHED.0 && DECIDED.0
 chan.0.1.recv.null CRASHED.0 && DECIDED.0
 chan.0.2.recv.null CRASHED.0 && DECIDED.0
 chan.0.3.recv.null CRASHED.0 && DECIDED.0
 step1 CRASHED.0 && DECIDED.0
Cycle in terminal set:
 step2 CRASHED.0 && DECIDED.0
 step1 CRASHED.0 && DECIDED.0
LTL Property Check in: 270ms

The counter-example trace gives the action on the left and lists all the fluents that

hold after that action has occurred on the right. The trace shows the typical situation
in which the two-phase commit algorithm blocks – that is, the coordinator crashes
before sending the decision in round 2 and as a result, processes that voted yes in
round 1 cannot decide – in this case processes 1,2 & 3. Even if the participants were
to elect a new coordinator and try to terminate, they cannot, since the original
coordinator could have voted no initially and it would then have decided no rather
than yes as above. Participants cannot distinguish these two situations and as a result
are blocked until the coordinator recovers.

Witness executions
In addition to generating counter-examples to show why a property has been violated,
we can use the model checker to generate a witness execution that satisfies a property.
To do this, we simply model-check the negation of a property and the counter-
example is now a witness to the property. The trace below is a witness execution to
the agreement property. It is a violation of the property:

assert WITNESS_AGREEMENT = !AGREEMENT

The trace shows the scenario in which all the participants vote no and the
coordinator makes a decision before failing so all processes decide abort.

12

Violation of LTL property: @WITNESS_AGREEMENT
Trace to terminal set of states:
 vote.0.yes
 vote.1.no
 vote.2.no
 vote.3.no
 step1
 chan.1.0.send.no
 chan.2.0.send.no
 chan.3.0.send.no
 step2
 chan.1.0.recv.no
 chan.2.0.recv.no
 chan.3.0.recv.no
 decide.1.no ABORT.1
 decide.2.no ABORT.1 && ABORT.2
 decide.3.no ABORT.1 && ABORT.2 && ABORT.3
 step1 ABORT.1 && ABORT.2 && ABORT.3
 decide.0.no ABORT.0 && ABORT.1 && ABORT.2 && ABORT.3
 fail.0 ABORT.0 && ABORT.1 && ABORT.2 && ABORT.3

The LTSA tool always produces the shortest trace possible as a counter-example,

which is why it chose the abort scenario above. However, we can produce an example
execution that commits using the LTSA Animator as shown in Figure 8.

Fig. 8. Trace showing commit for Two-phase AC algorithm

Analyzing Synchronous Distributed Algorithms 13

5 Three-phase commit

The three-phase commit is an extension of the two-phase commit that guarantees
strong termination in the presence of process failures. The difference is that the
coordinator does not decide yes unless every process that has not failed is ready to
decide yes. This requires an extra round. The first three rounds of the three-phase
commit are as follows:

Round 1: All processes except for the coordinator send their vote∈{yes,no} to the
coordinator, and any process whose vote is no decides no. The coordinator collects all
these votes together with its own initial vote. If all the votes are yes then the
coordinator becomes ready. If there is a no vote or a missing vote – because a vote
was not received from the sending process – then the coordinator decides no.

Round 2: The coordinator broadcasts either ready or no to all the other processes. Any
process that receives no decides no. Any process that receives ready becomes ready.
The coordinator decides yes if it has not previously decided no.

Round 3: If the coordinator decided yes, it broadcasts yes to all the other processes.
Any process that receives yes decides yes.

The communication pattern for a failure free execution of three-phase commit is

shown in Figure 9.

0

1

2

3
1 3

round

process

2

0

1

2

3
1 3

round

process

2

Fig. 9. Communication pattern for successful three-phase commit.

As it stands, the protocol will still block if the coordinator fails. However, the
blocking situation in the two-phase protocol is avoided by the additional ready state –
the coordinator cannot have committed if it fails during round 2. A termination
protocol that starts at round 4 is outlined below:

14

Round 4: All (not yet failed) participant processes numbered 2..N-1 send their current
decision status: yes, no, ready or null (uncertain) to process 1. Process 1 now acts as
the coordinator. If process 1 has previously decided no, or receives no from some
other process, it decides no. If process 1 has previously decided yes, or receives yes
form some other process, it decides yes. If process 1 was ready or received ready
from some other process, it becomes ready otherwise if it is uncertain and receives
uncertain from all other processes, it decides no.

Round 5: This proceeds as round 2 except that process 1 is the coordinator. The only
difference is that process 1 may send a yes decision in this round if it previously
decided yes.

Round 6: This proceeds exactly as round 3.

After round 6, the protocol continues with three similar rounds coordinated by each

of the processes 2..N-1. Each group of three rounds is termed an epoch with process i
coordinating epoch i. Process N-1 decides in the second round of epoch N-1 and since
it does not communicate with any other process, the last round of this epoch is
superfluous. Figure 10 depicts the communication pattern for three-phase commit
with termination in which process 0 fails before sending ready to all processes in
round 2 and process 1 fails similarly in round 5.

0

1

2

3
1 32 4 5 6 7 8 9

0

1

2

3
1 32 4 5 6 7 8 9

Fig. 10. Communication pattern for three-phase commit with failures.

In modeling the processes for three-phase commit, the coordinator for epoch 0,
process 0 is the simplest since it only participates in the first three rounds. The FSP
model is listed in Figure 12. The model of coordinator rounds 2 & 3 has been placed
in the utility process ROUND2_3, since it is also used by PARTCIPANT processes when
they act as coordinators – Figure 11. The three-phase commit model reuses the
network models of section 2. The message set for three-phase commit is as defined
below:

set Msg = {yes, no, ready, null}

Analyzing Synchronous Distributed Algorithms 15

// partcipant process, acts as coordinator for epoch Id
PARTICIPANT(Id=1) = ROUND1,
ROUND1
 = (vote[Id][v:{yes,no}]->step1->SEND[v]),
SEND[v:Msg] // epoch 0
 = (chan[Id][0].send[v] -> step2
 -> if (v=='no)
 then DECIDE(Id,v);ROUND;ROUND;TERMINATE[v][0]
 else ROUND;PROUND2['null][0]
 |fail[Id] -> ENDED
),
SEND[v:Msg][epoch:1..N-1]
 = (chan[Id][epoch].send[v] -> step2
 -> if (v=='no || v=='yes)
 then DECIDE(Id,v);ROUND;ROUND;TERMINATE[v][epoch]
 else ROUND;PROUND2[v][epoch]
 |fail[Id]->ENDED
),
PROUND2[d:Msg][epoch:0..N-1]
 = (chan[epoch][Id].recv[m:Msg]
 -> if (m=='no || m=='yes)
 then DECIDE(Id,m);ROUND;TERMINATE[m][epoch]
 else if (m=='null)
 then ROUND;PROUND3[d][epoch]
 else ROUND;PROUND3[m][epoch]
),
PROUND3[d:Msg][epoch:0..N-1]
 = (chan[epoch][Id].recv[m:Msg]
 -> if (m!='null)
 then DECIDE(Id,m);TERMINATE[m][epoch]
 else DECIDE(Id,m);TERMINATE[d][epoch]
),
TERMINATE[d:Msg][epoch:0..N-1]
 = if (epoch==N-1) then ENDED
 else if (Id==epoch+1)then ROUND;COORD[d]
 else (step1->SEND[d][epoch+1]),
COORD[d:Msg]
 = (when (Id+1 < N) chan[Id+1..N-1][Id].recv[m:Msg]
 -> if (d =='yes || d=='no) then COORD[d]
 else if (m=='no || m =='yes) then DECIDE(Id,m);COORD[m]
 else if (m=='ready)then COORD[m]
 else COORD[d]
 |step1
 -> if (d=='null)
 then DECIDE(Id,'no);ROUND2_3(Id,'no);ENDED
 else ROUND2_3(Id,d);ENDED
),
ENDED
 = ({step1,step2}->ENDED)
 +{chan[ID][Id].recv[Msg],chan[Id][ID].send[Msg],fail[Id]}.

Fig. 11. FSP definition of three-phase commit PARTCIPANT process.

16

// utility process for coordinator rounds epoch*3+2 and +3
ROUND2_3(Id=0,M='null)
 = SEND_ALL(Id,M);ROUND2,
ROUND2
 = if (M=='ready) then DECIDE(Id,'yes);ROUND3 else END,
ROUND3
 = (step1 -> SEND_ALL(Id,'yes);END).

// coordinator process for epoch 0
COORDINATOR(Id=0)
 = (vote[Id][v:{yes,no}] -> ROUND;ROUND1[v]),
ROUND1[v:{yes,no}]
 = (when (Id+1 < N) chan[Id+1..N-1][Id].recv[m:Msg]
 -> if (v =='no) then ROUND1['no]
 else if (m == 'no || m == 'null) then ROUND1['no]
 else if (m == 'yes && v == 'yes) then ROUND1['yes]
 |step1
 -> if (v=='yes)
 then ROUND2_3(Id,'ready);ENDED
 else DECIDE(Id,'no);ROUND2_3(Id,'no);ENDED
),
ENDED
 = ({step1,step2}->ENDED)
 +{chan[ID][Id].recv[Msg],chan[Id][ID].send[Msg],fail[Id]}.

Fig. 12. FSP definition of three-phase commit COORDINATOR process.

The complete model of the three-phase commit algorithm is formed exactly as for
the two-phase model by composing the coordinator and participant processes with the
network:

||SYS = (COORDINATOR(0)
 || forall[i:1..N-1] PARTICIPANT(i)
 || NETWORK
 || FCONSTRAINT(3)
)>>{step1,step2}.

The three-phase commit algorithm satisfies all the conditions we specified in

section 3, including strong termination. The trace of Figure 13 is a witness to this
property. It depicts the same situation that violated the strong termination property in
the two-phase commit model. The coordinator (process 0) fails at the beginning of
round 1 and thus participants do not receive the ready message. However, because no
process receives a ready message, it is safe for process 1 to take over as coordinator
and decide no since process 0 cannot have committed.

 The algorithm as we have modeled it always takes 3*N-1 rounds even if there are
no failures. In a practical protocol, it is easy to insert an extra round to detect that all
processes have decided and then discontinue the termination protocol.

Analyzing Synchronous Distributed Algorithms 17

Trace to property violation in WITNESS_STRONGTERM:
 vote.0.yes
 vote.1.yes
 vote.2.yes
 vote.3.yes
 step1 // round 1
 chan.1.0.send.yes
 chan.2.0.send.yes
 chan.3.0.send.yes
 step2
 chan.1.0.recv.yes
 chan.2.0.recv.yes
 chan.3.0.recv.yes
 step1 // round 2
 fail.0 CRASHED.0
 step2 CRASHED.0
 chan.0.1.recv.null CRASHED.0
 chan.0.2.recv.null CRASHED.0
 chan.0.3.recv.null CRASHED.0
 step1 CRASHED.0 // round 3
 step2 CRASHED.0
 chan.0.1.recv.null CRASHED.0
 chan.0.2.recv.null CRASHED.0
 chan.0.3.recv.null CRASHED.0
 step1 CRASHED.0 // round 4
 chan.2.1.send.null CRASHED.0
 chan.3.1.send.null CRASHED.0
 step2 CRASHED.0
 chan.2.1.recv.null CRASHED.0
 chan.3.1.recv.null CRASHED.0
 step1 CRASHED.0 // round 5
 decide.1.no CRASHED.0 && DECIDED.1
 chan.1.2.send.no CRASHED.0 && DECIDED.1
 chan.1.3.send.no CRASHED.0 && DECIDED.1
 step2 CRASHED.0 && DECIDED.1
 chan.1.2.recv.no CRASHED.0 && DECIDED.1
 decide.2.no CRASHED.0 && DECIDED.1 && DECIDED.2
 chan.1.3.recv.no CRASHED.0 && DECIDED.1 && DECIDED.2
 decide.3.no CRASHED.0 && DECIDED.1 && DECIDED.2

 && DECIDED.3
Analysed in: 60ms

Fig. 13. Witness execution for property STRONGTERM

18

Link Failure
So far, because of the impossibility result mention in section 3, we have ignored link
failure and focused on process failure. However, it is instructive to examine the
behavior of the three-phase commit algorithm in the presence of link failures. To do
this, we adapt the channel model shown in figure 3 as shown in figure 14.

 CHAN(From=0, To =0)

 =(chan[From][To].send[m:Msg] -> CHAN[m]
 | step1 -> CHAN
 | step2 -> CHAN['null]
),
CHAN[m:Msg]
 =(chan[From][To].recv[m] -> CHAN
 | step1 -> CHAN
 | step2 -> CHAN[m]
 | step2 -> linkfail[From][To] -> CHAN['null]
).

Fig. 14. FSP model of CHAN which can fail.

The channel now has a non-deterministic choice at step 2. It can either fail
changing the value of the message stored in the channel to null or leave the message
intact.

Figure 15 depicts a counter example that violates the AGREEMENT property if we
permit link failures. In this counter-example, all processes send yes and successfully
inform the coordinator. However, all subsequent messages from the coordinator
(process 0) are lost due to link failure. After the coordinator sends ready messages it
decides yes. However, in round 4, no process has received ready or yes and so they
send null to the new coordinator process 1. Consequently, in round 5, process 1
decides no thus violating the AGREEMENT property.

In practice, link protocols overcome transient failures using retransmission and
networks can overcome permanent link failure using rerouting. However, the situation
depicted in the counter-example can still occur if a network partition occurs – in this
case isolating process 0 from processes 1,2 & 3. This is the reason that in practice
two-phase commit is much more widely used than three-phase commit. The two-
phase algorithm may block as a result of link or process failure, however, it does not
violate the agreement or validity safety properties whereas if network partition can
occur, three-phase commit violates these safety properties. We can of course check
that the model of the two-phase commit algorithm does not violate AGREEMENT using
the channel model of figure14.

Analyzing Synchronous Distributed Algorithms 19

Trace to property violation in AGREEMENT:
 vote.0.yes
 vote.1.yes
 vote.2.yes
 vote.3.yes
 step1
 chan.1.0.send.yes
 chan.2.0.send.yes
 chan.3.0.send.yes
 step2
 chan.1.0.recv.yes
 chan.2.0.recv.yes
 chan.3.0.recv.yes
 step1
 chan.0.1.send.ready
 chan.0.2.send.ready
 chan.0.3.send.ready
 step2
 decide.0.yes COMMIT.0
 linkfail.0.1 COMMIT.0
 chan.0.1.recv.null COMMIT.0
 linkfail.0.2 COMMIT.0
 chan.0.2.recv.null COMMIT.0
 linkfail.0.3 COMMIT.0
 chan.0.3.recv.null COMMIT.0
 step1 COMMIT.0
 chan.0.1.send.yes COMMIT.0
 chan.0.2.send.yes COMMIT.0
 chan.0.3.send.yes COMMIT.0
 step2 COMMIT.0
 linkfail.0.1 COMMIT.0
 chan.0.1.recv.null COMMIT.0
 linkfail.0.2 COMMIT.0
 chan.0.2.recv.null COMMIT.0
 linkfail.0.3 COMMIT.0
 chan.0.3.recv.null COMMIT.0
 step1 COMMIT.0
 chan.2.1.send.null COMMIT.0
 chan.3.1.send.null COMMIT.0
 step2 COMMIT.0
 chan.2.1.recv.null COMMIT.0
 chan.3.1.recv.null COMMIT.0
 step1 COMMIT.0
 decide.1.no COMMIT.0 && ABORT.1
Analysed in: 711ms

Fig. 15. Counter-example violating AGREEMENT property

20

6 Discussion & Conclusion

The paper has illustrated an approach to modeling and mechanically verifying
synchronous distributed algorithms. The models have the advantage over less formal
descriptions that they permit tool supported interactive exploration of the operation of
an algorithm. In addition, model checking provides counter-example traces to explain
property violation and witness traces that provide sample executions that satisfy
properties. Models are considerably faster to produce than implementations or even
simulations and in addition are more amenable to exploration as we have described in
the foregoing.

In modeling synchronous algorithms, we have avoided explicit modeling of time
and timeouts by arranging that computation proceed in rounds (following [4]) and
modeling the effects of timeouts by null messages. We could model in more detail by
explicitly including time. For example, an approach to discrete time models is
described in [1]. Chkiaev, van der Stok and Hooman [9] have taken the approach of
explicitly including time in mechanically verifying, using automated theorem proving,
the non-blocking Atomic Commitment Protocol from [10]. This has the advantage of
models that are closer to implementations but the disadvantage of models that have
larger state spaces.

Moving away from the strictly synchronous approach leads to the need for more
complex channel models that can buffer multiple rather than single messages. Again
this leads to larger state spaces that can sometimes but not always be dealt with by the
use of Partial Order reduction techniques (see [11]) for further details. Mechanical
verification of complex asynchronous and partially synchronous algorithms is an
active research area.

In modeling Atomic Commitment protocols, we have assumed that crashed
processes remain crashed forever. However, clearly processes recover and there are
recovery protocols that permit processes to discover the outcome of a transaction by a
combination of stable storage logs and querying other participants (see [8]). These
recovery protocols can be modeled using the techniques we have outlined in the
paper.

We have chosen to model Atomic Commitment protocols since they have
considerable practical application and a thorough understanding of their operation and
limitations is desirable for distributed application designers. The properties of the
protocols are of course well known, so the primary contribution of the models is
pedagogic. However, the approach used is generally applicable and is being applied to
new Web Services applications [12].

Finally, the reader will gain considerably more understanding of the models we
have described in this paper by exploring them interactively using the LTSA tool.
Both the tool and algorithm models are available from the author’s website
http://www.doc.ic.ac.uk/~jnm.

Analyzing Synchronous Distributed Algorithms 21

References

[1] J. Magee and J. Kramer, Concurrency - State Models & Java Programs. Chichester: John
Wiley & Sons, 1999.

[2] J. Magee, "Behavioral Analysis of Software Architectures Using LTSA," presented at
ICSE' 99. Proceedings of the 1999 International Conference on Software Engineering,
Los Angeles, 1999.

[3] D. Giannakopoulou and J. Magee, "Fluent Model Checking for Event-Based Systems,"
presented at 4th joint meeting of the European Software Engineering Conference and
ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE
2003), Helsinki, 2003.

[4] N. A. Lynch, Distributed Algorithms: Morgan Kaufmann Publishers, Inc., 1996.
[5] J. N. Gray, "Notes on Database Operating Systems," in Operating Systems: An Advanced

Course, vol. 60, LNCS: Springer-Verlag, 1978.
[6] R. Miller and M. Shanahan, "The Event Calculus in Classical Logic - Alternative

Axiomatisations," Linkoping Electronic Articles in Computer and Information Science,
vol. 4, pp. 1-27, 1999.

[7] G. J. Holzmann, "The Model Checker SPIN," IEEE Transactions on Software
Engineering, vol. 23, pp. 279-295, 97.

[8] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and Recovery in
Database Systems: Addison-Wesley Publishing Comp., 1987.

[9] D. Chkliaev, P. v. d. Stok, and J. Hooman, "Mechanical Verification of a Non-Blocking
Atomic Commitment Protocol," presented at ICDCS Workshop on Distributed System
Validation and Verification (DSVV'2000), 2000.

[10] O. Babaoglu and S. Toueg, "Non-blocking Atomic Commitment," in Distributed Systems,
S. Mullender, Ed.: Addison-Wesley Publishing Comp, 1993, pp. 147-168.

[11] D. Peled, "Combining Partial Order Reductions with On-the-Fly Model Checking,"
presented at 6th International Conference on Computer Aided Verification (CAV'94),
Stanford, California, 94.

[12] H. Foster, S. Uchitel, J. Magee, and J. Kramer, "Model-based Verification of Web
Service Compositions," presented at 18th IEEE International Conference on Automated
Software Engineering (ASE 2003),, Montreal, 2003.

