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Abstract. Synchronous distributed systems are those in which there is assumed 
to be a known upper bound on each processing step, a known upper bound on 
message transmission and processes have perfectly synchronized physical 
clocks. When these assumptions hold for a system, execution can be arranged to 
proceed in synchronous rounds. This paper is a tutorial on modeling and 
analyzing these systems using finite state machines to model processes and 
communication links, linear temporal logic to express required properties and 
model-checking to demonstrate that models satisfy the required properties. The 
paper focuses on models of Atomic Commitment protocols and illustrates the 
use of the LTSA tool in analyzing these models.  

1 Introduction 

A model is a simplified representation of the real world. This simplified 
representation lets us focus on some aspects of a problem while deferring the 
consideration of others. The synchronous model of distributed systems provides an 
idealized version of distributed computation that is a good basis for studying Atomic 
Commitment algorithms. Atomic Commitment is by far the distributed agreement 
protocol most commonly used in practice. In the following, we model both two-phase 
and three-phase commit protocols as a way of gaining a detailed understanding of the 
operation and properties of these protocols. The paper also discusses the aspects that 
need to be addressed when translating models into implementations. The objectives of 
this paper are twofold; firstly, to provide a detailed exposition of Atomic 
Commitment protocols and secondly, and perhaps more importantly, to explain a 
modeling approach and its associated tools that can be applied to synchronous 
distributed algorithms in general.  

The approach adopted for modeling is essentially that outlined in [1] except the 
book looks at models for concurrent programs whereas here we are concerned with 
distributed algorithms. Processes and communication links are modeled using a form 
of state machine known as a Labeled Transition System (LTS). For other than small 
problems, it is cumbersome to directly specify LTSs, so as in [1], we use the Finite 
State Process (FSP) notation to specify processes and use the LTSA tool [2] to 
generate the corresponding LTSs. In the following, we will only briefly and 
informally describe FSP, the reader is referred to [1] for a comprehensive treatment. 
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To specify properties, we use a form of linear temporal logic called fluent linear 
temporal logic (FLTL). The focus in this paper is on using FLTL to express the 
properties required of atomic commitment protocols. The reader is referred to [3] for 
more information. In essence, we model systems using actions and events and FLTL 
lets us specify properties in terms of abstract states of these systems. The LTSA 
model-checking tool is used to mechanically verify that systems satisfy the properties 
required of them.  

The treatment of synchronous distributed algorithms follows that outlined in Nancy 
Lynch’s book [4]. We adopt a model checking approach to analyzing algorithms 
while [4] uses a proof theoretic approach. We view the approaches as complementary 
rather than competitive. Our approach has the advantage of mechanically providing 
example executions as counter-examples to property violations and witnesses to 
property satisfaction, as an aid to understanding. The proof theoretic approach has the 
advantage of showing that all system configurations satisfy the required properties 
rather than only a specific configuration as in model-checking. 

In the following, section 2 develops a precise model for synchronous networks, 
section 3 develops a precise specification using FLTL for the Atomic Commitment 
(AC) problem and sections 4 & 5 model the two-phase and three-phase AC protocols. 
Finally, section 6 discusses the approach and its extension to other distributed system 
models. 

2 Synchronous Network Model 

A network consists of a set of point-to-point connections or links that permit 
processes to exchange messages. A network is synchronous if there is a known upper 
bound for the time it takes a process to execute a local processing step and a known 
upper bound on message transmission delay. We also assume that processes have 
access to perfectly synchronized physical clocks. In practice, when the first two 
properties hold, approximately synchronized (with a known bounded drift ε > 0, from 
each other or from real time) clocks can be implemented. However, for modeling 
purposes, it is simpler to assume perfectly synchronized clocks. The consequence of 
these properties are firstly that we can use timeouts to detect link and process failures 
and secondly that we can organize computation into rounds. A round consists of 
sending messages to a set of processes, receiving all messages that have been sent and 
then changing state. More precisely, following Lynch [4], a round consists of two 
steps; in step1, processes send messages and in step 2, processes receive messages 
and change state. We model a round as consisting of two actions step1 and step2 
that are shared by all processes that constitute a model of a synchronous system. A 
single round is modeled in FSP as shown in Figure 1 together with the LTS that it 
generates. The FSP “->” denotes action-prefix and means that a process engages in 
the action preceding the arrow and then becomes the process following the arrow – 
which in the case of ROUND is another action-prefix. 
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ROUND step1 step2

0 1 E
 

ROUND = (step1 -> step2 -> END). 

Fig. 1. FSP for ROUND and associated LTS 

A synchronous distributed system continuously executes rounds as modeled by the 
process CLOCK shown in Figure 2 together with its LTS. The process is constructed 
from ROUND using sequential composition “;” and recursion. In addition to the actions 
step1 and step2, CLOCK has the action never added to its alphabet. This action is 
never executed by CLOCK or any other process that shares the action. The need for the 
action will be seen in the next section concerned with specifying properties. 

 

CLOCK step1

step2

0 1

 
 

CLOCK = ROUND;CLOCK+{never}. 

Fig. 2. FSP for CLOCK and associated LTS. 

The process CHAN, shown in Figure 3, models a communication link between the 
process numbered From and the process numbered To. A message m, which takes a 
value from the set Msg, is sent to the channel by the action 
chan[From][To].send[m:Msg] and received from the channel by the action 
chan[From][To].recv[m]. From the LTS of Figure 3, it can be seen that Msg has 
been defined to be the set of actions {null, yes, no}. The channel can buffer at 
most one message. This is sufficient for a synchronous model since messages are 
always received in the same round that they are sent.  To model the effect of a 
timeout, if a sending process crashes, CHAN delivers a null message in step 2 of a 
round if no message has been input to the channel in step 1. Similarly, if a message is 
not received in step 2, it is deleted from the channel when the next step 1 commences. 
The definition of CHAN uses the FSP choice operator “|” which specifies an alternative 
set of actions that a process may in engage in. 

Using CHAN , we can now define a synchronous network to fully interconnect N 
processes numbered 0..N-1 by the following parallel composition:  

 
||NETWORK = (forall[i:0..N-1][j:0..N-1] 
               if (i!=j) then CHAN(i,j) 
            ||CLOCK 
            ). 
For N = 3, this composition is exactly equivalent to the parallel composition: 

 
||NETWORK = ( CHAN(0,1) || CHAN(0,2) || CHAN(1,0) 

             || CHAN(1,2) || CHAN(2,0) || CHAN(2,1) || CLOCK). 
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CHAN(0,1)

chan[0][1].send.yes

chan[0][1].send.no

{chan[0][1].send.null, step2}

step1

{chan[0][1].recv.null, step1}

step2

{chan[0][1].recv.no, step1}

step2

{chan[0][1].recv.yes, step1}

step2
0 1 2 3

 
 
CHAN(From=0, To =1)  
   =(chan[From][To].send[m:Msg] -> CHAN[m] 
    | step1 -> CHAN 
    | step2 -> CHAN['null] 
    ),  
CHAN[m:Msg]         
   =(chan[From][To].recv[m] -> CHAN 
    | step1 -> CHAN  
    | step2 -> CHAN[m]  
    ). 

Fig. 3.  FSP for CHAN(0,1) and associated LTS 

Process Failure 
For reasons that we will discuss later, we initially do not permit channels to fail, 
however we permit processes to fail by stopping somewhere in the middle of their 
execution. This is sometimes known as crash failure. Process failure is signaled for a 
process Id by the action fail[Id]. This action may occur before or after step 1 or 
step 2 and in addition may occur in the middle of performing step 1 – meaning that a 
process may succeed in putting only a subset of the messages it is supposed to 
produce into message channels. Figure 4 lists a process SEND_ALL that sends a 
message from a process numbered Id to all processes numbered Id+1..N-1, thus for 
Id=1 and N=4, the process sends a message to the processes numbered 2 and 3. We 
use this utility process in sections 4 & 5 in modeling two- and three-phase commit 
protocols. Note that after a failure, a process may only engage in the actions step1 & 
step2. It may not send or receive messages – that is, it has crashed. In the following, 
we will refer to a process that has not failed as correct and a process that has failed as 
crashed. 
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SEND_ALL(From=0,M='null) 
   = if ((N-1)>From) then TX[N-1-From] else (step2->END), 
TX[n:0..N-1-From]    
   = (when (n>0)  chan[From][From+1..N-1].send[M] -> TX[n-1]   
     |when (n>0)  fail[From] -> ENDED 
     |when (n==0) step2 -> END 
     ), 
ENDED 
   = ({step1,step2}->ENDED). 

Fig. 4.  SEND_ALL process 

3 Atomic Commitment 

Atomic Commitment (AC) is important in the implementation of distributed database 
systems where it is important that a transaction takes effect in all participating sites or 
none of them. We formulate the problem as follows.  

We assume we have a set of N processes numbered 0 to N-1 that participate in the 
execution of a distributed transaction. After processing its own part of the transaction 
(some actions), each process has its own initial “opinion” about whether the 
transaction should be committed (its results become permanent in the distributed 
database state) or aborted (results discarded). This opinion (or “vote”) of the process 
is represented by the values yes and no respectively. A process will generally favor 
committing the transaction if all its local computations regarding that transaction have 
been completed successfully; otherwise will it favor abort. The processes 
communicate amongst each other to decide on the final outcome, commit or abort. If 
possible, the outcome should be commit. Again, we use the values yes and no to 
represent commit and abort respectively. 

Correctness Conditions 
Any algorithm that provides a solution to the AC problem must satisfy the following 
correctness conditions or properties. In other words, these are the specifications of 
any such algorithm. 

 
• Agreement:  No two processes (whether correct or crashed) should decide on 

different values. 
• Validity: 

1. If any process votes no, then no is the only possible decision value. 
2. If all processes vote yes, and there are no failures, then yes is the only possible 

decision value. 
• Termination:  (there are two types) 

• Strong Termination: All correct processes eventually decide. 
• Weak Termination: If there are no failures, then all processes eventually 

decide. 
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Note that the agreement and validity conditions are safety properties and that the 
termination property is a liveness property. Informally, a safety property asserts that 
something “bad” does not happen during system execution and a liveness property 
asserts that eventually something “good” happens. The two types of termination give 
rise to two different AC problems termed the Strong AC problem (strong termination) 
and the Weak AC problem (weak termination). An atomic commitment algorithm is 
said to be non-blocking if it permits transaction termination to proceed at correct 
participants despite failures of some participants or failures of links. Such an 
algorithm must obviously satisfy the strong termination property above. Surprisingly, 
it has been proved that there is no non-blocking algorithm that solves AC in the 
presence of persistent link failures [5]. Consequently, as mentioned in the previous 
section, we have chosen not to model link failures initially.  Although Weak AC can 
be solved for both process and link failure, Strong AC can be solved only for process 
failures. We examine the effect of link failures on a Strong AC algorithm in section 5. 

Fluent Linear Temporal Logic (FLTL) 
We use FLTL as defined in [3] to encode the correctness properties for AC so that 
they can be directly checked against models of AC protocols. Fluents (time-varying 
properties of the world) are true at particular time-points if they have been initiated by 
an action occurrence at some earlier time-point, and not terminated by another action 
occurrence in the meantime. Similarly, a fluent is false at a particular time-point if it 
has not been previously terminated and not initiated in the meantime [6]. We define a 
fluent by a pair of sets, a set of initiating actions and a set of terminating actions. To 
allow us to specify fluents relevant to the AC problem, we identify the following 
actions to record votes and decisions made by models: 

 
range ID  = 0..N-1 
vote[i:ID].yes     //  process i votes yes 
vote[i:ID].no      //  process i votes no 
decide[i:ID].yes   //  process i decides yes 
decide[i:ID].no  //  process i decides no 
fail[i:ID]   //  process i fails 
 
Given these actions, we can declare the follow fluents that record the abstract state 

of models. The occurrence of any action in the first set of actions defining affluent 
makes the fluent true and the occurrence of any action in the second set makes the 
fluent false. In all the declarations, the second set consists of the single action never, 
which as discussed in the previous section can never occur. Consequently, when the 
fluents declared below become true, they remain true. This modeling “trick” means 
that we can model check single instances of protocol executions rather than 
continuous repetitive executions.  
 

fluent VOTE[i:ID][v:{yes,no}] = <vote[i][v],never> 
fluent DECIDED[i:ID]          = <decide[i].{yes,no},never> 
fluent COMMIT [i:ID]          = <decide[i].yes, never> 
fluent ABORT  [i:ID]          = <decide[i].no, never> 
 
The declaration ABORT[i:ID] above is simply declaring a set of fluents, 

ABORT[0], ABORT[1], ABORT[2] and ABORT[3]. 
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The concrete syntax for FLTL formulas used in the LTSA follows as closely as 
possible the LTL syntax used in SPIN [7]. The following operators are defined: 

 
Unary operators (unop): 

[] always (G) 
<> eventually (F) 
X next time 
! logical negation 

Binary operators(binop): 
U strong until 
&& logical AND 
|| logical OR 

 -> implication 
<-> equivalence 

 
An FLTL formula Φ := True | False  | prop | (Φ) | unop Φ | Φ binop Φ, where 

prop is a fluent, action or set of actions. In the following, we use exists and forall 
replicators where:  
            exists[i:1..N] Φ[i]  ≡  Φ[1] || …|| Φ[N]  
and   
            forall[i:1..N] Φ[i] ≡ Φ[1] && …&& Φ[N].  

 
In addition, a fluent proposition of the form FL[1..N] ≡ FL[1] || …|| FL[N]. We are 
now in a position to encode the correctness conditions for the AC problems as 
follows: 

 
• Agreement:  No two processes (whether correct or crashed) should decide on 

different values. 
 
assert AGREEMENT =  []!(COMMIT[ID] && ABORT[ID])  
 
This formula is read as: it is always not (never) the case that one of the processes 
0..N-1 can have committed and also one of these processes can have aborted i.e. 
have decided on different values. 
  

• Validity: 
1. If  any process votes no, then no is the only possible decision value. 

 
assert VALID_1 = [](VOTE[ID]['no] -> !COMMIT[ID]) 
 
The reading of this formula is that it is always the case that if one of the 
processes 0..N..1 has voted no then it can not be the case that one of these 
processes has committed i.e. decided other than no. 
 

2. If all processes vote yes, and there are no failures, then yes is the only possible 
decision value. 
 
assert VALID_2 = [](forall[i:ID] 
                    (VOTE[i]['yes] && !CRASHED[i])  
                     -> !ABORT[ID]) 
 
This reads that it is always the case that if all processes vote yes and are not 
crashed (i.e. correct) then it cannot be the case that one of the processes is 
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aborted (i.e. decides other than yes). We use not aborted rather than directly 
using the committed fluent since commitment is not true initially and may never 
be true due to failure.  
 

• Termination:   
• Strong Termination: All correct processes eventually decide. 

 
assert  
STRONGTERM = <>(forall[i:ID](!CRASHED[i]-> DECIDED[i])) 
 
This reads: it is eventually the case the if a process has not crashed then it will 
decide. 
 

• Weak Termination: If there are no failures, then all processes eventually 
decide. 
 
assert  
WEAKTERM = ([]forall[i:ID] !CRASHED[i]  
                -> <>forall[i:ID] DECIDED[i]) 
 
This reads: if its always the case that all processes do not crash then eventually 
all processes reach the decided state. 

 
In the next section we model the two-phase commit protocol and examine which of 

the above properties it satisfies. 

4 Two-phase commit 

The most used practical algorithm for atomic commitment is the two-phase commit. It 
consists of two rounds and assumes a distinguished process usually termed the 
coordinator, which we number 0. The algorithm description below is adapted from [4] 
following [8]. 

 
Round 1:  All processes except for the coordinator send their vote∈{yes,no} to the 
coordinator, and any process whose vote is no decides no. The coordinator collects all 
these votes together with its own initial vote. If all the votes are yes then the 
coordinator decides yes. If there is a no vote or a missing vote – because a vote was 
not received from the sending process – then the coordinator decides no.  

 
Round 2: The coordinator broadcasts its decision to all the other processes. Any 
process, other than the coordinator, that receives a message at round 2 and has not 
already decided at round 1 decides on the value it receives in that message. 

 
The communication pattern for a failure free run of two-phase commit is depicted 

in Figure 5. Note that in practical implementations of the two-phase commit, a extra 
round is added at the beginning in which the coordinator requests votes from the other 
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participating processes. In the interests of simplicity, we chose not to model this 
additional round since its does not alter the properties of the algorithm. 

 
0

1

2

3
1 2

round

process

0

1

2

3
1 2

round

process

 
Fig. 5. Communication pattern for Two-phase Commit 

We model the behavior of the two-phase commit protocol using two processes, a 
COORDINATOR numbered 0 and PARTICIPANT processes numbered 1..N-1. Figure 6 
lists the FSP definition of the PARTICIPANT process together with some declarations 
and the auxiliary process DECIDE.  

 
const    N        = 4 
set      Msg      = {yes,no, null} 
 
DECIDE(Id=0, D='null) 
 = if (D=='yes || D=='no) then (decide[Id][D]->END) else END. 
 
PARTICIPANT(Id=1) = ROUND1, 
ROUND1 
  = (vote[Id][v:{yes,no}]->step1->SEND[v]), 
SEND[v:Msg] 
  = (chan[Id][0].send[v] -> step2 ->  
       if (v=='no) then DECIDE(Id,v);ENDED else ROUND;ROUND2 
    |fail[Id] -> ENDED), 
ROUND2 
  = (chan[0][Id].recv[m:Msg] -> DECIDE(Id,m);ENDED 
    |fail[Id] -> ENDED 
    ), 
ENDED 
  = ({step1,step2}->ENDED) 
    +{chan[ID][Id].recv[Msg],chan[Id][ID].send[Msg]}. 

Fig. 6.  FSP definition of PARTICIPANT process. 
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Note that the PARTICIPANT process decides immediately in round 1 if it votes no 
otherwise the decision is based on receiving a message from the coordinator, via 
chan[0][Id] in round 2. Figure 7, below lists the COORDINATOR process. 

 
COORDINATOR(Id=0) 
  = (vote[Id][v:{yes,no}]->ROUND;ROUND1[v]), 
ROUND1[v:{yes,no}]  
  = (chan[Id+1..N-1][Id].recv[m:Msg] 
      -> if (v =='no) then ROUND1['no] 
         else if (m == 'no || m == 'null) then ROUND1['no] 
         else if (m == 'yes && v == 'yes) then ROUND1['yes] 
     |step1 -> ROUND2[v] 
     ), 
ROUND2[v:{yes,no}] 
   = DECIDE(Id,v);SEND_ALL(Id,v);ENDED, 
ENDED 
   = ({step1,step2}->ENDED) 

        +{chan[ID][Id].recv[Msg],chan[Id][ID].send[Msg]}. 

Fig. 7.  FSP definition of COORDINATOR process. 

In round 1, step 2, the coordinator receives messages from all participant 
processes. The end of this receiving phase is signaled by round 2, step 1. If at this 
point all yes messages have been received and the coordinator decision was yes then it 
decides yes otherwise, the decision is no. The actions signaling step 1 and step 2 are 
lower priority than receive actions so all messages that are sitting in channels are 
received before round 2. The actions are marked as low priority as shown below in 
the composition that combines the coordinator and participant processes with the 
network to form the system to be model-checked: 

 
||SYS = (  COORDINATOR(0)  
        || forall[i:1..N-1] PARTICIPANT(i)  
        || NETWORK 
        || FCONSTRAINT(2) 
        )>>{step1,step2}. 
 
The process FCONSTRAINT is used to constrain the number of failures that are 

allowed to occur in the model. With a parameter of 2 as above, a maximum of 2 of the 
N processes  may fail. The process is defined below: 

 
FCONSTRAINT(F=0) = FAIL[0], 
FAIL[f:0..F]     = (when (f<F) fail[0..N-1] -> FAIL[f+1] 
                   )+{fail[0..N-1]}. 
 

Model-checking 
We are now in a position to check that the model defined by SYS satisfies the 
properties for AC algorithms specified in section 3. As is well known, two-phase 
commit satisfied all the properties with the exception of Strong Termination. Two-
phase commit solves only the Weak AC problem. When model-checking 
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STRONGTERM with processes constrained to vote yes and a single failure permitted, 
the LTSA tool produces the following counter-example: 

 
Violation of LTL property: @STRONGTERM 
Trace to terminal set of states: 
 vote.0.yes   
 vote.1.yes   
 vote.2.yes   
 vote.3.yes   
 step1   
 chan.1.0.send.yes   
 chan.2.0.send.yes   
 chan.3.0.send.yes   
 step2   
 chan.1.0.recv.yes   
 chan.2.0.recv.yes   
 chan.3.0.recv.yes   
 step1   
 decide.0.yes   DECIDED.0 
 fail.0    CRASHED.0 && DECIDED.0 
 step2    CRASHED.0 && DECIDED.0 
 chan.0.1.recv.null  CRASHED.0 && DECIDED.0 
 chan.0.2.recv.null  CRASHED.0 && DECIDED.0 
 chan.0.3.recv.null  CRASHED.0 && DECIDED.0 
 step1    CRASHED.0 && DECIDED.0 
Cycle in terminal set: 
 step2    CRASHED.0 && DECIDED.0 
 step1    CRASHED.0 && DECIDED.0 
LTL Property Check in: 270ms 
 
The counter-example trace gives the action on the left and lists all the fluents that 

hold after that action has occurred on the right. The trace shows the typical situation 
in which the two-phase commit algorithm blocks – that is, the coordinator crashes 
before sending the decision in round 2 and as a result, processes that voted yes in 
round 1 cannot decide – in this case processes 1,2 & 3. Even if the participants were 
to elect a new coordinator and try to terminate, they cannot, since the original 
coordinator could have voted no initially and it would then have decided no rather 
than yes as above. Participants cannot distinguish these two situations and as a result 
are blocked until the coordinator recovers. 

Witness executions 
In addition to generating counter-examples to show why a property has been violated, 
we can use the model checker to generate a witness execution that satisfies a property. 
To do this, we simply model-check the negation of a property and the counter-
example is now a witness to the property.  The trace below is a witness execution to 
the agreement property. It is a violation of the property: 

assert WITNESS_AGREEMENT = !AGREEMENT 

The trace shows the scenario in which all the participants vote no and the 
coordinator makes a decision before failing so all processes decide abort.  
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Violation of LTL property: @WITNESS_AGREEMENT 
Trace to terminal set of states: 
 vote.0.yes   
 vote.1.no   
 vote.2.no   
 vote.3.no   
 step1   
 chan.1.0.send.no   
 chan.2.0.send.no   
 chan.3.0.send.no   
 step2   
 chan.1.0.recv.no   
 chan.2.0.recv.no   
 chan.3.0.recv.no   
 decide.1.no                                    ABORT.1 
 decide.2.no                        ABORT.1 && ABORT.2 
 decide.3.no             ABORT.1 && ABORT.2 && ABORT.3 
 step1                    ABORT.1 && ABORT.2 && ABORT.3 
 decide.0.no   ABORT.0 && ABORT.1 && ABORT.2 && ABORT.3 
 fail.0        ABORT.0 && ABORT.1 && ABORT.2 && ABORT.3 
 
The LTSA tool always produces the shortest trace possible as a counter-example, 

which is why it chose the abort scenario above. However, we can produce an example 
execution that commits using the LTSA Animator as shown in Figure 8. 

 

 

Fig. 8. Trace showing commit for Two-phase AC algorithm 
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5 Three-phase commit 

The three-phase commit is an extension of the two-phase commit that guarantees 
strong termination in the presence of process failures. The difference is that the 
coordinator does not decide yes unless every process that has not failed is ready to 
decide yes. This requires an extra round. The first three rounds of the three-phase 
commit are as follows: 

 
Round 1: All processes except for the coordinator send their vote∈{yes,no} to the 
coordinator, and any process whose vote is no decides no. The coordinator collects all 
these votes together with its own initial vote. If all the votes are yes then the 
coordinator becomes ready. If there is a no vote or a missing vote – because a vote 
was not received from the sending process – then the coordinator decides no.  
 
Round 2: The coordinator broadcasts either ready or no to all the other processes. Any 
process that receives no decides no. Any process that receives ready becomes ready. 
The coordinator decides yes if it has not previously decided no. 

 
Round 3: If the coordinator decided yes, it broadcasts yes to all the other processes. 
Any process that receives yes decides yes.  

 
The communication pattern for a failure free execution of three-phase commit is 

shown in Figure 9. 
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Fig. 9. Communication pattern for successful three-phase commit. 

As it stands, the protocol will still block if the coordinator fails. However, the 
blocking situation in the two-phase protocol is avoided by the additional ready state – 
the coordinator cannot have committed if it fails during round 2. A termination 
protocol that starts at round 4 is outlined below: 
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Round 4: All (not yet failed) participant processes numbered 2..N-1 send their current 
decision status: yes, no, ready or null (uncertain) to process 1. Process 1 now acts as 
the coordinator. If process 1 has previously decided no, or receives no from some 
other process, it decides no. If process 1 has previously decided yes, or receives yes 
form some other process, it decides yes. If process 1 was ready or received ready 
from some other process, it becomes ready otherwise if it is uncertain and receives 
uncertain from all other processes, it decides no. 

 
Round 5: This proceeds as round 2 except that process 1 is the coordinator. The only 
difference is that process 1 may send a yes decision in this round if it previously 
decided yes. 

 
Round 6: This proceeds exactly as round 3.  

 
After round 6, the protocol continues with three similar rounds coordinated by each 

of the processes 2..N-1.  Each group of three rounds is termed an epoch with process i 
coordinating epoch i. Process N-1 decides in the second round of epoch N-1 and since 
it does not communicate with any other process, the last round of this epoch is 
superfluous. Figure 10 depicts the communication pattern for three-phase commit 
with termination in which process 0 fails before sending ready to all processes in 
round 2 and process 1 fails similarly in round 5. 
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Fig. 10.  Communication pattern for three-phase commit with failures. 

In modeling the processes for three-phase commit, the coordinator for epoch 0, 
process 0 is the simplest since it only participates in the first three rounds. The FSP 
model is listed in Figure 12. The model of coordinator rounds 2 & 3 has been placed 
in the utility process ROUND2_3, since it is also used by PARTCIPANT processes when 
they act as coordinators – Figure 11. The three-phase commit model reuses the 
network models of section 2. The message set for three-phase commit is as defined 
below: 
 

set Msg = {yes, no, ready, null} 
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// partcipant process, acts as coordinator for epoch Id 
PARTICIPANT(Id=1) = ROUND1, 
ROUND1 
  = (vote[Id][v:{yes,no}]->step1->SEND[v]), 
SEND[v:Msg]     // epoch 0  
  = (chan[Id][0].send[v] -> step2  
      -> if (v=='no)  
         then DECIDE(Id,v);ROUND;ROUND;TERMINATE[v][0]  
         else ROUND;PROUND2['null][0] 
    |fail[Id] -> ENDED 
    ), 
SEND[v:Msg][epoch:1..N-1] 
  = (chan[Id][epoch].send[v] -> step2  
      -> if (v=='no || v=='yes)  
         then DECIDE(Id,v);ROUND;ROUND;TERMINATE[v][epoch]  
         else ROUND;PROUND2[v][epoch] 
    |fail[Id]->ENDED 
    ), 
PROUND2[d:Msg][epoch:0..N-1] 
  = (chan[epoch][Id].recv[m:Msg]  
      -> if (m=='no || m=='yes)  
         then DECIDE(Id,m);ROUND;TERMINATE[m][epoch]  
         else if (m=='null)  
         then ROUND;PROUND3[d][epoch] 
         else ROUND;PROUND3[m][epoch] 
    ), 
PROUND3[d:Msg][epoch:0..N-1] 
  = (chan[epoch][Id].recv[m:Msg]  
      -> if (m!='null)  
         then DECIDE(Id,m);TERMINATE[m][epoch]  
         else DECIDE(Id,m);TERMINATE[d][epoch] 
     ), 
TERMINATE[d:Msg][epoch:0..N-1] 
  =  if (epoch==N-1) then ENDED 
     else if (Id==epoch+1)then ROUND;COORD[d] 
     else  (step1->SEND[d][epoch+1]), 
COORD[d:Msg] 
  = (when (Id+1 < N) chan[Id+1..N-1][Id].recv[m:Msg] 
      -> if (d =='yes || d=='no) then COORD[d]  
         else if (m=='no || m =='yes) then DECIDE(Id,m);COORD[m] 
         else if (m=='ready )then COORD[m]  
         else COORD[d] 
    |step1  
      -> if (d=='null)  
         then DECIDE(Id,'no);ROUND2_3(Id,'no);ENDED  
         else ROUND2_3(Id,d);ENDED      
    ), 
ENDED 
  = ({step1,step2}->ENDED) 
    +{chan[ID][Id].recv[Msg],chan[Id][ID].send[Msg],fail[Id]}. 

Fig. 11. FSP definition of three-phase commit PARTCIPANT process. 
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// utility process for coordinator rounds epoch*3+2 and +3 
ROUND2_3(Id=0,M='null)  
  = SEND_ALL(Id,M);ROUND2, 
ROUND2 
  = if (M=='ready) then DECIDE(Id,'yes);ROUND3 else END, 
ROUND3           
  = (step1 -> SEND_ALL(Id,'yes);END). 
 
// coordinator process for epoch 0 
COORDINATOR(Id=0) 
  = (vote[Id][v:{yes,no}] -> ROUND;ROUND1[v]), 
ROUND1[v:{yes,no}]  
  = (when (Id+1 < N) chan[Id+1..N-1][Id].recv[m:Msg] 
      -> if (v =='no) then ROUND1['no] 
         else if (m == 'no || m == 'null) then ROUND1['no] 
         else if (m == 'yes && v == 'yes) then ROUND1['yes] 
     |step1  
      -> if (v=='yes)  
         then ROUND2_3(Id,'ready);ENDED  
         else DECIDE(Id,'no);ROUND2_3(Id,'no);ENDED 
     ), 
ENDED 
  = ({step1,step2}->ENDED) 
    +{chan[ID][Id].recv[Msg],chan[Id][ID].send[Msg],fail[Id]}. 

Fig. 12.  FSP definition of three-phase commit COORDINATOR process. 

The complete model of the three-phase commit algorithm is formed exactly as for 
the two-phase model by composing the coordinator and participant processes with the 
network: 

 
||SYS = (  COORDINATOR(0)  
        || forall[i:1..N-1] PARTICIPANT(i)  
        || NETWORK 
        || FCONSTRAINT(3) 
        )>>{step1,step2}. 

 
The three-phase commit algorithm satisfies all the conditions we specified in 

section 3, including strong termination. The trace of Figure 13 is a witness to this 
property. It depicts the same situation that violated the strong termination property in 
the two-phase commit model. The coordinator (process 0) fails at the beginning of 
round 1 and thus participants do not receive the ready message. However, because no 
process receives a ready message, it is safe for process 1 to take over as coordinator 
and decide no since process 0 cannot have committed. 

  The algorithm as we have modeled it always takes 3*N-1 rounds even if there are 
no failures. In a practical protocol, it is easy to insert an extra round to detect that all 
processes have decided and then discontinue the termination protocol.
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Trace to property violation in WITNESS_STRONGTERM: 
 vote.0.yes   
 vote.1.yes   
 vote.2.yes   
 vote.3.yes   
 step1       // round 1 
 chan.1.0.send.yes   
 chan.2.0.send.yes   
 chan.3.0.send.yes   
 step2   
 chan.1.0.recv.yes   
 chan.2.0.recv.yes   
 chan.3.0.recv.yes   
 step1       // round 2 
 fail.0   CRASHED.0 
 step2   CRASHED.0 
 chan.0.1.recv.null CRASHED.0 
 chan.0.2.recv.null CRASHED.0 
 chan.0.3.recv.null CRASHED.0 
 step1   CRASHED.0   // round 3 
 step2   CRASHED.0 
 chan.0.1.recv.null CRASHED.0 
 chan.0.2.recv.null CRASHED.0 
 chan.0.3.recv.null CRASHED.0 
 step1   CRASHED.0   // round 4 
 chan.2.1.send.null CRASHED.0 
 chan.3.1.send.null CRASHED.0 
 step2   CRASHED.0  
 chan.2.1.recv.null CRASHED.0 
 chan.3.1.recv.null CRASHED.0 
 step1   CRASHED.0   // round 5 
 decide.1.no  CRASHED.0 && DECIDED.1 
 chan.1.2.send.no CRASHED.0 && DECIDED.1 
 chan.1.3.send.no CRASHED.0 && DECIDED.1 
 step2   CRASHED.0 && DECIDED.1 
 chan.1.2.recv.no CRASHED.0 && DECIDED.1 
 decide.2.no  CRASHED.0 && DECIDED.1 && DECIDED.2 
 chan.1.3.recv.no CRASHED.0 && DECIDED.1 && DECIDED.2 
 decide.3.no  CRASHED.0 && DECIDED.1 && DECIDED.2 

                                           && DECIDED.3 
Analysed in: 60ms 

Fig. 13. Witness execution for property STRONGTERM 
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Link Failure 
So far, because of the impossibility result mention in section 3, we have ignored link 
failure and focused on process failure. However, it is instructive to examine the 
behavior of the three-phase commit algorithm in the presence of link failures. To do 
this, we adapt the channel model shown in figure 3 as shown in figure 14. 

 
     CHAN(From=0, To =0)  

   =(chan[From][To].send[m:Msg] -> CHAN[m] 
    | step1 -> CHAN 
    | step2 -> CHAN['null] 
    ),  
CHAN[m:Msg]         
   =(chan[From][To].recv[m] -> CHAN 
    | step1 -> CHAN  
    | step2 -> CHAN[m]  
    | step2 -> linkfail[From][To] -> CHAN['null] 
    ). 

Fig. 14. FSP model of CHAN which can fail. 

The channel now has a non-deterministic choice at step 2. It can either fail 
changing the value of the message stored in the channel to null or leave the message 
intact.  

Figure 15 depicts a counter example that violates the AGREEMENT property if we 
permit link failures. In this counter-example, all processes send yes and successfully 
inform the coordinator. However, all subsequent messages from the coordinator 
(process 0) are lost due to link failure. After the coordinator sends ready messages it 
decides yes. However, in round 4, no process has received ready or yes and so they 
send null to the new coordinator process 1. Consequently, in round 5, process 1 
decides no thus violating the AGREEMENT property. 

In practice, link protocols overcome transient failures using retransmission and 
networks can overcome permanent link failure using rerouting. However, the situation 
depicted in the counter-example can still occur if a network partition occurs – in this 
case isolating process 0 from processes 1,2 & 3. This is the reason that in practice 
two-phase commit is much more widely used than three-phase commit. The two-
phase algorithm may block as a result of link or process failure, however, it does not 
violate the agreement or validity safety properties whereas if network partition can 
occur, three-phase commit violates these safety properties. We can of course check 
that the model of the two-phase commit algorithm does not violate AGREEMENT using 
the channel model of figure14. 
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Trace to property violation in AGREEMENT: 
 vote.0.yes   
 vote.1.yes   
 vote.2.yes   
 vote.3.yes   
 step1   
 chan.1.0.send.yes   
 chan.2.0.send.yes   
 chan.3.0.send.yes   
 step2   
 chan.1.0.recv.yes   
 chan.2.0.recv.yes   
 chan.3.0.recv.yes   
 step1   
 chan.0.1.send.ready   
 chan.0.2.send.ready   
 chan.0.3.send.ready   
 step2   
 decide.0.yes   COMMIT.0 
 linkfail.0.1   COMMIT.0 
 chan.0.1.recv.null  COMMIT.0 
 linkfail.0.2   COMMIT.0 
 chan.0.2.recv.null  COMMIT.0 
 linkfail.0.3   COMMIT.0 
 chan.0.3.recv.null  COMMIT.0 
 step1    COMMIT.0 
 chan.0.1.send.yes  COMMIT.0 
 chan.0.2.send.yes  COMMIT.0 
 chan.0.3.send.yes  COMMIT.0 
 step2    COMMIT.0 
 linkfail.0.1   COMMIT.0 
 chan.0.1.recv.null  COMMIT.0 
 linkfail.0.2   COMMIT.0 
 chan.0.2.recv.null  COMMIT.0 
 linkfail.0.3   COMMIT.0 
 chan.0.3.recv.null  COMMIT.0 
 step1    COMMIT.0 
 chan.2.1.send.null  COMMIT.0 
 chan.3.1.send.null  COMMIT.0 
 step2    COMMIT.0 
 chan.2.1.recv.null  COMMIT.0 
 chan.3.1.recv.null  COMMIT.0 
 step1    COMMIT.0 
 decide.1.no   COMMIT.0 && ABORT.1 
Analysed in: 711ms 

Fig. 15. Counter-example violating AGREEMENT property 
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6 Discussion & Conclusion 

The paper has illustrated an approach to modeling and mechanically verifying 
synchronous distributed algorithms. The models have the advantage over less formal 
descriptions that they permit tool supported interactive exploration of the operation of 
an algorithm. In addition, model checking provides counter-example traces to explain 
property violation and witness traces that provide sample executions that satisfy 
properties. Models are considerably faster to produce than implementations or even 
simulations and in addition are more amenable to exploration as we have described in 
the foregoing. 

In modeling synchronous algorithms, we have avoided explicit modeling of time 
and timeouts by arranging that computation proceed in rounds (following [4]) and 
modeling the effects of timeouts by null messages. We could model in more detail by 
explicitly including time. For example, an approach to discrete time models is 
described in [1]. Chkiaev, van der Stok and Hooman [9] have taken the approach of 
explicitly including time in mechanically verifying, using automated theorem proving, 
the non-blocking Atomic Commitment Protocol from [10]. This has the advantage of 
models that are closer to implementations but the disadvantage of models that have 
larger state spaces.  

Moving away from the strictly synchronous approach leads to the need for more 
complex channel models that can buffer multiple rather than single messages. Again 
this leads to larger state spaces that can sometimes but not always be dealt with by the 
use of Partial Order reduction techniques (see [11]) for further details. Mechanical 
verification of complex asynchronous and partially synchronous algorithms is an 
active research area. 

In modeling Atomic Commitment protocols, we have assumed that crashed 
processes remain crashed forever. However, clearly processes recover and there are 
recovery protocols that permit processes to discover the outcome of a transaction by a 
combination of stable storage logs and querying other participants (see [8]). These 
recovery protocols can be modeled using the techniques we have outlined in the 
paper.   

We have chosen to model Atomic Commitment protocols since they have 
considerable practical application and a thorough understanding of their operation and 
limitations is desirable for distributed application designers. The properties of the 
protocols are of course well known, so the primary contribution of the models is 
pedagogic. However, the approach used is generally applicable and is being applied to 
new Web Services applications [12]. 

Finally, the reader will gain considerably more understanding of the models we 
have described in this paper by exploring them interactively using the LTSA tool. 
Both the tool and algorithm models are available from the author’s website 
http://www.doc.ic.ac.uk/~jnm. 
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