
FSP Language Specification – V2.0 additions 1

1

V2.0 -Additions

FSP Language Specification

This document describes the additions that have been made to the FSP input
notation to the LTSA tool since its initial release. It should be read in
conjunction with Appendix B of Concurrency: State Models and Java
Programs.

The additions are described in the following sections:

 1) Sequential Processes

 2) Graphical Animation

 3) Miscellaneous extensions

FSP Language Specification – V2.0 additions 2

2

����Sequential Processes

FSP divides processes into three types: local processes that define a state
within a primitive process, primitive processes defined by a set of local
processes and composite processes that use parallel composition, relabeling
and hiding to compose primitive processes. A local process is defined using
STOP, ERROR, action prefix and choice.

A sequential process is a process that can terminate. A
process can terminate if the local process END is reachable
from its start state.

������ Local Process END

The local process END denotes the state in which a process successfully
terminates. A process engages in no further actions after END. In this respect
it has the same semantics as STOP. However, STOP denotes a state in which
a process has halted prematurely, usually due to communication deadlock. In
the book, we sometimes used STOP to indicate the successful termination of
a process. These uses of STOP should now be replaced by END. With the
introduction of a state describing successful termination, the need to use
STOP explicitly in process description largely disappears. Figure 1 depicts an
example of a sequential process together with its LTS:

BOMB
tick tick bang

0 1 2 E

BOMB = (tick -> tick -> bang -> END).

Figure 1 – Sequential Process BOMB

FSP Language Specification – V2.0 additions 3

3

������ Sequential Composition ;

A sequential composition in FSP always takes the form:

SP1;SP2;..SPn;LP

where SP1,..,SPn are sequential processes and LP is a local process. A
sequential composition can appear anywhere in the definition of a primitive
process that a local process reference can appear e.g.

LOOP start a[1] a[2]

a[3]

0 1 2 3

SP(I=0) = (a[I]->END).

P123 = (start -> SP(1);SP(2);SP(3);END).

LOOP = P123;LOOP.

Figure 2 – Sequential Composition LOOP

A sequential composition P;Q means that when P
terminates, P;Q becomes the process Q.

If we define a process SKIP = END then:

P;SKIP ≡ P.
SKIP;P ≡ P.

Sequential composition can be used in a recursive context as in:

R
a[0] a[1] a[2]

0 1 2 E

FSP Language Specification – V2.0 additions 4

4

const N = 3
R(I =0) = if (I<N) then
 (a[I]->R(I+1);END)
 else
 END.

Figure 3 – Sequential Composition and Recursion

������ Parallel Composition and Sequential Processes

The parallel composition SP1||SP2 of two sequential
processes SP1 and SP2 terminates when both of these
processes terminate. If termination is reachable in
SP1||SP2 then it is a sequential process.

Note that a composite process that terminates can appear in the definition of a
primitive process.

S

a.x

b.x a.x

b.x

0 1 E 3

P = (x -> END).
||S = (a:P || b:P).

Figure 4 – Parallel Composition of Sequential Processes

FSP Language Specification – V2.0 additions 5

5

������ Sequential Processes and minimization

Minimization does not distinguish between STOP and END, consequently
the process:

P

halt

finish

0 1 E

P =(halt->STOP | finish->END).

minimizes to:

S {finish, halt}

0 E

P =({finish,halt} -> END).

������ Sequential Processes and Analysis

While a reachable STOP state is a safety violation resulting in the LTSA
generating a counter example trace, a reachable END state is not a safety
violation. However, a trace to a reachable END state will be generated during
progress analysis since the END state violates all progress properties.

FSP Language Specification – V2.0 additions 6

6

����Graphical Animation

LTSA V2.0 supports graphical animation using SceneBeans. Here we
describe only the extensions to FSP required to map a model to a graphical
animations.

This mapping is defined by the animation construct that specifies the
XML file that contains the description of the animation and two relations that
describe the mapping of model actions to animation commands - actions
and model actions to animation controls – controls . The following
example describes the mapping for a channel animation:

CHAN = (in ->out->CHAN |in->fail->CHAN).

animation FAILCHAN = "xml\channel.xml"
 actions { in /channel.begin,
 fail/explode
 }
 controls { out /channel.end,
 fail/channel.fail,
 in /send
 }

Figure 5 – Animation example.

The actions and controls relations are defined in exactly the same way as
relabeling relations. The label on the left of a pair is the model label and the
label to the right, the name of an animation command or control.

The animation construct may optionally specify the target composition to
which it can be applied as in:

animation DINERS = "xml/diners.xml" target DINERS
 compose
 {PHILOS||FORKS
 /{forall [i:0..N-1] {
 {phil[i].left,phil[((i-1)+N)%N].right}/fork[i]}
 }
 }

Note that here, the mapping relations are formed by composing two other
animations. See the draft paper “Graphical Animation of Behaviour Models”
for further details.

FSP Language Specification – V2.0 additions 7

7

����Miscellaneous extensions

������ Build directives

The following new keywords can be used to prefix the definition of primitive
and composite processes: deterministic, minimal, compose .

deterministic

If the process is non-deterministic, the standard NDFA – DFA automata
transformation is applied.

minimal

Minimizes the primitive or composite process

compose

Forces composition when prefixing a composite process. Has no effect when
prefixing a primitive process.

A property automaton can now be formed from a composite process simply
by prefixing it with the keyword property . If the composite is non-
deterministic, it is transformed into a deterministic automaton, before being
converted to an image automaton.

FSP Language Specification – V2.0 additions 8

8

������ Set index operation @

The elements of a set can be accessed using an integer index expression.

@(S,n) – returns the nth label from the set S.

Example:

set Days = {sun, mon, tues, wed, thurs, fri, sat}
P = ([i:0..6][@(Days,i)]->END).

P {[0].sun, [1].mon, [2].tues, [3].wed, [4].thurs, [5].fri, [6].sat}

0 E

������ Set cardinality operation #

The number of elements in a set can be found using:

#S – returns the number of elements in set S.

