
2015 Concurrency: processes & threads
1

©Magee/Kramer 2nd Edition

Chapter 2

Processes & Threads

2015 Concurrency: processes & threads
2

©Magee/Kramer 2nd Edition

concurrent processes

We structure complex systems as sets of
simpler activities, each represented as a
sequential process. Processes can
overlap or be concurrent, so as to reflect
the concurrency inherent in the physical
world, or to offload time-consuming tasks,
or to manage communications or other
devices.

Designing concurrent software can be
complex and error prone. A rigorous
engineering approach is essential.

Model processes as
finite state
machines.

Program processes
as threads in Java.

Concept of a process
as a sequence of
actions.

2015 Concurrency: processes & threads
3

©Magee/Kramer 2nd Edition

processes and threads

Concepts: processes - units of sequential execution.

Models: finite state processes (FSP)
 to model processes as sequences of actions.

labelled transition systems (LTS)
 to analyse, display and animate behavior.

Practice: Java threads

2015 Concurrency: processes & threads
4

©Magee/Kramer 2nd Edition

2.1 Modelling Processes

Models are described using state machines, known as
Labelled Transition Systems LTS. These are described
textually as finite state processes (FSP) and displayed
and analysed by the LTSA analysis tool.

♦  LTS - graphical form

♦  FSP - algebraic form

LTSA and an FSP quick reference are available at
http://www-dse.doc.ic.ac.uk/concurrency/

2015 Concurrency: processes & threads
5

©Magee/Kramer 2nd Edition

modelling processes

A process is the execution of a sequential program. It is modelled
as a finite state machine which transits from state to state by
executing a sequence of atomic actions.

a light switch
LTS

on!off!on!off!on!off! ……….
a sequence of
actions or trace

on

off

0 1

Can finite state models produce infinite traces?

2015 Concurrency: processes & threads
6

©Magee/Kramer 2nd Edition

FSP - action prefix

If x is an action and P a process then (x-> P) describes a
process that initially engages in the action x and then behaves
exactly as described by P.

ONESHOT = (once -> STOP). ONESHOT state
machine

(terminating process)

Convention: actions begin with lowercase letters
 PROCESSES begin with uppercase letters

once

0 1

2015 Concurrency: processes & threads
7

©Magee/Kramer 2nd Edition

FSP - action prefix & recursion

SWITCH = OFF,
OFF = (on -> ON),
ON = (off-> OFF).

Repetitive behaviour uses recursion:

Substituting to get a more succinct definition:

SWITCH = OFF,
OFF = (on ->(off->OFF)).

And again:

SWITCH = (on->off->SWITCH).

on

off

0 1

Scope:

OFF and ON are
local subprocess
definitions, local to
the SWITCH
definition.

OFF ON

2015 Concurrency: processes & threads
8

©Magee/Kramer 2nd Edition

animation using LTSA

Ticked actions are eligible for
selection.

In the LTS, the last action is
highlighted in red.

The LTSA animator can be used
to produce a trace.

on

off

0 1

2015 Concurrency: processes & threads
9

©Magee/Kramer 2nd Edition

FSP - action prefix

TRAFFICLIGHT = (red->orange->green->orange
 -> TRAFFICLIGHT).

LTS generated using LTSA:

Trace:

FSP model of a traffic light :

red!orange!green!orange!red!orange!green …

red orange green

orange

0 1 2 3

2015 Concurrency: processes & threads
10

©Magee/Kramer 2nd Edition

FSP - choice

If x and y are actions then (x-> P | y-> Q) describes a
process which initially engages in either of the actions x or y.
After the first action has occurred, the subsequent behavior is
described by P if the first action was x and Q if the first
action was y.

Who or what makes the choice?

Is there a difference between input and output
actions?

2015 Concurrency: processes & threads
11

©Magee/Kramer 2nd Edition

FSP - choice

DRINKS = (red->coffee->DRINKS
 |blue->tea->DRINKS
).

LTS generated using LTSA:

Possible traces?

FSP model of a drinks machine :

red

blue

coffee

tea

0 1 2

input?
output?

2015 Concurrency: processes & threads
12

©Magee/Kramer 2nd Edition

Could we make this deterministic
and trace equivalent?

Would it really have equivalent behaviour?

Non-deterministic choice

Process (x-> P | x -> Q) describes a process which engages in
x and then behaves as either P or Q.

COIN = (toss->HEADS|toss->TAILS),
HEADS= (heads->COIN),
TAILS= (tails->COIN).

Tossing a
coin.

toss

toss

heads

tails

0 1 2Possible traces?

2015 Concurrency: processes & threads
13

©Magee/Kramer 2nd Edition

Modelling failure

How do we model an unreliable communication channel which
accepts in actions and if a failure occurs produces no output,
otherwise performs an out action?

Use non-determinism...

CHAN = (in->CHAN
 |in->out->CHAN
).

in

in

out

0 1

Deterministic?
2015 Concurrency: processes & threads

14
©Magee/Kramer 2nd Edition

Single slot buffer that inputs a value in the range 0 to 3 and then
outputs that value:

FSP - indexed processes and actions

BUFF = (in[i:0..3]->out[i]->BUFF).
equivalent to

or using a process parameter with default value:

BUFF = (in[0]->out[0]->BUFF
 |in[1]->out[1]->BUFF
 |in[2]->out[2]->BUFF
 |in[3]->out[3]->BUFF
).

BUFF(N=3) = (in[i:0..N]->out[i]->BUFF).

indexed actions
generate labels of
the form action.index

2015 Concurrency: processes & threads
15

©Magee/Kramer 2nd Edition

const N = 1
range T = 0..N
range R = 0..2*N

SUM = (in[a:T][b:T]->TOTAL[a+b]),
TOTAL[s:R] = (out[s]->SUM).

index expressions to
model calculation:

in.0.0

in.0.1
in.1.0

in.1.1

out.0

out.1

out.2

0 1 2 3

FSP - indexed processes and actions

Local indexed process
definitions are equivalent to
process definitions for each
index value

2015 Concurrency: processes & threads
16

©Magee/Kramer 2nd Edition

FSP - guarded actions

The choice (when B x -> P | y -> Q) means that when the
guard B is true then the actions x and y are both eligible to
be chosen, otherwise if B is false then the action x cannot be
chosen.

COUNT (N=3) = COUNT[0],
COUNT[i:0..N] = (when(i<N) inc->COUNT[i+1]
 |when(i>0) dec->COUNT[i-1]
).

inc inc

dec

inc

dec dec

0 1 2 3

2015 Concurrency: processes & threads
17

©Magee/Kramer 2nd Edition

FSP - guarded actions

COUNTDOWN (N=3) = (start->COUNTDOWN[N]),
COUNTDOWN[i:0..N] =

 (when(i>0) tick->COUNTDOWN[i-1]
 |when(i==0)beep->STOP

 |stop->STOP
).

A countdown timer which beeps after N ticks, or can be stopped.

start

stop

tick

stop

tick

stop

tick beep
stop

0 1 2 3 4 5

2015 Concurrency: processes & threads
18

©Magee/Kramer 2nd Edition

FSP - guarded actions

What is the following FSP process equivalent to?

const False = 0
P = (when (False) doanything->P).

Answer:

STOP

2015 Concurrency: processes & threads
19

©Magee/Kramer 2nd Edition

FSP - process alphabets

The alphabet of a process is the set of actions in which it can
engage.

Process alphabets are implicitly
defined by the actions in the
process definition.

The alphabet of a process can be
displayed using the LTSA
alphabet window.

Process:
 COUNTDOWN

Alphabet:
 { beep,
 start,
 stop,
 tick
 }

2015 Concurrency: processes & threads
20

©Magee/Kramer 2nd Edition

FSP - process alphabet extension

Alphabet extension can be used to extend the implicit alphabet
of a process:

Alphabet of WRITER is the set {write[0..3]}

(we make use of alphabet extensions in later chapters to control
interaction between processes)

WRITER = (write[1]->write[3]->WRITER)
 +{write[0..3]}.

2015 Concurrency: processes & threads
21

©Magee/Kramer 2nd Edition

Revision & Wake-up Exercise

In FSP, model a process FILTER, that filters out values greater than 2 :

ie. it inputs a value v between 0 and 5, but only outputs it if v <= 2,
otherwise it discards it.

FILTER = (in[v:0..5] -> DECIDE[v]),

DECIDE[v:0..5] = (?).

2015 Concurrency: processes & threads
22

©Magee/Kramer 2nd Edition

2.2 Implementing processes

Modeling processes as finite
state machines using FSP/
LTS.

Implementing threads in
Java.

Note: to avoid confusion, we use the term process when referring to the
models, and thread when referring to the implementation in Java.

2015 Concurrency: processes & threads
23

©Magee/Kramer 2nd Edition

Implementing processes - the OS view

A (heavyweight) process in an operating system is represented by its code,
data and the state of the machine registers, given in a descriptor. In order to
support multiple (lightweight) threads of control, it has multiple stacks, one
for each thread.

Data Code

OS Process

Descriptor

Thread 1 Thread 2 Thread n

Stack Stack Stack

Descriptor Descriptor

Descriptor

2015 Concurrency: processes & threads
24

©Magee/Kramer 2nd Edition

threads in Java

A Thread class manages a single sequential thread of control.
Threads may be created and deleted dynamically.

Thread

 run()

MyThread

 run()

The Thread class executes instructions from its method
run(). The actual code executed depends on the
implementation provided for run() in a derived class.

class MyThread extends Thread {
 public void run() {
 //......
 }

}

Creating and starting a thread object:
 Thread a = new MyThread();
 a.start();

2015 Concurrency: processes & threads
25

©Magee/Kramer 2nd Edition

threads in Java

Since Java does not permit multiple inheritance, we often implement
the run() method in a class not derived from Thread but from the
interface Runnable. This is also more flexible and maintainable.

Runnable

run()

MyRun

run()

public interface Runnable {
public abstract void run();

}

class MyRun implements Runnable {
public void run() {

 //
 }
}

Thread
target

Creating and starting a thread object:
 Thread b = new Thread(new MyRun());
 b.start(); 2015 Concurrency: processes & threads

26
©Magee/Kramer 2nd Edition

thread life-cycle in Java

An overview of the life-cycle of a thread as state transitions:

Created Alive

Terminated

new Thread()

start()

run() returns

The predicate isAlive() can be
used to test if a thread has been started but
not terminated. Once terminated, it cannot
be restarted (cf. mortals).

start() causes the thread to call its
run() method.

2015 Concurrency: processes & threads
27

©Magee/Kramer 2nd Edition

thread alive states in Java

Once started, an alive thread has a number of substates :

Non-Runnable

yield()
timeslice

Running

dispatch

wait()

start()

run() returns

wait() makes a Thread Non-Runnable (Blocked),
notify()can, and notifyAll()does, make it
Runnable (described in later chapters).

sleep()

Alive
Runnable

interrupt() interrupts the
Thread and sets interrupt status if
Running/Runnable, otherwise
raises an exception (used later). 2015 Concurrency: processes & threads

28
©Magee/Kramer 2nd Edition

Java thread lifecycle - an FSP specification

THREAD = CREATED,
CREATED = (start ->RUNNABLE),
RUNNABLE = (dispatch ->RUNNING),
RUNNING = ({sleep,wait} ->NON_RUNNABLE
 |{yield,timeslice}->RUNNABLE
 |end ->TERMINATED
 |run ->RUNNING),
NON_RUNNABLE = ({timeout,notify}->RUNNABLE),
TERMINATED = STOP.

Dispatch,timeslice,end,run,and timeout are not methods
of class Thread, but model the thread execution and scheduler .

2015 Concurrency: processes & threads
29

©Magee/Kramer 2nd Edition

Java thread lifecycle - an LTS specification

States 0 to 4 correspond to CREATED, RUNNABLE, RUNNING,
TERMINATED and NON-RUNNABLE respectively.

THREAD
start dispatch

sleep
wait

yield
timeslice

end

run

timeout
notify

0 1 2 3 4

2015 Concurrency: processes & threads
30

©Magee/Kramer 2nd Edition

CountDown timer example

COUNTDOWN (N=3) = (start->COUNTDOWN[N]),
COUNTDOWN[i:0..N] =

 (when(i>0) tick->COUNTDOWN[i-1]
 |when(i==0)beep->STOP

 |stop->STOP
).

Implementation in Java?

2015 Concurrency: processes & threads
31

©Magee/Kramer 2nd Edition

CountDown timer - class diagram

The class CountDown derives from Applet and contains the
implementation of the run() method which is required by Thread.

Applet

init()
start()
stop()
run()
tick()
beep()

Runnable

CountDown

NumberCanvas

setvalue()

Threadcounter

display

target

The class NumberCanvas
provides the display canvas.

2015 Concurrency: processes & threads
32

©Magee/Kramer 2nd Edition

CountDown class

public class CountDown extends Applet
 implements Runnable {
 Thread counter; int i;
 final static int N = 10;
 AudioClip beepSound, tickSound;
 NumberCanvas display;

 public void init() {...}
 public void start() {...}
 public void stop() {...}
 public void run() {...}
 private void tick() {...}
 private void beep() {...}
}

2015 Concurrency: processes & threads
33

©Magee/Kramer 2nd Edition

CountDown class - start(), stop() and run()

 public void start() {
 counter = new Thread(this);
 i = N; counter.start();
 }

 public void stop() {
 counter = null;
 }

 public void run() {
 while(true) {
 if (counter == null) return;
 if (i>0) { tick(); --i; }
 if (i==0) { beep(); return;}
 }
 }

COUNTDOWN Model
start ->

stop ->

COUNTDOWN[i] process
 recursion as a while loop
 STOP
 when(i>0) tick -> CD[i-1]
 when(i==0)beep -> STOP

STOP when run() returns

2015 Concurrency: processes & threads
34

©Magee/Kramer 2nd Edition

CountDown

 counter thread

start()

new Thread(this)

target.run()

CREATEDcounter.start()

ALIVE

TERMINATED

init()

tick()

beep()

CountDown execution to alarm

2015 Concurrency: processes & threads
35

©Magee/Kramer 2nd Edition

CountDown

 counter thread

stop()

new Thread(this)

target.run()

CREATEDcounter.start()

counter=null

ALIVE

TERMINATED

tick()
tick()

CountDown execution stopped

start()
init()

2015 Concurrency: processes & threads
36

©Magee/Kramer 2nd Edition

Summary

" Concepts

#  process - unit of concurrency, execution of a program

" Models

#  LTS to model processes as state machines - sequences of
atomic actions

#  FSP to specify processes using prefix �->�, choice � | �
and recursion.

" Practice

#  Java threads* to implement processes.
#  Thread lifecycle - created, running, runnable, non-

runnable, terminated.
* see also java.util.concurrency
* cf. POSIX pthreads in C

