
Concurrent Execution

Concurrent execution

Concepts: processes - concurrent execution

and interleaving.

process interaction.

Models: parallel composition of asynchronous processes

- interleaving

interaction - shared actions

process labelling, and action relabelling and hiding

structure diagrams

Practice: Multithreaded Java programs

Definitions


Concurrency

• Logically simultaneous processing.

Does not imply multiple processing elements (PEs). Requires interleaved execution on a single PE.

Parallelism

Physically simultaneous processing.
 Involves multiple PEs and/or independent device operations.

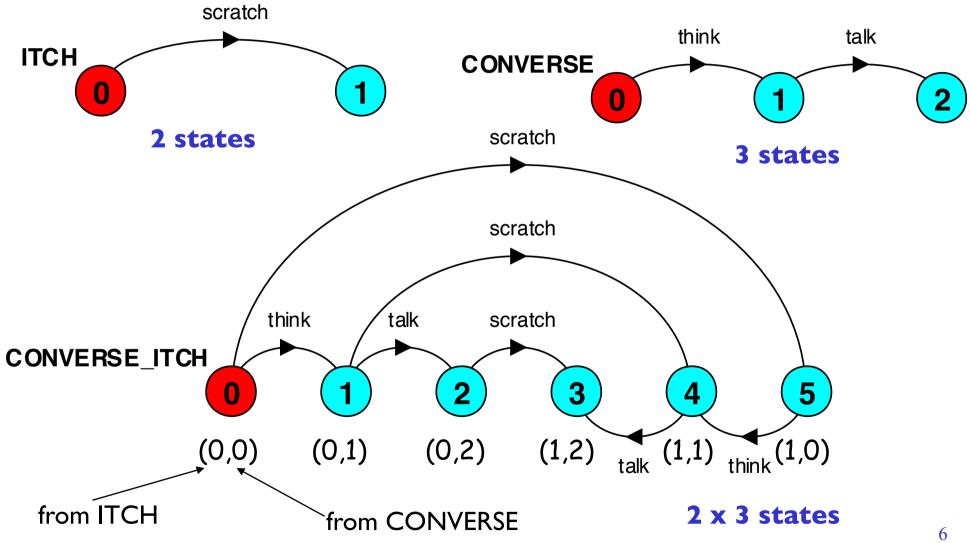
Both concurrency and parallelism require controlled access to shared resources. We use the terms parallel and concurrent interchangeably and generally do not distinguish between real and pseudo-concurrent execution.

3.1 Modeling Concurrency

- How should we model process execution speed?
 - arbitrary speed(we abstract away time)
- How do we model concurrency?
 - arbitrary relative order of actions from different processes
 (interleaving but preservation of each process order)
- What is the result?
 - provides a general model independent of scheduling (asynchronous model of execution)

parallel composition - action interleaving

If P and Q are processes then (P||Q) represents the concurrent execution of P and Q. The operator || is the parallel composition operator.


```
ITCH = (scratch->STOP).
CONVERSE = (think->talk->STOP).
||CONVERSE_ITCH = (ITCH || CONVERSE).
```

Disjoint alphabets

think > talk > scratch think > scratch > talk scratch > think > talk

Possible traces as a result of action interleaving.

parallel composition - action interleaving

parallel composition - algebraic laws

```
Commutative: (P||Q) = (Q||P)
```

Associative: (P||(Q||R)) = ((P||Q)||R)

= (P||Q||R).

Clock radio example:

```
CLOCK = (tick->CLOCK).
RADIO = (on->off->RADIO).

||CLOCK_RADIO = (CLOCK || RADIO).
```

LTS? Traces? Number of states?

modelling interaction - shared actions

If processes in a composition have actions in common, these actions are said to be **shared**. Shared actions are the way that process interaction is modeled. While unshared actions may be arbitrarily interleaved, a shared action must be executed at the same time by all processes that participate in the shared action.

```
MAKER = (make->ready->MAKER).
USER = (ready->use->USER).

| |MAKER_USER = (MAKER || USER).
```

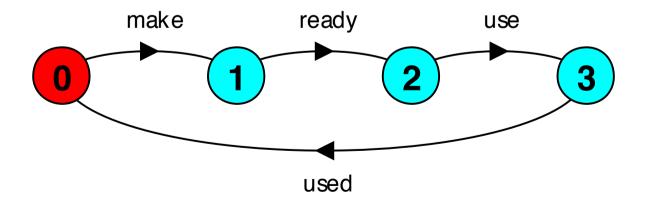
MAKER synchronizes with USER when ready.

LTS? Traces? Number of states?

Non-disjoint alphabets

modelling interaction - handshake

A handshake is an action acknowledged by another:

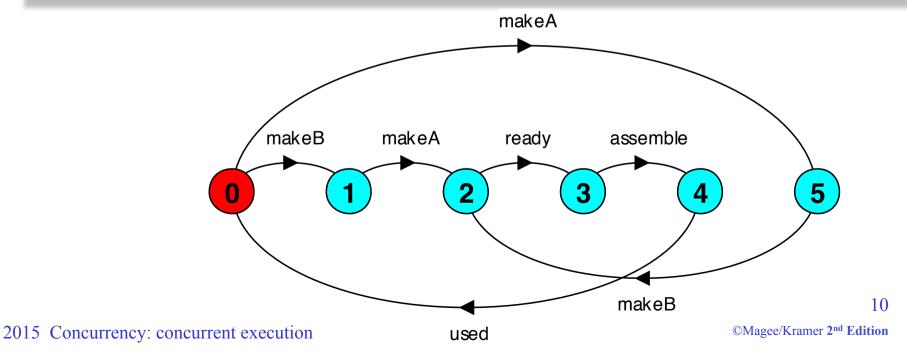

```
MAKERv2 = (make->ready->used->MAKERv2).

USERv2 = (ready->use->used ->USERv2).

| |MAKER_USERv2 = (MAKERv2 | | USERv2).

3 states

states?
```



4 states

Interaction constrains the overall behaviour.

modelling interaction - multiple processes

Multi-party synchronization:

```
MAKE_A = (makeA->ready->used->MAKE_A).
MAKE_B = (makeB->ready->used->MAKE_B).
ASSEMBLE = (ready->assemble->used->ASSEMBLE).
||FACTORY = (MAKE_A || MAKE_B || ASSEMBLE).
```


composite processes

A composite process is a parallel composition of primitive processes. These composite processes can be used in the definition of further compositions.

```
||MAKERS = (MAKE_A || MAKE_B).
||FACTORY = (MAKERS || ASSEMBLE).
```

Substituting the definition for MAKERS in FACTORY and applying the **commutative** and **associative** laws for parallel composition results in the original definition for FACTORY in terms of primitive processes.

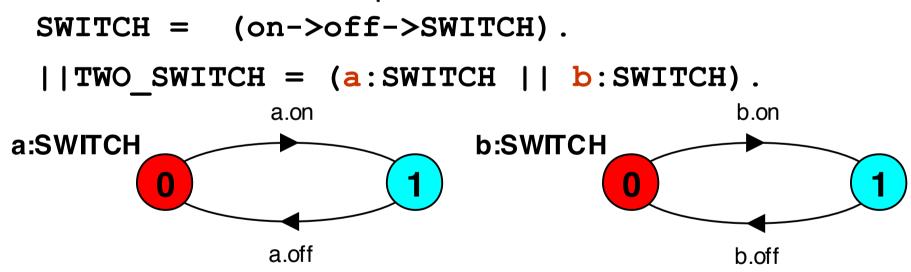
```
||FACTORY = (MAKE_A || MAKE_B || ASSEMBLE).
```

Example: a roller coaster model

A roller coaster control system only permits its car to depart when it is full.

Passengers arriving at the departure platform are registered by a turnstile. The controller signals the car to depart when there are enough passengers on the platform to fill the car to its maximum capacity of M passengers. The car then goes around the roller coaster track and then waits for another M passengers. A maximum of M passengers may occupy the platform.

The roller coaster consists of three interacting processes TURNSTILE, CONTROL and CAR.


Example: an abstract roller coaster model

```
const M = 3
//turnstile simulates passenger arrival
TURNSTILE = ( ... -> TURNSTILE).
//control counts passengers and signals when full
CONTROL
              = CONTROL[0],
CONTROL[i:0..M] = (...
                                 -> CONTROL[i+1]
                                 -> CONTROL[0]
//car departs when signalled
CAR = ( ... -> CAR).
||ROLLERCOASTER = ( ... ).
```

process instances and labelling

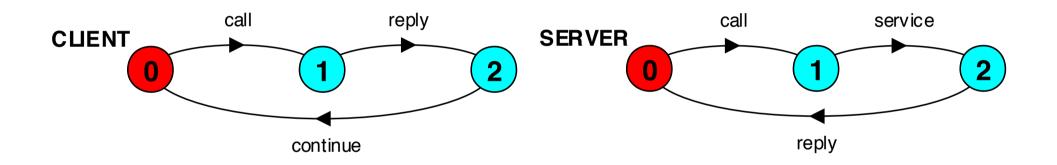
a:P creates an instance of process P and prefixes each action label in the alphabet of P with a.

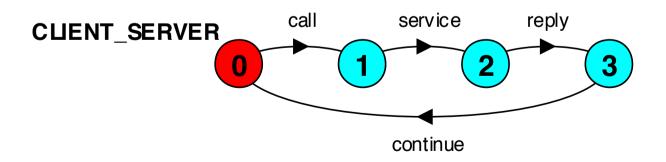
Two **instances** of a switch process:

An array of **instances** of the switch process:

```
||SWITCHES(N=3) = (forall[i:1..N] s[i]:SWITCH).
||SWITCHES(N=3) = (s[i:1..N]:SWITCH).
```

action relabelling


Relabelling functions are applied to processes to change the names of action labels. The general form of the relabeling function is: \[\langle newlabel_I \rangle lold label_I \rangle newlabel_n \rangle lold label_n \rangle . \]

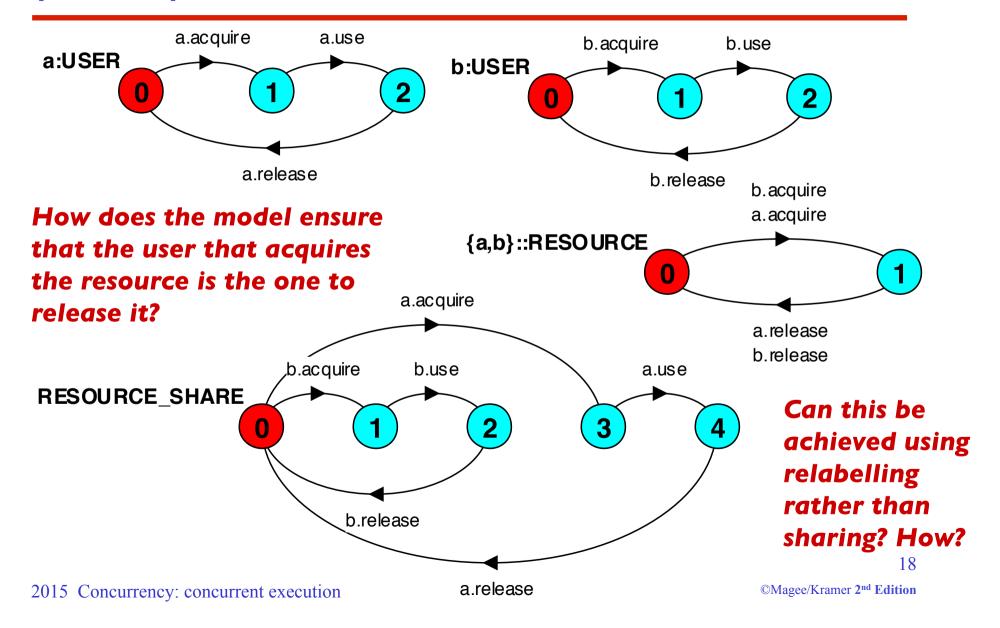

Relabelling to ensure that composed processes synchronize on particular actions.

```
CLIENT = (call->wait->continue->CLIENT).
SERVER = (request->service->reply->SERVER).
```

Note that both newlabel and oldlabel can be sets of labels.

action relabelling

process labelling by a set of prefix labels


2015 Concurrency: concurrent execution

```
\{aI,...,ax\}::P replaces every action label n in the alphabet of P with the labels a I.n,...,ax.n. Thus, every transition (n->X) in the definition of P is replaced with the transitions (\{aI.n,...,ax.n\} ->X).
```

Process prefixing is useful for modelling **shared** resources:

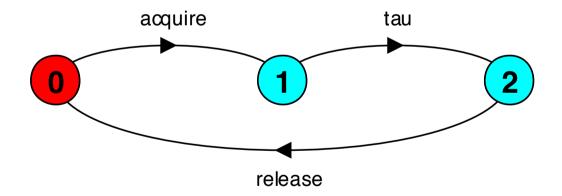
```
RESOURCE = (acquire->release->RESOURCE).
USER = (acquire->use->release->USER).
||RESOURCE_SHARE = (a:USER || b:USER || {a,b}::RESOURCE).
```

process prefix labels for shared resources

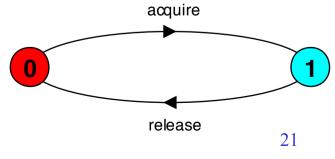
action relabelling - prefix labels

An alternative formulation of the client server system is described below using qualified or prefixed labels:

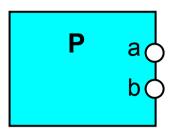
action hiding - abstraction to reduce complexity

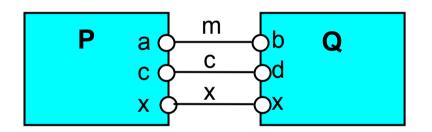

When applied to a process P, the hiding operator \{a1..ax} removes the action names a1..ax from the alphabet of P and makes these concealed actions "silent". These silent actions are labeled tau. Silent actions in different processes are not shared.

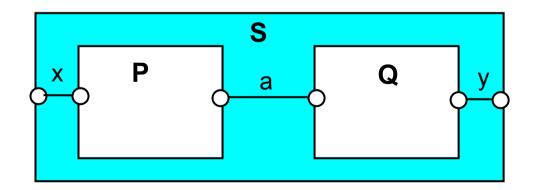
Sometimes it is more convenient to specify the set of labels to be exposed....


When applied to a process P, the interface operator @{a1..ax} hides all actions in the alphabet of P not labeled in the set a1..ax.

action hiding

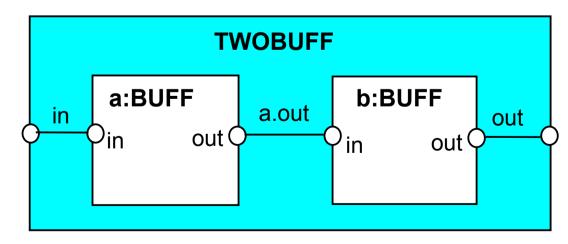

The following definitions are equivalent:


Minimization removes hidden tau actions to produce an LTS with equivalent observable behaviour.


structure diagrams – systems as interacting processes

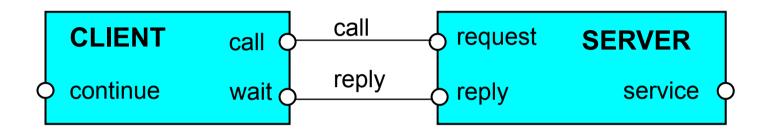
Process P with alphabet {a,b}.

Parallel Composition (P||Q) / {m/a,m/b,c/d}

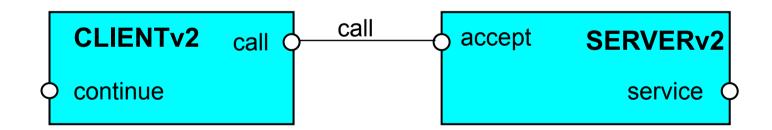


Composite process $||S = (P||Q) \otimes \{x,y\}$

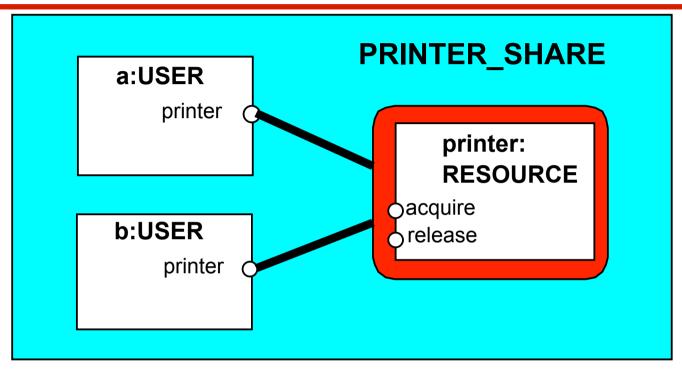
structure diagrams


We use structure diagrams to capture the structure of a model expressed by the static combinators: parallel composition, relabeling and hiding.

```
range T = 0..3
BUFF = (in[i:T]->out[i]->BUFF).
||TWOBUF = ?
```

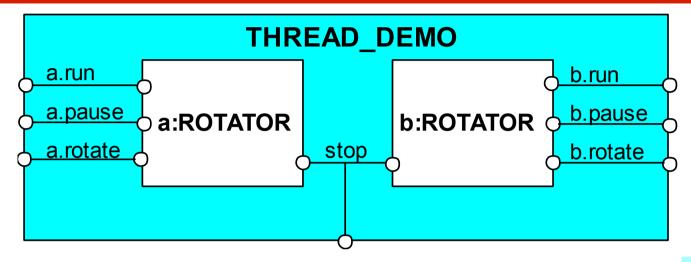


structure diagrams


Structure diagram for CLIENT SERVER

Structure diagram for CLIENT SERVERv2

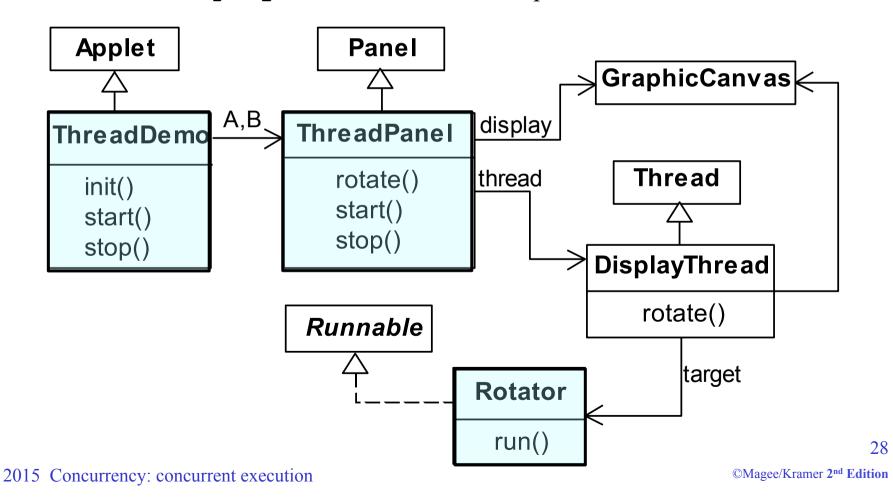
structure diagrams - resource sharing



3.2 Multi-threaded Programs in Java

Concurrency in Java occurs when more than one thread is alive. ThreadDemo has two threads which rotate displays.

ThreadDemo model



Interpret run, pause, interrupt as inputs, rotate as an output.

ThreadDemo implementation in Java - class diagram

ThreadDemo creates two ThreadPanel displays when initialized.

ThreadPanel manages the display and control buttons, and delegates calls to rotate() to DisplayThread. Rotator implements the runnable interface.

Rotator class

```
class Rotator implements Runnable {
  public void run() {
    try {
     while(true) ThreadPanel.rotate();
    } catch(InterruptedException e) {}
}
```

Rotator implements the runnable interface, calling
ThreadPanel.rotate() to move the display.

run() finishes if an exception is raised by Thread.interrupt().

ThreadPanel class

```
and control buttons for
public class ThreadPanel extends Panel {
                                                     a thread.
 // construct display with title and segment color c
 public ThreadPanel(String title, Color c) {...}
 // rotate display of currently running thread 6 degrees
                                                     Calls to rotate()
 // return value not used in this example
                                                     are delegated to
 public static boolean rotate()
                                                     DisplayThread.
          throws InterruptedException {...}
 // create a new thread with target r and start it running
 public void start(Runnable r) {
         thread = new DisplayThread(canvas, r, ...);
         thread.start();
                                                     Threads are created
                                                     and started by the
 // stop the thread using Thread.interrupt()
                                                     start() method, and
 public void stop() {thread.interrupt();}
                                                     terminated by the
                                                     stop() method.
```

ThreadPanel

manages the display

ThreadDemo class

```
public class ThreadDemo extends Applet {
  ThreadPanel A: ThreadPanel B:
  public void init() {
    A = new ThreadPanel("Thread A", Color.blue);
    B = new ThreadPanel("Thread B", Color.blue);
    add(A); add(B);
                                         ThreadDemo creates two
                                         ThreadPanel displays
  public void start() {
                                         when initialized and two
    A.start(new Rotator());
                                         threads when started.
    B.start(new Rotator());
  public void stop() {
                                         ThreadPanel is used
    A.stop();
                                         extensively in later
    B.stop();
                                         demonstration programs.
  Concurrency: concurrent execution
```

3.3 Java Concurrency Utilities Package

Java SE 5 introduced a package of advanced concurrency utilities in *java.util.concurrent* (more later). This was extended in Java SE 7 to include additional constructs to separate thread creation and management from the rest of the application using *executors*, *thread pools*, and *fork/join*.

Executor interface: replacement for thread creation, usually using existing thread:

replace (new Thread(r)).start(); runnable object r

with e.execute(r); Executor object e

ExecutorService: manage termination; return a *Future* for tracking thread status

Thread Pools: used to minimize the overhead of thread creation /termination

ExecutorService newFixedThreadPool(int nThreads)

- creates a fixed number with at most *nThreads* active threads

- tasks are allocated from a shared unbounded queue

Fork/Join: for recursive decomposition of tasks using thread pools

Summary

- Concepts
 - concurrent processes and process interaction
- ◆ Models
 - Asynchronous (arbitrary speed) & interleaving (arbitrary order).
 - Parallel composition as a finite state process with action interleaving.
 - Process interaction by shared actions.
 - Process labeling and action relabeling and hiding.
 - Structure diagrams
- Practice
 - Multiple threads in Java.