
2015 Concurrency: safety & liveness properties
1

©Magee/Kramer 2nd Edition

Chapter 7

Safety & Liveness
Properties

2015 Concurrency: safety & liveness properties
2

©Magee/Kramer 2nd Edition

safety & liveness properties

Concepts: properties: true for every possible execution

safety: nothing bad happens

liveness: something good eventually happens

Models: safety: no reachable ERROR/STOP state

progress: an action is eventually executed
fair choice and action priority

Practice: threads and monitors

Aim: property satisfaction.

2015 Concurrency: safety & liveness properties
3

©Magee/Kramer 2nd Edition

♦  STOP or deadlocked state (no outgoing transitions)

♦  ERROR process (-1) to detect erroneous behaviour

7.1 Safety

ACTUATOR
 =(command->ACTION),
ACTION
 =(respond->ACTUATOR

 |command->ERROR).

Trace to ERROR:
 command
 command

♦  analysis using LTSA:
(shortest trace)

A safety property asserts that nothing bad happens.

command

command

respond

-1 0 1

2015 Concurrency: safety & liveness properties
4

©Magee/Kramer 2nd Edition

Safety - property specification

♦  ERROR condition states what is not required (cf. exceptions).

♦  in complex systems, it is usually better to specify safety properties
by stating directly what is required.

property SAFE_ACTUATOR
 = (command
 -> respond
 -> SAFE_ACTUATOR
).

♦  analysis using LTSA as before.

command

respond

command

respond

-1 0 1

Keep the property alphabet as
small as possible – only relevant
actions!

2015 Concurrency: safety & liveness properties
5

©Magee/Kramer 2nd Edition

Safety properties

property POLITE
 =

Property that it is polite to knock before entering a room.

Traces: knockàenter enter

 knockàknock

(knock->enter->POLITE).

Note: In all states, all
the actions in the
alphabet of a property
are eligible choices.

knock

enter

knock

enter

-1 0 1

2015 Concurrency: safety & liveness properties
6

©Magee/Kramer 2nd Edition

Safety properties

Safety property P defines a deterministic process that
asserts that any trace including actions in the alphabet of P, is
accepted by P. Those actions that are not part of the
specified behaviour of P are transitions to the ERROR state.

Thus, if P is composed with S, then traces of actions in
(alphabet of S ∩ alphabet of P) must also be valid
traces of P, otherwise ERROR is reachable.

Transparency of safety properties:

Since all actions in the alphabet of a property are eligible choices, composing a
property with a set of processes does not affect their correct behaviour. However,
if a behaviour can occur which violates the safety property, then ERROR is
reachable. Properties must be deterministic to be transparent.

Why?

2015 Concurrency: safety & liveness properties
7

©Magee/Kramer 2nd Edition

Safety properties

♦  How can we specify that some action, disaster, never occurs?

property CALM = STOP + {disaster}.

disaster

-1 0

A safety property must be specified so as
to include all the acceptable, valid
behaviours in its alphabet.

2015 Concurrency: safety & liveness properties
8

©Magee/Kramer 2nd Edition

Safety - mutual exclusion

LOOP = (mutex.down -> enter -> exit
 -> mutex.up -> LOOP).

||SEMADEMO = (p[1..3]:LOOP
 ||{p[1..3]}::mutex:SEMAPHORE(1)).

How do we check
that this does
indeed ensure
mutual exclusion in
the critical section?

property MUTEX =(p[i:1..3].enter
 -> p[i].exit
 -> MUTEX).

||CHECK = (SEMADEMO || MUTEX).

Check safety using LTSA.

What happens if semaphore is initialized to 2?

What happens if semaphore is initialized to 0?

2015 Concurrency: safety & liveness properties
9

©Magee/Kramer 2nd Edition

7.2 Single Lane Bridge problem

A bridge over a river is only wide enough to permit a single lane of traffic.
Consequently, cars can only move concurrently if they are moving in the same
direction. A safety violation occurs if two cars moving in different directions
enter the bridge at the same time.

2015 Concurrency: safety & liveness properties
10

©Magee/Kramer 2nd Edition

Single Lane Bridge - model

♦  Events or actions of interest?
enter and exit

♦  Identify processes.

cars and bridge
♦  Identify properties.

oneway
♦ Define each process

and interactions

(structure).

red[ID].
{enter,exit}

blue[ID].
{enter,exit}

BRIDGE

property
ONEWAY

CARS

Single
Lane
Bridge

2015 Concurrency: safety & liveness properties
11

©Magee/Kramer 2nd Edition

Single Lane Bridge - CARS model

const N = 3 // number of each type of car
range T = 0..N // type of car count
range ID= 1..N // car identities

CAR = (enter->exit->CAR).

No overtaking constraints: To model the fact that cars
cannot pass each other on the bridge, we model a CONVOY of
cars in the same direction. We will have a red and a blue convoy
of up to N cars for each direction:

||CARS = (red:CONVOY || blue:CONVOY).

2015 Concurrency: safety & liveness properties
12

©Magee/Kramer 2nd Edition

Single Lane Bridge - CONVOY model

NOPASS1 = C[1], //preserves entry order
C[i:ID] = ([i].enter-> C[i%N+1]).
NOPASS2 = C[1], //preserves exit order
C[i:ID] = ([i].exit-> C[i%N+1]).

||CONVOY = ([ID]:CAR||NOPASS1||NOPASS2).

Permits 1.enterà 2.enterà 1.exità 2.exit
but not 1.enterà 2.enterà 2.exità 1.exit

 ie. no overtaking.

1.enter 2.enter

3.enter

0 1 2

1.exit 2.exit

3.exit

0 1 2

2015 Concurrency: safety & liveness properties
13

©Magee/Kramer 2nd Edition

Single Lane Bridge - BRIDGE model

BRIDGE = BRIDGE[0][0], // initially empty
BRIDGE[nr:T][nb:T] = //nr is the red count, nb the blue

 (when(nb==0)
 red[ID].enter -> BRIDGE[nr+1][nb] //nb==0
 | red[ID].exit -> BRIDGE[nr-1][nb]
 |when (nr==0)
 blue[ID].enter-> BRIDGE[nr][nb+1] //nr==0
 | blue[ID].exit -> BRIDGE[nr][nb-1]

).

Cars can move concurrently on the bridge only if in the same direction. The bridge
maintains counts of blue and red cars on the bridge. Red cars are only allowed to
enter when the blue count is zero and vice-versa.

Even when 0, exit actions permit the car counts
to be decremented. LTSA maps these undefined
states to ERROR.

2015 Concurrency: safety & liveness properties
14

©Magee/Kramer 2nd Edition

Single Lane Bridge - safety property ONEWAY

property ONEWAY =(red[ID].enter -> RED[1]
 |blue[ID].enter -> BLUE[1]
),
RED[i:ID] = (red[ID].enter -> RED[i+1]
 |when(i==1)red[ID].exit -> ONEWAY
 |when(i>1) red[ID].exit -> RED[i-1]
), //i is a count of red cars on the bridge
BLUE[i:ID]= (blue[ID].enter-> BLUE[i+1]
 |when(i==1)blue[ID].exit -> ONEWAY
 |when(i>1)blue[ID].exit -> BLUE[i-1]
). //i is a count of blue cars on the bridge

We now specify a safety property to check that cars do not collide!
While red cars are on the bridge only red cars can enter; similarly for blue cars.
When the bridge is empty, either a red or a blue car may enter.

2015 Concurrency: safety & liveness properties
15

©Magee/Kramer 2nd Edition

Single Lane Bridge - model analysis

Is the safety property
ONEWAY violated?

||SingleLaneBridge = (CARS|| BRIDGE||ONEWAY).

No deadlocks/errors

Trace to property violation in ONEWAY:
 red.1.enter
 blue.1.enter

Without the BRIDGE
contraints, is the safety
property ONEWAY
violated?

||SingleLaneBridge = (CARS||ONEWAY).

2015 Concurrency: safety & liveness properties
16

©Magee/Kramer 2nd Edition

Single Lane Bridge - implementation in Java

Active entities (cars) are
implemented as threads.

Passive entity (bridge) is
implemented as a monitor.

BridgeCanvas enforces no
overtaking.

Runnable

RedCar BlueCar

BridgeCanvas

controlcontrol
Bridge

Safe
Bridge

displaydisplay

ThreadApplet

Single
Lane
Bridge

blue,
red

2015 Concurrency: safety & liveness properties
17

©Magee/Kramer 2nd Edition

Single Lane Bridge - BridgeCanvas
An instance of BridgeCanvas class is created by SingleLaneBridge applet - ref is
passed to each newly created RedCar and BlueCar object.

class BridgeCanvas extends Canvas {

 public void init(int ncars) {…} //set number of cars

 //move red car with the identity i a step
 //returns true for the period on bridge, from just before until just after
 public boolean moveRed(int i)
 throws InterruptedException{…}

 //move blue car with the identity i a step
 //returns true for the period on bridge, from just before until just after
 public boolean moveBlue(int i)
 throws InterruptedException{…}

 public synchronized void freeze(){…}// freeze display
 public synchronized void thaw(){…} //unfreeze display
}

2015 Concurrency: safety & liveness properties
18

©Magee/Kramer 2nd Edition

Single Lane Bridge - RedCar

class RedCar implements Runnable {

 BridgeCanvas display; Bridge control; int id;

 RedCar(Bridge b, BridgeCanvas d, int id) {
 display = d; this.id = id; control = b;
 }

 public void run() {
 try {
 while(true) {
 while (!display.moveRed(id)); // not on bridge
 control.redEnter(); // request access to bridge
 while (display.moveRed(id)); // move over bridge
 control.redExit(); // release access to bridge
 }
 } catch (InterruptedException e) {}
 }
}

Similarly for the BlueCar

2015 Concurrency: safety & liveness properties
19

©Magee/Kramer 2nd Edition

Single Lane Bridge - class Bridge

class Bridge {
 synchronized void redEnter()
 throws InterruptedException {}
 synchronized void redExit() {}
 synchronized void blueEnter()
 throws InterruptedException {}
 synchronized void blueExit() {}
}

Class Bridge provides a null implementation of the access
methods i.e. no constraints on the access to the bridge.

Result………… ?

2015 Concurrency: safety & liveness properties
20

©Magee/Kramer 2nd Edition

Single Lane Bridge

To ensure safety, the “safe” check box must be chosen in order
to select the SafeBridge implementation.

2015 Concurrency: safety & liveness properties
21

©Magee/Kramer 2nd Edition

Single Lane Bridge - SafeBridge

class SafeBridge extends Bridge {

 private int nred = 0; //number of red cars on bridge
 private int nblue = 0; //number of blue cars on bridge

 // Monitor Invariant: nred≥0 and nblue≥0 and
 // not (nred>0 and nblue>0)

 synchronized void redEnter()
 throws InterruptedException {
 while (nblue>0) wait();
 ++nred;
 }

 synchronized void redExit(){
 --nred;

 if (nred==0)notifyAll();
 }

This is a direct
translation from
the BRIDGE
model.

2015 Concurrency: safety & liveness properties
22

©Magee/Kramer 2nd Edition

synchronized void blueEnter()
 throws InterruptedException {
 while (nred>0) wait();
 ++nblue;
 }

 synchronized void blueExit(){
 --nblue;
 if (nblue==0)notifyAll();
 }
}

Single Lane Bridge - SafeBridge

To avoid unnecessary thread switches, we use conditional notification to
wake up waiting threads only when the number of cars on the bridge is zero i.e.
when the last car leaves the bridge.

But does every car eventually get an opportunity to cross
the bridge? This is a liveness property.

2015 Concurrency: safety & liveness properties
23

©Magee/Kramer 2nd Edition

7.3 Liveness

A safety property asserts that nothing bad happens.

A liveness property asserts that something good eventually
happens.

Single Lane Bridge: Does every car eventually get an opportunity
to cross the bridge?

ie. to make PROGRESS?

A progress property asserts that it is always the case that a particular
action is eventually executed. Progress is the opposite of starvation, the
name given to a concurrent programming situation in which an action
is never executed.

2015 Concurrency: safety & liveness properties
24

©Magee/Kramer 2nd Edition

Progress properties - fair choice

COIN =(toss->heads->COIN

 |toss->tails->COIN).

If a coin were tossed an
infinite number of times, we
would expect that heads
would be chosen infinitely
often and that tails would be
chosen infinitely often.

This requires Fair Choice !

toss

toss

heads

tails

0 1 2

Fair Choice: If a choice over a set of transitions is executed
infinitely often, then every transition in the set will be executed
infinitely often.

2015 Concurrency: safety & liveness properties
25

©Magee/Kramer 2nd Edition

Progress properties

progress P = {a1,a2..an} defines a progress property
P which asserts that in an infinite execution of a target system,
at least one of the actions a1,a2..an will be executed
infinitely often.

COIN system: progress HEADS = {heads} ?
 progress TAILS = {tails} ?

LTSA check progress: No progress violations detected.

2015 Concurrency: safety & liveness properties
26

©Magee/Kramer 2nd Edition

pick

pick toss

heads

toss
toss

tails
heads

0 1 2 3 4 5

Progress properties

Suppose that there were two possible coins that could be picked
up:

TWOCOIN = (pick->COIN|pick->TRICK),
TRICK = (toss->heads->TRICK),
COIN = (toss->heads->COIN|toss->tails->COIN).

TWOCOIN: progress HEADS = {heads} ?
 progress TAILS = {tails} ?

a trick coin and a
regular coin……

2015 Concurrency: safety & liveness properties
27

©Magee/Kramer 2nd Edition

Progress properties

progress HEADSorTails = {heads,tails} ?

progress HEADS = {heads}

progress TAILS = {tails}

LTSA check progress
Progress violation: TAILS
Trace to terminal set of states:

 pick
Cycle in terminal set:

 toss
 heads

Actions in terminal set:
 {heads, toss}

pick

pick toss

heads

toss
toss

tails
heads

0 1 2 3 4 5

2015 Concurrency: safety & liveness properties
28

©Magee/Kramer 2nd Edition

Progress analysis

A terminal set of states is one in which every state is reachable from every other
state in the set via one or more transitions, and there is no transition from within
the set to any state outside the set.

pick

pick toss

heads

toss
toss

tails
heads

0 1 2 3 4 5

Terminal sets for
TWOCOIN:

{1,2} and {3,4,5}

Given fair choice, each terminal set represents an execution in which each action
used in a transition in the set is executed infinitely often.

Since there is no transition out of a terminal set, any action that is not used in the
set cannot occur infinitely often in all executions of the system - and hence
represents a potential progress violation!

2015 Concurrency: safety & liveness properties
29

©Magee/Kramer 2nd Edition

Progress analysis

A progress property is violated if analysis finds a terminal set of
states in which none of the progress set actions appear.

progress TAILS = {tails} in {1,2}

Default: given fair choice, for every action in the alphabet of the target system,
that action will be executed infinitely often. This is equivalent to specifying a
separate progress property for every action.

pick

pick toss

heads

toss
toss

tails
heads

0 1 2 3 4 5

Default analysis
for TWOCOIN?

2015 Concurrency: safety & liveness properties
30

©Magee/Kramer 2nd Edition

Progress analysis

Progress violation for actions:
 {pick, tails}

Trace to terminal set of states:
 pick

Cycle in terminal set:
 toss
 heads

Actions in terminal set:
 {heads, toss}

Default analysis for
TWOCOIN: separate
progress property for every
action.

If the default holds, then every other progress property holds i.e. every action is
executed infinitely often and system consists of a single terminal set of states.

pick

pick toss

heads

toss
toss

tails
heads

0 1 2 3 4 5

2015 Concurrency: safety & liveness properties
31

©Magee/Kramer 2nd Edition

Progress - single lane bridge

progress BLUECROSS = {blue[ID].enter}
progress REDCROSS = {red[ID].enter}
No progress violations detected.

The Single Lane Bridge
implementation can
permit progress
violations.
However, if default
progress analysis is
applied to the model then
no violations are

detected!
Why not?

Fair choice means that eventually every possible execution occurs, including
those in which cars do not starve. To detect progress problems we must check
under adverse conditions. We superimpose some scheduling policy for actions,
which models the situation in which the bridge is congested.

2015 Concurrency: safety & liveness properties
32

©Magee/Kramer 2nd Edition

Progress - action priority

Action priority expressions describe scheduling properties:
||C = (P||Q)<<{a1,…,an} specifies a composition in
which the actions a1,..,an have higher priority than any other
action in the alphabet of P||Q including the silent action tau.

In any choice in this system which has one or more of the actions
a1,..,an labeling a transition, the transitions labeled with other,
lower priority actions are discarded.

High
Priority
(“<<”)

||C = (P||Q)>>{a1,…,an} specifies a composition in
which the actions a1,..,an have lower priority than any other
action in the alphabet of P||Q including the silent action tau.

In any choice in this system which has one or more transitions not
labeled by a1,..,an, the transitions labeled by a1,..,an are
discarded.

Low
Priority
(“>>”)

2015 Concurrency: safety & liveness properties
33

©Magee/Kramer 2nd Edition

Progress - action priority

NORMAL =(work->play->NORMAL
 |sleep->play->NORMAL).

||HIGH =(NORMAL)<<{work}.

||LOW =(NORMAL)>>{work}.

work

sleep

play

play

0 1 2

work

play

0 1

sleep

play

0 1

Action priority simplifies the resulting LTS by
discarding lower priority actions from choices.

2015 Concurrency: safety & liveness properties
34

©Magee/Kramer 2nd Edition

7.4 Congested single lane bridge

progress BLUECROSS = {blue[ID].enter}
progress REDCROSS = {red[ID].enter}

BLUECROSS - eventually one of the blue cars will be able to enter

REDCROSS - eventually one of the red cars will be able to enter

Congestion using action priority?
Could give red cars priority over blue (or vice versa) ?

In practice neither has priority over the other.

Instead we merely encourage congestion by lowering the priority of the
exit actions of both cars from the bridge.

||CongestedBridge = (SingleLaneBridge)
 >>{red[ID].exit,blue[ID].exit}.

 Progress Analysis ? LTS?

2015 Concurrency: safety & liveness properties
35

©Magee/Kramer 2nd Edition

congested single lane bridge model

Progress violation: REDCROSS
Trace to terminal set of states:

 blue.1.enter
Cycle in terminal set:

 blue.2.enter
 blue.1.exit
 blue.1.enter
 blue.2.exit

Actions in terminal set:
 blue[1..2].{enter, exit}

This corresponds
with the observation
that, with more
than one car
(N=2 say), it is
possible that
whichever colour
car enters the bridge
first could
continuously occupy
the bridge
preventing the other
colour from ever
crossing.

Similarly for BLUECROSS

2015 Concurrency: safety & liveness properties
36

©Magee/Kramer 2nd Edition

congested single lane bridge model

red.1.enter

blue.1.enterblue.2.enter blue.1.exit blue.1.enter

blue.2.exit

red.2.enter red.1.exit red.1.enter

red.2.exit

0 1 2 3 4 5 6 7 8

||CongestedBridge = (SingleLaneBridge)
 >>{red[ID].exit,blue[ID].exit}.

Will the results be the same if we model congestion by giving car entry to the bridge
high priority?

Can congestion occur if there is only one car moving in each direction?

2015 Concurrency: safety & liveness properties
37

©Magee/Kramer 2nd Edition

Progress - revised single lane bridge model

The bridge needs to know whether or not cars are waiting to cross.

Modify CAR:

CAR = (request->enter->exit->CAR).

Modify BRIDGE:
Red cars are only allowed to enter the bridge if there are no
blue cars on the bridge and there are no blue cars waiting
to enter the bridge.

Blue cars are only allowed to enter the bridge if there are no
red cars on the bridge and there are no red cars waiting
to enter the bridge.

2015 Concurrency: safety & liveness properties
38

©Magee/Kramer 2nd Edition

Progress - revised single lane bridge model

/* nr– number of red cars on the bridge wr – number of red cars waiting to enter
 nb– number of blue cars on the bridge wb – number of blue cars waiting to enter
*/
BRIDGE = BRIDGE[0][0][0][0],
BRIDGE[nr:T][nb:T][wr:T][wb:T] =
 (red[ID].request -> BRIDGE[nr][nb][wr+1][wb]
 |when (nb==0 && wb==0)
 red[ID].enter -> BRIDGE[nr+1][nb][wr-1][wb]
 |red[ID].exit -> BRIDGE[nr-1][nb][wr][wb]
 |blue[ID].request -> BRIDGE[nr][nb][wr][wb+1]
 |when (nr==0 && wr==0)
 blue[ID].enter -> BRIDGE[nr][nb+1][wr][wb-1]
 |blue[ID].exit -> BRIDGE[nr][nb-1][wr][wb]
).

OK now?

2015 Concurrency: safety & liveness properties
39

©Magee/Kramer 2nd Edition

Progress - analysis of revised single lane bridge model

Trace to DEADLOCK:
 red.1.request
 red.2.request
 red.3.request
 blue.1.request
 blue.2.request
 blue.3.request

The trace is the scenario in
which there are cars waiting at
both ends, and consequently,
the bridge does not allow
either red or blue cars to
enter.

Solution?

Introduce some asymmetry in the problem (cf. Dining philosophers).

This takes the form of a boolean variable bt which breaks the deadlock by
indicating whether it is the turn of blue cars or red cars to enter the bridge.

Arbitrarily set bt to true initially giving blue initial precedence.

2015 Concurrency: safety & liveness properties
40

©Magee/Kramer 2nd Edition

Progress - 2 nd revision of single lane bridge model

const True = 1
const False = 0
range B = False..True
/* bt - true indicates blue turn, false indicates red turn */
BRIDGE = BRIDGE[0][0][0][0][True],
BRIDGE[nr:T][nb:T][wr:T][wb:T][bt:B] =
 (red[ID].request -> BRIDGE[nr][nb][wr+1][wb][bt]
 |when (nb==0 && (wb==0||!bt))
 red[ID].enter -> BRIDGE[nr+1][nb][wr-1][wb][bt]
 |red[ID].exit -> BRIDGE[nr-1][nb][wr][wb][True]
 |blue[ID].request -> BRIDGE[nr][nb][wr][wb+1][bt]
 |when (nr==0 && (wr==0||bt))
 blue[ID].enter -> BRIDGE[nr][nb+1][wr][wb-1][bt]
 |blue[ID].exit -> BRIDGE[nr][nb-1][wr][wb][False]
).

Analysis ?

When should bt be reset, on entry or exit?

2015 Concurrency: safety & liveness properties
41

©Magee/Kramer 2nd Edition

Revised single lane bridge implementation - FairBridge
class FairBridge extends Bridge {

 private int nred = 0; //count of red cars on the bridge
 private int nblue = 0; //count of blue cars on the bridge
 private int waitblue = 0; //count of waiting blue cars
 private int waitred = 0; //count of waiting red cars
 private boolean blueturn = true;

 synchronized void redEnter()
 throws InterruptedException {
 ++waitred;
 while (nblue>0||(waitblue>0 && blueturn)) wait();
 --waitred;
 ++nred;
 }

 synchronized void redExit(){
 --nred;
 blueturn = true;
 if (nred==0)notifyAll();
 }

Negation of the
model guard.

2015 Concurrency: safety & liveness properties
42

©Magee/Kramer 2nd Edition

Revised single lane bridge implementation - FairBridge

 synchronized void blueEnter(){
 throws InterruptedException {
 ++waitblue;
 while (nred>0||(waitred>0 && !blueturn)) wait();
 --waitblue;
 ++nblue;
 }

 synchronized void blueExit(){
 --nblue;
 blueturn = false;
 if (nblue==0) notifyAll();
 }
}

Note that we did not need to introduce a new request monitor method. The
existing enter methods can be modified to increment a wait count before testing
whether or not the caller can access the bridge.

The “fair” check box
must be chosen in
order to select the
FairBridge
implementation.

2015 Concurrency: safety & liveness properties
43

©Magee/Kramer 2nd Edition

7.5 Readers and Writers

A shared database is accessed by two kinds of processes. Readers execute
transactions that examine the database while Writers both examine and update
the database. A Writer must have exclusive access to the database; any number of
Readers may concurrently access it.

Light blue
indicates
database
access.

2015 Concurrency: safety & liveness properties
44

©Magee/Kramer 2nd Edition

readers/writers model

♦  Events or actions of interest?

acquireRead, releaseRead, acquireWrite, releaseWrite

♦  Identify processes.

Readers, Writers & the RW_Lock

♦  Identify properties.

RW_Safe

RW_Progress

♦ Define each process

and interactions

(structure).

writer[1..Nwrite]:
WRITER

reader[1..Nread]:
READER

READERS
_WRITERS acquireRead acquireWrite

READWRITELOCK

releaseRead releaseWrite

2015 Concurrency: safety & liveness properties
45

©Magee/Kramer 2nd Edition

readers/writers model - READER & WRITER

set Actions =
 {acquireRead,releaseRead,acquireWrite,releaseWrite}

READER = (acquireRead->examine->releaseRead->READER)
 + Actions
 \ {examine}.

WRITER = (acquireWrite->modify->releaseWrite->WRITER)
 + Actions
 \ {modify}.

Alphabet extension is used to ensure that the other access actions cannot
occur freely for any prefixed instance of the process (as before).

Action hiding is used as actions examine and modify are not relevant
for access synchronisation.

2015 Concurrency: safety & liveness properties
46

©Magee/Kramer 2nd Edition

readers/writers model - RW_LOCK

const False = 0 const True = 1
range Bool = False..True
const Nread = 2 // Maximum readers
const Nwrite= 2 // Maximum writers

RW_LOCK = RW[0][False],
RW[readers:0..Nread][writing:Bool] =

 (when (!writing)
 acquireRead -> RW[readers+1][writing]
 |releaseRead -> RW[readers-1][writing]
 |when (readers==0 && !writing)
 acquireWrite -> RW[readers][True]
 |releaseWrite -> RW[readers][False]
).

The lock
maintains a count
of the number of
readers, and a
Boolean for the
writers.

2015 Concurrency: safety & liveness properties
47

©Magee/Kramer 2nd Edition

readers/writers model - safety

property SAFE_RW
 = (acquireRead -> READING[1]
 |acquireWrite -> WRITING
),
READING[i:1..Nread]
 = (acquireRead -> READING[i+1]
 |when(i>1) releaseRead -> READING[i-1]
 |when(i==1) releaseRead -> SAFE_RW
),
WRITING = (releaseWrite -> SAFE_RW).

We can check that RW_LOCK satisfies the safety property……

||READWRITELOCK = (RW_LOCK || SAFE_RW).

Safety Analysis ? LTS?

2015 Concurrency: safety & liveness properties
48

©Magee/Kramer 2nd Edition

readers/writers model

An ERROR occurs if a reader or
writer is badly behaved
(release before acquire or
more than two readers).

We can now compose the
READWRITELOCK with
READER and WRITER
processes according to our
structure… …

||READERS_WRITERS
 = (reader[1..Nread] :READER
 || writer[1..Nwrite]:WRITER
 ||{reader[1..Nread],
 writer[1..Nwrite]}::READWRITELOCK).

Safety and
Progress
Analysis ?

acquireRead

releaseRead

acquireWrite

releaseWrite

releaseRead

releaseWrite

acquireRead

releaseRead

releaseWrite

acquireRead

releaseRead

releaseWrite

-1 0 1 2 3

2015 Concurrency: safety & liveness properties
49

©Magee/Kramer 2nd Edition

progress WRITE = {writer[1..Nwrite].acquireWrite}
progress READ = {reader[1..Nread].acquireRead}

readers/writers - progress

WRITE - eventually one of the writers will acquireWrite
READ - eventually one of the readers will acquireRead

||RW_PROGRESS = READERS_WRITERS
 >>{reader[1..Nread].releaseRead,
 writer[1..Nwrite].releaseWrite}.

Progress Analysis ? LTS?

Adverse conditions using action priority?
we lower the priority of the release actions for both readers and
writers.

2015 Concurrency: safety & liveness properties
50

©Magee/Kramer 2nd Edition

readers/writers model - progress

Progress violation: WRITE
Path to terminal set of states:

 reader.1.acquireRead
Actions in terminal set:
{reader.1.acquireRead, reader.1.releaseRead,
 reader.2.acquireRead, reader.2.releaseRead}

Writer
starvation:
The number of
readers never
drops to zero.

reader.1.acquireRead

reader.2.acquireRead

writer.1.acquireWrite

writer.2.acquireWrite

writer.2.releaseWrite

writer.1.releaseWrite

reader.1.acquireRead

reader.1.releaseRead

reader.2.releaseRead

reader.2.acquireRead

0 1 2 3 4 5

Try the
Applet!

2015 Concurrency: safety & liveness properties
51

©Magee/Kramer 2nd Edition

readers/writers implementation - monitor interface

interface ReadWrite {
 public void acquireRead()
 throws InterruptedException;
 public void releaseRead();
 public void acquireWrite()
 throws InterruptedException;
 public void releaseWrite();
}

We define an interface that identifies the monitor methods that
must be implemented, and develop a number of alternative
implementations of this interface.

Firstly, the safe READWRITELOCK.

We concentrate on the monitor implementation:

2015 Concurrency: safety & liveness properties
52

©Magee/Kramer 2nd Edition

readers/writers implementation - ReadWriteSafe

class ReadWriteSafe implements ReadWrite {
 private int readers =0;
 private boolean writing = false;

 public synchronized void acquireRead()
 throws InterruptedException {
 while (writing) wait();
 ++readers;
 }

 public synchronized void releaseRead() {
 --readers;
 if(readers==0) notify();
 }

Unblock a single writer when no more readers.

2015 Concurrency: safety & liveness properties
53

©Magee/Kramer 2nd Edition

readers/writers implementation - ReadWriteSafe

 public synchronized void acquireWrite()
 throws InterruptedException {
 while (readers>0 || writing) wait();
 writing = true;
 }

 public synchronized void releaseWrite() {
 writing = false;
 notifyAll();
 }
}

Unblock all readers

However, this monitor implementation suffers from the WRITE progress
problem: possible writer starvation if the number of readers never drops
to zero.

Solution?

2015 Concurrency: safety & liveness properties
54

©Magee/Kramer 2nd Edition

readers/writers - writer priority

Strategy: Block
readers if there is
a writer waiting.

set Actions = {acquireRead,releaseRead,acquireWrite,
 releaseWrite,requestWrite}

WRITER =(requestWrite->acquireWrite->modify
 ->releaseWrite->WRITER
)+Actions\{modify}.

2015 Concurrency: safety & liveness properties
55

©Magee/Kramer 2nd Edition

readers/writers model - writer priority

RW_LOCK = RW[0][False][0],
RW[readers:0..Nread][writing:Bool][waitingW:0..Nwrite]
= (when (!writing && waitingW==0)
 acquireRead -> RW[readers+1][writing][waitingW]
 |releaseRead -> RW[readers-1][writing][waitingW]
 |when (readers==0 && !writing)
 acquireWrite-> RW[readers][True][waitingW-1]
 |releaseWrite-> RW[readers][False][waitingW]
 |requestWrite-> RW[readers][writing][waitingW+1]
).

Safety and Progress Analysis ?

2015 Concurrency: safety & liveness properties
56

©Magee/Kramer 2nd Edition

readers/writers model - writer priority

Progress violation: READ
Path to terminal set of states:

 writer.1.requestWrite
 writer.2.requestWrite

Actions in terminal set:
{writer.1.requestWrite, writer.1.acquireWrite,
 writer.1.releaseWrite, writer.2.requestWrite,
 writer.2.acquireWrite, writer.2.releaseWrite}

Reader
starvation:
if always a
writer
waiting.

No deadlocks/errors

property RW_SAFE:

progress READ and WRITE:

In practice, this may be satisfactory as is usually more read access than write, and
readers generally want the most up to date information.

2015 Concurrency: safety & liveness properties
57

©Magee/Kramer 2nd Edition

readers/writers implementation - ReadWritePriority

class ReadWritePriority implements ReadWrite{
 private int readers =0;
 private boolean writing = false;
 private int waitingW = 0; // no of waiting Writers.

 public synchronized void acquireRead()
 throws InterruptedException {
 while (writing || waitingW>0) wait();
 ++readers;
 }

 public synchronized void releaseRead() {
 --readers;
 if (readers==0) notifyAll();
 }

May also be readers waiting

2015 Concurrency: safety & liveness properties
58

©Magee/Kramer 2nd Edition

readers/writers implementation - ReadWritePriority

synchronized public void acquireWrite()
 throws InterruptedException {

 ++waitingW;
 while (readers>0 || writing) wait();
 --waitingW;
 writing = true;
 }

 synchronized public void releaseWrite() {
 writing = false;
 notifyAll();
 }
}

Both READ and WRITE progress properties can be satisfied by introducing a
turn variable as in the Single Lane Bridge.

2015 Concurrency: safety & liveness properties
59

©Magee/Kramer 2nd Edition

Java ReadWriteLock
java.util.concurrent includes a specialized lock ReadWriteLock which maintains a
pair of associated locks: readLock and writeLock with optional preference to the
longest waiting thread (cf. ReentrantLock, and not ensuring fair thread scheduling.)
class dataBase { …

 private ReadWriteLock rwLock =

 new ReentrantReadWriteLock(true);
 Lock wLock = rwLock.writeLock();
 Lock rLock = rwLock.readLock();

 public … readDB(…) {
 rLock.lock();
 try { …reading… } finally {rLock.unlock(); }

 }
 public void updateDB(…){

 wLock.lock(); }

 try { …writing… } finally {wLock.unlock(); }
 }
}

optional “fairness”

2015 Concurrency: safety & liveness properties
60

©Magee/Kramer 2nd Edition

Summary

u Concepts
l  properties: true for every possible execution

l  safety: nothing bad happens
l  liveness: something good eventually happens

u Models
l  safety: no reachable ERROR/STOP state

compose safety properties at appropriate stages

l  progress: an action is always eventually executed
fair choice and action priority
apply progress check on the final target system model

u Practice
l  threads and monitors Aim: property satisfaction

