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safety & liveness properties 

Concepts:   properties: true for every possible execution

safety: nothing bad happens

liveness: something good eventually happens

  
Models: safety:  no reachable ERROR/STOP state

progress: an action is eventually executed 
fair choice and action priority

Practice:  threads and monitors

Aim:  property satisfaction.
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♦  STOP or deadlocked state (no outgoing transitions)

♦  ERROR process (-1) to detect erroneous behaviour

7.1  Safety 

ACTUATOR 
   =(command->ACTION), 
ACTION 
   =(respond->ACTUATOR 

 |command->ERROR). 

Trace to ERROR: 
 command 
 command 

♦  analysis using LTSA:
(shortest trace)

A safety property asserts that nothing bad happens.

command

command

respond

-1 0 1
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Safety - property specification 

♦  ERROR condition states what is not required (cf. exceptions).

♦  in complex systems, it is usually better to specify safety properties  
by stating directly what is required. 

property SAFE_ACTUATOR  
 = (command 
    -> respond 
    -> SAFE_ACTUATOR 
    ). 

♦  analysis using LTSA as before. 

command

respond

command

respond

-1 0 1

Keep the property alphabet as 
small as possible – only relevant 
actions!
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Safety properties 

property POLITE  
  = 

Property that it is polite to knock before entering a room.

Traces:  knockàenter   enter 

       knockàknock 

(knock->enter->POLITE). 

Note:  In all states, all 
the actions in the 
alphabet of a property 
are eligible choices. 

knock

enter

knock

enter

-1 0 1
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Safety properties 

Safety property P defines a deterministic process that 
asserts that any trace including actions in the alphabet of P, is 
accepted by P. Those actions that are not part of the 
specified behaviour of P are transitions to the ERROR state.

Thus, if P is composed with S, then traces of actions in 
(alphabet of S ∩ alphabet of P) must also be valid 
traces of P, otherwise ERROR is reachable.  

Transparency of safety properties:                           

Since all actions in the alphabet of a property are eligible choices, composing a 
property with a set of processes does not affect their correct behaviour. However, 
if a behaviour can occur which violates the safety property, then ERROR is 
reachable.  Properties must be deterministic to be transparent. 

Why?
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Safety properties 

♦  How can we specify that some action, disaster, never occurs?

property CALM = STOP + {disaster}. 

disaster

-1 0

A safety property must be specified so as 
to include all the acceptable, valid  
behaviours in its alphabet.
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Safety - mutual exclusion 

LOOP = (mutex.down -> enter -> exit  
      -> mutex.up -> LOOP). 

||SEMADEMO = (p[1..3]:LOOP  
          ||{p[1..3]}::mutex:SEMAPHORE(1)). 

How do we check 
that this does 
indeed ensure 
mutual exclusion in 
the critical section?

property MUTEX =(p[i:1..3].enter 
      -> p[i].exit 
     -> MUTEX ). 

||CHECK = (SEMADEMO || MUTEX). 

Check safety using LTSA. 

What happens if semaphore is initialized to 2?

What happens if semaphore is initialized to 0?  
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7.2  Single Lane Bridge problem 

A bridge over a river is only wide enough to permit a single lane of traffic. 
Consequently, cars can only move concurrently if they are moving in the same 
direction. A safety violation occurs if two cars moving in different directions 
enter the bridge at the same time.
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Single Lane Bridge - model 

♦  Events or actions of interest?
enter and exit

♦  Identify processes.

cars and bridge
♦  Identify properties.

oneway
♦ Define each process 

and interactions 

(structure).

red[ID]. 
{enter,exit} 

blue[ID]. 
{enter,exit} 

BRIDGE 

property 
ONEWAY 

CARS 

Single 
Lane 
Bridge 
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Single Lane Bridge - CARS model 

const N = 3     // number of each type of car 
range T = 0..N  // type of car count 
range ID= 1..N  // car identities 
 
CAR = (enter->exit->CAR). 

No overtaking constraints: To model the fact that cars 
cannot pass each other on the bridge, we model a CONVOY of 
cars in the same direction.  We will have a red and a blue convoy 
of up to N cars for each direction: 

||CARS = (red:CONVOY || blue:CONVOY). 
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Single Lane Bridge - CONVOY model 

NOPASS1  = C[1],    //preserves entry order 
C[i:ID]  = ([i].enter-> C[i%N+1]). 
NOPASS2  = C[1],    //preserves exit order 
C[i:ID]  = ([i].exit-> C[i%N+1]). 
 

||CONVOY = ([ID]:CAR||NOPASS1||NOPASS2). 

Permits  1.enterà 2.enterà 1.exità 2.exit 
but not  1.enterà 2.enterà 2.exità 1.exit 

       ie. no overtaking.

1.enter 2.enter

3.enter

0 1 2

1.exit 2.exit

3.exit

0 1 2
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Single Lane Bridge - BRIDGE model 

BRIDGE = BRIDGE[0][0],  // initially empty 
BRIDGE[nr:T][nb:T] =    //nr is the red count, nb the blue 

 (when(nb==0)  
        red[ID].enter -> BRIDGE[nr+1][nb]  //nb==0 
      |  red[ID].exit  -> BRIDGE[nr-1][nb] 
     |when (nr==0)  
        blue[ID].enter-> BRIDGE[nr][nb+1]  //nr==0 
     |  blue[ID].exit -> BRIDGE[nr][nb-1] 

 ). 

Cars can move concurrently on the bridge only if in the same direction. The bridge 
maintains counts of blue and red cars on the bridge. Red cars are only allowed to 
enter when the blue count is zero and vice-versa.

Even when 0, exit actions permit the car counts 
to be decremented. LTSA maps these undefined 
states to ERROR. 
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Single Lane Bridge - safety property ONEWAY 

property ONEWAY =(red[ID].enter   -> RED[1] 
                 |blue[ID].enter -> BLUE[1] 
                 ), 
RED[i:ID] = (red[ID].enter -> RED[i+1] 
            |when(i==1)red[ID].exit  -> ONEWAY 
            |when(i>1) red[ID].exit  -> RED[i-1] 
            ),    //i is a count of red cars on the bridge  
BLUE[i:ID]= (blue[ID].enter-> BLUE[i+1] 
            |when(i==1)blue[ID].exit -> ONEWAY 
            |when( i>1)blue[ID].exit -> BLUE[i-1] 
            ).    //i is a count of blue cars on the bridge 

We now specify a safety property to check that cars do not collide!
While red cars are on the bridge only red cars can enter; similarly for blue cars. 
When the bridge is empty, either a red or a blue car may enter.
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Single Lane Bridge - model analysis 

Is the safety property 
ONEWAY violated?

||SingleLaneBridge = (CARS|| BRIDGE||ONEWAY). 

No deadlocks/errors 

Trace to property violation in ONEWAY: 
 red.1.enter 
 blue.1.enter 

Without the BRIDGE 
contraints, is the safety 
property ONEWAY 
violated?

||SingleLaneBridge = (CARS||ONEWAY). 
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Single Lane Bridge - implementation in Java 

Active entities (cars) are 
implemented as threads.

Passive entity (bridge) is 
implemented as a monitor.

BridgeCanvas enforces no 
overtaking.

Runnable

RedCar BlueCar

BridgeCanvas

controlcontrol
Bridge

Safe
Bridge

displaydisplay

ThreadApplet

Single
Lane
Bridge

blue,
red
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Single Lane Bridge - BridgeCanvas 
An instance of BridgeCanvas class is created by SingleLaneBridge applet - ref is 
passed to each newly created RedCar and BlueCar object. 

class BridgeCanvas extends Canvas { 
 

  public void init(int ncars) {…}   //set number of cars 
            

  //move red car with the identity i a step 
  //returns true for the period on bridge, from just before until just after 
  public boolean moveRed(int i) 
         throws InterruptedException{…} 
     

  //move blue car with the identity i a step 
  //returns true for the period on bridge, from just before until just after 
  public boolean moveBlue(int i) 
         throws InterruptedException{…} 
    

  public synchronized void freeze(){…}// freeze display 
  public synchronized void thaw(){…}  //unfreeze display  
} 
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Single Lane Bridge - RedCar 

class RedCar implements Runnable { 
 

  BridgeCanvas display; Bridge control; int id; 
 

  RedCar(Bridge b, BridgeCanvas d, int id) { 
    display = d; this.id = id; control = b; 
  } 
 

  public void run() { 
    try { 
      while(true) { 
        while (!display.moveRed(id));   // not on bridge 
        control.redEnter();      // request access to bridge 
        while (display.moveRed(id)); // move over bridge 
        control.redExit();       // release access to bridge 
      } 
    } catch (InterruptedException e) {} 
  } 
} 

Similarly for the BlueCar 
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Single Lane Bridge - class Bridge 

class Bridge { 
  synchronized void redEnter()  
    throws InterruptedException {} 
  synchronized void redExit()  {} 
  synchronized void blueEnter() 
    throws InterruptedException {} 
  synchronized void blueExit() {} 
} 

Class Bridge provides a null implementation of the access 
methods i.e. no constraints on the access to the bridge. 

Result………… ?
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Single Lane Bridge 

To ensure safety, the “safe” check box must be chosen in order 
to select the SafeBridge implementation. 
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Single Lane Bridge - SafeBridge 

class SafeBridge extends Bridge { 
 

  private int nred  = 0; //number of red cars on bridge 
  private int nblue = 0; //number of blue cars on bridge 
 

  // Monitor Invariant:         nred≥0 and nblue≥0 and 
  //              not (nred>0 and nblue>0) 
 

 synchronized void redEnter() 
      throws InterruptedException { 
    while (nblue>0) wait();  
    ++nred; 
  } 
 

 synchronized void redExit(){ 
     --nred;  

 if (nred==0)notifyAll(); 
  } 
 

This is a direct 
translation from 
the BRIDGE 
model.
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synchronized void blueEnter() 
      throws InterruptedException { 
    while (nred>0) wait(); 
    ++nblue; 
  } 
 

 synchronized void blueExit(){ 
    --nblue;  
    if (nblue==0)notifyAll(); 
  } 
} 

Single Lane Bridge - SafeBridge 

To avoid unnecessary thread switches, we use conditional notification to 
wake up waiting threads only when the number of cars on the bridge is zero i.e. 
when the last car leaves the bridge.  

But does every car eventually get an opportunity to cross 
the bridge? This is a liveness property.
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7.3  Liveness 

A safety property asserts that nothing bad happens.

A liveness property asserts that something good eventually 
happens.

Single Lane Bridge: Does every car eventually get an opportunity 
to cross the bridge?

ie. to make PROGRESS?

A progress property asserts that it is always the case that a particular 
action is eventually executed. Progress is the opposite of starvation, the 
name given to a concurrent programming situation in which an action 
is never executed.
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Progress properties - fair choice 

COIN =(toss->heads->COIN 

   |toss->tails->COIN). 

If a coin were tossed an 
infinite number of times, we 
would expect that heads 
would be chosen infinitely 
often and that tails would be 
chosen infinitely often. 

This requires Fair Choice ! 

toss

toss

heads

tails

0 1 2

Fair Choice: If a choice over a set of transitions is executed 
infinitely often, then every transition in the set will be executed 
infinitely often.



2015  Concurrency: safety & liveness properties 
25 

©Magee/Kramer 2nd Edition 

Progress properties 

progress P = {a1,a2..an} defines a progress property 
P which asserts that in an infinite execution of a target system, 
at least one of the actions a1,a2..an will be executed 
infinitely often.

COIN system:  progress HEADS = {heads}  ? 
   progress TAILS = {tails}  ? 

LTSA check progress: No progress violations detected. 
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pick

pick toss

heads

toss
toss

tails
heads

0 1 2 3 4 5

Progress properties 

Suppose that there were two possible coins that could be picked 
up:

TWOCOIN = (pick->COIN|pick->TRICK), 
TRICK   = (toss->heads->TRICK), 
COIN    = (toss->heads->COIN|toss->tails->COIN). 

TWOCOIN:  progress HEADS = {heads}  ? 
   progress TAILS = {tails}  ? 

a trick coin and a 
regular coin……
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Progress properties 

progress HEADSorTails = {heads,tails}   ? 

progress HEADS = {heads} 

progress TAILS = {tails} 

LTSA check progress  
Progress violation: TAILS 
Trace to terminal set of states: 

 pick 
Cycle in terminal set: 

 toss 
 heads 

Actions in terminal set: 
 {heads, toss} 

pick

pick toss

heads

toss
toss

tails
heads

0 1 2 3 4 5
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Progress analysis 

A terminal set of states is one in which every state is reachable from every other 
state in the set via one or more transitions, and there is no transition from within 
the set to any state outside the set. 

pick

pick toss

heads

toss
toss

tails
heads

0 1 2 3 4 5

Terminal sets for 
TWOCOIN:

{1,2} and {3,4,5}

Given fair choice, each terminal set represents an execution in which each action 
used in a transition in the set is executed infinitely often. 

Since there is no transition out of a terminal set, any action that is not used in the 
set cannot occur infinitely often in all executions of the system - and hence 
represents a potential progress violation!
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Progress analysis 

A progress property is violated if analysis finds a terminal set of 
states in which none of the progress set actions appear. 

progress TAILS = {tails}    in {1,2} 

Default: given fair choice, for every action in the alphabet of the target system, 
that action will be executed infinitely often. This is equivalent to specifying a 
separate progress property for every action. 

pick

pick toss

heads

toss
toss

tails
heads

0 1 2 3 4 5

Default analysis 
for TWOCOIN?
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Progress analysis 

Progress violation for actions:  
 {pick, tails} 

Trace to terminal set of states: 
 pick 

Cycle in terminal set: 
 toss 
 heads 

Actions in terminal set: 
 {heads, toss} 

Default analysis for 
TWOCOIN: separate 
progress property for every 
action. 

If the default holds, then every other progress property holds i.e. every action is 
executed infinitely often and system consists of a single terminal set of states.

pick

pick toss

heads

toss
toss

tails
heads

0 1 2 3 4 5
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Progress - single lane bridge 

progress BLUECROSS = {blue[ID].enter} 
progress REDCROSS =  {red[ID].enter} 
No progress violations detected. 

The Single Lane Bridge 
implementation can 
permit progress 
violations. 
However, if default 
progress analysis is 
applied to the model then 
no violations are 

detected! 
Why not?

Fair choice means that eventually every possible execution occurs, including 
those in which cars do not starve. To detect progress problems we must check 
under adverse conditions. We superimpose some scheduling policy for actions, 
which models the situation in which the bridge is congested. 
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Progress - action priority 

Action priority expressions describe scheduling properties:
||C = (P||Q)<<{a1,…,an} specifies a composition in 
which the actions a1,..,an have higher priority than any other 
action in the alphabet of P||Q including the silent action tau.   

In any choice in this system which has one or more of the actions 
a1,..,an labeling a transition, the transitions labeled with other, 
lower priority actions are discarded.

High 
Priority 
(“<<”) 

||C = (P||Q)>>{a1,…,an} specifies a composition in 
which the actions a1,..,an have lower priority than any other 
action in the alphabet of P||Q including the silent action tau.  

In any choice in this system which has one or more transitions not 
labeled by a1,..,an, the transitions labeled by a1,..,an are 
discarded. 

Low 
Priority 
(“>>”) 
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Progress - action priority 

NORMAL =(work->play->NORMAL 
    |sleep->play->NORMAL). 

||HIGH =(NORMAL)<<{work}. 

||LOW  =(NORMAL)>>{work}. 

work

sleep

play

play

0 1 2

work

play

0 1

sleep

play

0 1

Action priority simplifies the resulting LTS by 
discarding lower priority actions from choices.
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7.4 Congested single lane bridge 

progress BLUECROSS = {blue[ID].enter} 
progress REDCROSS =  {red[ID].enter} 

BLUECROSS - eventually one of the blue cars will be able to enter

REDCROSS - eventually one of the red cars will be able to enter

Congestion using action priority?
Could give red cars priority over blue (or vice versa) ?         

In practice neither has priority over the other.

Instead we merely encourage congestion by lowering the priority of the 
exit actions of both cars from the bridge. 

||CongestedBridge = (SingleLaneBridge) 
    >>{red[ID].exit,blue[ID].exit}. 

 Progress Analysis ?  LTS? 
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congested single lane bridge model 

Progress violation: REDCROSS 
Trace to terminal set of states: 

 blue.1.enter 
Cycle in terminal set: 

 blue.2.enter 
 blue.1.exit 
 blue.1.enter 
 blue.2.exit 

Actions in terminal set: 
 blue[1..2].{enter, exit} 

This corresponds 
with the observation 
that, with more 
than one car 
(N=2 say), it is 
possible that 
whichever colour 
car enters the bridge 
first could 
continuously occupy 
the bridge 
preventing the other 
colour from ever 
crossing.

Similarly for BLUECROSS 
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congested single lane bridge model 

red.1.enter

blue.1.enterblue.2.enter blue.1.exit blue.1.enter

blue.2.exit

red.2.enter red.1.exit red.1.enter

red.2.exit

0 1 2 3 4 5 6 7 8

||CongestedBridge = (SingleLaneBridge) 
    >>{red[ID].exit,blue[ID].exit}. 

Will the results be the same if we model congestion by giving car entry to the bridge 
high priority?

Can congestion occur if there is only one car moving in each direction?
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Progress - revised single lane bridge model 

The bridge needs to know whether or not cars are waiting to cross. 

Modify CAR: 

CAR = (request->enter->exit->CAR). 

Modify BRIDGE: 
Red cars are only allowed to enter the bridge if there are no 
blue cars on the bridge and there are no blue cars waiting 
to enter the bridge. 

Blue cars are only allowed to enter the bridge if there are no 
red cars on the bridge and there are no red cars waiting 
to enter the bridge.
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Progress - revised single lane bridge model 

/* nr– number of red cars on the bridge  wr  – number of red cars waiting to enter 
  nb– number of blue cars on the bridge wb  – number of blue cars waiting to enter 
*/ 
BRIDGE = BRIDGE[0][0][0][0],   
BRIDGE[nr:T][nb:T][wr:T][wb:T] =  
  (red[ID].request  -> BRIDGE[nr][nb][wr+1][wb] 
  |when (nb==0 && wb==0)  
     red[ID].enter  -> BRIDGE[nr+1][nb][wr-1][wb] 
  |red[ID].exit     -> BRIDGE[nr-1][nb][wr][wb] 
  |blue[ID].request -> BRIDGE[nr][nb][wr][wb+1] 
  |when (nr==0 && wr==0)  
     blue[ID].enter -> BRIDGE[nr][nb+1][wr][wb-1] 
  |blue[ID].exit    -> BRIDGE[nr][nb-1][wr][wb] 
  ). 

OK now?
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Progress - analysis of revised single lane bridge model 

Trace to DEADLOCK: 
 red.1.request 
 red.2.request 
 red.3.request 
 blue.1.request 
 blue.2.request 
 blue.3.request 

The trace is the scenario in 
which there are cars waiting at 
both ends, and consequently, 
the bridge does not allow 
either red or blue cars to 
enter.

Solution?

Introduce some asymmetry in the problem (cf. Dining philosophers).

This takes the form of a boolean variable bt which breaks the deadlock by 
indicating whether it is the turn of blue cars or red cars to enter the bridge.

Arbitrarily set bt to true initially giving blue initial precedence. 
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Progress - 2 nd revision of single lane bridge model 

const True = 1 
const False = 0 
range B = False..True 
/*   bt  - true indicates blue turn,   false indicates red turn */ 
BRIDGE = BRIDGE[0][0][0][0][True],   
BRIDGE[nr:T][nb:T][wr:T][wb:T][bt:B] =  
  (red[ID].request  -> BRIDGE[nr][nb][wr+1][wb][bt] 
  |when (nb==0 && (wb==0||!bt))  
     red[ID].enter  -> BRIDGE[nr+1][nb][wr-1][wb][bt] 
  |red[ID].exit     -> BRIDGE[nr-1][nb][wr][wb][True] 
  |blue[ID].request -> BRIDGE[nr][nb][wr][wb+1][bt]   
  |when (nr==0 && (wr==0||bt))  
     blue[ID].enter -> BRIDGE[nr][nb+1][wr][wb-1][bt] 
  |blue[ID].exit    -> BRIDGE[nr][nb-1][wr][wb][False] 
  ). 

Analysis ?

When should  bt be reset, on entry or exit? 
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Revised single lane bridge implementation - FairBridge 
class FairBridge extends Bridge { 
 

  private int nred  = 0; //count of red cars on the bridge 
  private int nblue = 0; //count of blue cars on the bridge 
  private int waitblue = 0;  //count of waiting blue cars 
  private int waitred = 0;   //count of waiting red cars 
  private boolean blueturn = true; 
 

  synchronized void redEnter() 
      throws InterruptedException { 
    ++waitred; 
    while (nblue>0||(waitblue>0 && blueturn)) wait(); 
    --waitred;  
    ++nred; 
  } 
 

  synchronized void redExit(){ 
    --nred;  
    blueturn = true; 
    if (nred==0)notifyAll(); 
  } 

Negation of the 
model guard.
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Revised single lane bridge implementation - FairBridge 

  synchronized void blueEnter(){ 
      throws InterruptedException { 
    ++waitblue; 
    while (nred>0||(waitred>0 && !blueturn)) wait(); 
    --waitblue;  
    ++nblue; 
  } 
 

  synchronized void blueExit(){ 
    --nblue;  
    blueturn = false; 
    if (nblue==0) notifyAll(); 
  } 
} 

Note that we did not need to introduce a new request monitor method. The 
existing enter methods can be modified to increment a wait count before testing 
whether or not the caller can access the bridge. 

The “fair” check box 
must be chosen in 
order to select the 
FairBridge 
implementation. 
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7.5  Readers and Writers 

A shared database is accessed by two kinds of processes. Readers execute 
transactions that examine the database while Writers both examine and update 
the database. A Writer must have exclusive access to the database; any number of 
Readers may concurrently access it. 

Light blue 
indicates 
database 
access.
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readers/writers model 

♦  Events or actions of interest?

acquireRead, releaseRead, acquireWrite, releaseWrite

♦  Identify processes.

Readers, Writers & the RW_Lock

♦  Identify properties.

RW_Safe 

RW_Progress

♦ Define each process 

and interactions 

(structure).

writer[1..Nwrite]:
WRITER

reader[1..Nread]:
READER

READERS
_WRITERS acquireRead acquireWrite

READWRITELOCK

releaseRead releaseWrite
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readers/writers model - READER & WRITER 

set Actions =  
 {acquireRead,releaseRead,acquireWrite,releaseWrite} 

 

READER = (acquireRead->examine->releaseRead->READER) 
  + Actions 
  \ {examine}. 

 

WRITER = (acquireWrite->modify->releaseWrite->WRITER) 
  + Actions 
  \ {modify}. 

Alphabet extension is used to ensure that the other access actions cannot 
occur freely for any prefixed instance of the process (as before).

Action hiding is used as actions examine and modify are not relevant 
for access synchronisation.
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readers/writers model - RW_LOCK 

const False = 0   const True  = 1 
range Bool  = False..True 
const Nread = 2           // Maximum readers 
const Nwrite= 2           // Maximum writers 
 
RW_LOCK = RW[0][False], 
RW[readers:0..Nread][writing:Bool] = 

 (when (!writing)  
  acquireRead  -> RW[readers+1][writing] 
 |releaseRead      -> RW[readers-1][writing] 
 |when (readers==0 && !writing) 
      acquireWrite -> RW[readers][True] 
 |releaseWrite     -> RW[readers][False] 
 ). 

The lock 
maintains a count 
of the number of 
readers, and a 
Boolean for the 
writers.
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readers/writers model - safety 

property SAFE_RW 
  = (acquireRead  -> READING[1] 
    |acquireWrite -> WRITING 
    ), 
READING[i:1..Nread]  
  = (acquireRead -> READING[i+1] 
    |when(i>1) releaseRead  -> READING[i-1] 
    |when(i==1) releaseRead -> SAFE_RW 
    ), 
WRITING = (releaseWrite -> SAFE_RW). 

We can check that RW_LOCK satisfies the safety property…… 

||READWRITELOCK = (RW_LOCK || SAFE_RW). 

Safety Analysis ?  LTS?
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readers/writers model 

An ERROR occurs if a reader or 
writer is badly behaved 
(release before acquire or 
more than two readers).

We can now compose the 
READWRITELOCK with 
READER and WRITER 
processes according to our 
structure… … 

||READERS_WRITERS  
   = (reader[1..Nread] :READER  
     || writer[1..Nwrite]:WRITER  
     ||{reader[1..Nread], 
        writer[1..Nwrite]}::READWRITELOCK). 

Safety and 
Progress 
Analysis ?  

acquireRead

releaseRead

acquireWrite

releaseWrite

releaseRead

releaseWrite

acquireRead

releaseRead

releaseWrite

acquireRead

releaseRead

releaseWrite

-1 0 1 2 3
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progress WRITE = {writer[1..Nwrite].acquireWrite} 
progress READ  = {reader[1..Nread].acquireRead} 

readers/writers - progress 

WRITE - eventually one of the writers will acquireWrite 
READ - eventually one of the readers will acquireRead 

||RW_PROGRESS = READERS_WRITERS  
                >>{reader[1..Nread].releaseRead, 
                   writer[1..Nwrite].releaseWrite}. 

Progress Analysis ?  LTS?

Adverse conditions using action priority?
we lower the priority of the release actions for both readers and 
writers. 
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readers/writers model - progress 

Progress violation: WRITE 
Path to terminal set of states: 

 reader.1.acquireRead 
Actions in terminal set: 
{reader.1.acquireRead, reader.1.releaseRead, 
 reader.2.acquireRead, reader.2.releaseRead} 

Writer 
starvation: 
The number of 
readers never 
drops to zero. 

reader.1.acquireRead

reader.2.acquireRead

writer.1.acquireWrite

writer.2.acquireWrite

writer.2.releaseWrite

writer.1.releaseWrite

reader.1.acquireRead

reader.1.releaseRead

reader.2.releaseRead

reader.2.acquireRead

0 1 2 3 4 5

Try the 
Applet!



2015  Concurrency: safety & liveness properties 
51 

©Magee/Kramer 2nd Edition 

readers/writers implementation - monitor interface 

interface ReadWrite { 
     public void acquireRead() 
         throws InterruptedException; 
     public void releaseRead(); 
     public void acquireWrite() 
         throws InterruptedException; 
     public void releaseWrite(); 
} 

We define an interface that identifies the monitor methods that 
must be implemented, and develop a number of alternative 
implementations of this interface.  

Firstly, the safe READWRITELOCK.

We concentrate on the monitor implementation:
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readers/writers implementation - ReadWriteSafe 

class ReadWriteSafe implements ReadWrite { 
  private int readers =0; 
  private boolean writing = false; 
 

  public synchronized void acquireRead() 
             throws InterruptedException { 
    while (writing) wait(); 
    ++readers; 
  } 
 

  public synchronized void releaseRead() { 
    --readers; 
    if(readers==0) notify(); 
  } 

Unblock a single writer when no more readers. 
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readers/writers implementation - ReadWriteSafe 

 public synchronized void acquireWrite() 
              throws InterruptedException { 
    while (readers>0 || writing) wait(); 
    writing = true; 
  } 
 

  public synchronized void releaseWrite() { 
    writing = false; 
    notifyAll(); 
  } 
} 

Unblock all readers

However, this monitor implementation suffers from the WRITE progress 
problem: possible writer starvation if the number of readers never drops 
to zero. 

Solution?
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readers/writers - writer priority 

Strategy: Block 
readers if there is 
a writer waiting.

set Actions = {acquireRead,releaseRead,acquireWrite, 
               releaseWrite,requestWrite} 

 

WRITER =(requestWrite->acquireWrite->modify 
                  ->releaseWrite->WRITER 
        )+Actions\{modify}. 
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readers/writers model - writer priority 

RW_LOCK = RW[0][False][0], 
RW[readers:0..Nread][writing:Bool][waitingW:0..Nwrite] 
= (when (!writing && waitingW==0)  
     acquireRead -> RW[readers+1][writing][waitingW] 
  |releaseRead -> RW[readers-1][writing][waitingW] 
  |when (readers==0 && !writing)  
     acquireWrite-> RW[readers][True][waitingW-1] 
  |releaseWrite-> RW[readers][False][waitingW] 
  |requestWrite-> RW[readers][writing][waitingW+1] 
  ). 

Safety and Progress Analysis ?  
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readers/writers model - writer priority 

Progress violation: READ 
Path to terminal set of states: 

 writer.1.requestWrite 
 writer.2.requestWrite 

Actions in terminal set: 
{writer.1.requestWrite, writer.1.acquireWrite, 
 writer.1.releaseWrite, writer.2.requestWrite,  
 writer.2.acquireWrite, writer.2.releaseWrite} 

Reader 
starvation: 
if always a 
writer 
waiting. 

No deadlocks/errors 

property RW_SAFE: 

progress READ and WRITE: 

In practice, this may be satisfactory as is usually more read access than write, and 
readers generally want the most up to date information.
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readers/writers implementation - ReadWritePriority 

class ReadWritePriority implements ReadWrite{ 
  private int readers =0; 
  private boolean writing = false; 
  private int waitingW = 0; // no of waiting Writers. 
 

  public synchronized void acquireRead() 
             throws InterruptedException { 
    while (writing || waitingW>0) wait(); 
     ++readers; 
  } 
 

  public synchronized void releaseRead() { 
    --readers; 
    if (readers==0) notifyAll(); 
  } 

May also be readers waiting
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readers/writers implementation - ReadWritePriority 

synchronized public void acquireWrite()  
   throws InterruptedException { 

    ++waitingW; 
    while (readers>0 || writing) wait(); 
    --waitingW;  
    writing = true; 
  } 

 

  synchronized public void releaseWrite() { 
    writing = false; 
    notifyAll(); 
  } 
} 

Both READ and WRITE progress properties can be satisfied by introducing a 
turn variable as in the Single Lane Bridge.
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Java ReadWriteLock 
java.util.concurrent includes a specialized lock ReadWriteLock which maintains a 
pair of associated locks: readLock and writeLock with optional preference to the 
longest waiting thread (cf. ReentrantLock, and not ensuring fair thread scheduling.) 
class dataBase { … 
 
  private ReadWriteLock rwLock = 

   new ReentrantReadWriteLock(true); 
  Lock wLock = rwLock.writeLock(); 
  Lock rLock = rwLock.readLock(); 
 

  public … readDB(…) { 
 rLock.lock();  
 try { …reading… } finally {rLock.unlock(); } 

  } 
  public void updateDB(…){ 

 wLock.lock(); } 

   try { …writing… } finally {wLock.unlock(); } 
  } 
} 

optional “fairness”
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Summary 

u Concepts
l  properties: true for every possible execution

l  safety: nothing bad happens 
l  liveness:  something good eventually happens

u Models
l  safety: no reachable ERROR/STOP state

compose safety properties at appropriate stages

l  progress:  an action is always eventually executed 
fair choice and action priority
apply progress check on the final target system model

u Practice
l  threads and monitors Aim:  property satisfaction


