Extended FSP Grammar Specification

Thomas Ayles

18th October, 2002

1 Grammar Rules

The following is a description of the grammar rules that provide the extended features of FSP. The grammar rules are meant to be read as replacements and additions to the complete grammar given in Concurrency: State Models and Java Programs (Jeff Magee and Jeff Kramer, John Wiley and Sons, 1999). The rules are presented in the same style as the original grammar, and are designed to be read in conjunction with it.

1.1 Floating-point Expressions

The following are grammar rules for incorporating floating-point expressions into FSP specifications.

FloatExpression:
AdditiveFloatExpr

AdditiveFloatExpr:
MultiplicativeFloatExpr
AdditiveFloatExpr + AdditiveFloatExpr
AdditiveFloatExpr - AdditiveFloatExpr
MultiplicativeFloatExpr:
UnaryFloatExpr
MultiplicativeFloatExpr * MultiplicativeFloatExpr
MultiplicativeFloatExpr / MultiplicativeFloatExpr

UnaryFloatExpr:
BaseFloatExpr

+ BaseFloatExpr
- BaseFloatExpr

BaseFloatExpr:
FloatLiteral
IntegerLiteral

```
    Variable
    ConstantIdent
    ( FloatExpression )
ConstantDef:
    const ConstantIdent = SimpleExpression
    float ConstantIdent = FloatExpression
Parameter:
    ParameterIdent = Expression
    ParameterIdent = FloatExpression
```


1.2 Probabilistic Choice

The following rules add probabilistic choice to the FSP grammar.
Choice:
ActionPrefix
NonDetChoice I ActionPrefix
ProbChoice I (FloatExpression) LocalProcess
NonDetChoice:
ActionPrefix
NonDetChoice I ActionPrefix
ProbChoice:
(FloatExpression) LocalProcess
ProbChoice | (FloatExpression) LocalProcess

1.3 Clock Setting and Testing

The following rules provide for the setting, testing, holding and resuming of clocks in FSP. Distribution labels range over the names given in Table 1.

PrefixActions:

ClockedActionLabels
PrefixActions -> ClockedActionLabels
ClockedActionLabels:
ClockGuard $d_{\text {opt }}$ ActionLabels ClockSet ${ }_{\text {opt }}$
<? Distribution ?> ActionLabels

ClockSet:
<ClockSettings>

ClockSettings:

ClockSetting
ClockSettings, ClockSetting
ClockSetting:
ClockLabel: Distribution
ClockLabel:hold
ClockLabel:resume

ClockGuard:
?ClockConditions?

ClockConditions:
ClockCondition
ClockConditions, ClockCondition
ClockCondition:
ClockLabel
! ClockLabel

Distribution:
DistributionLabel
DistributionLabel(DistributionParams)

DistributionParams:
FloatExpression
DistributionParams, FloatExpression
ClockLabel:
LowerCaseIdentifier
DistributionLabel:
LowerCaseIdentifier

1.4 Measures

The following rules add measurement to the FSP language.
FSPDefinition:
ConstantDef
RangeDef
SetDef
ProcessDef
CompositeDef

PropertyDef
ProgressDef
MenuDef
TimerDef
MeasureDef
CounterDef

```
TimerDef:
    timer ProcessIdent ActionPair
    timer ProcessIdent \{ TimerPairs \}
TimerPairs:
    ActionPair
    forall IndexRanges ActionPair
    TimerPairs, ActionPair
    TimerPairs, forall IndexRanges ActionPair
ActionPair:
    <ActionsLabels, ActionsLabels>
MeasureDef:
    measure ProcessIdent ActionPair
CounterDef:
    counter ProcessIdent Set
```


2 Supported Distribution Types

This appendix enumerates the classes of distributions that are supported in extended FSP. Each distribution class is listed with its name, its symbolic name, its parameter list and its distribution function. The distributions are presented in Table 1. Probability density functions are presented with their domain. The value of a probability density function outside its domain is zero.

Dist. Type	Name	Parameters	P D F $f(t)$
Exponential	exp	$(r$: float $)$	$\frac{e^{-(t / r)}}{r}, r \geq 0$
Uniform	uniform	$(p$: float, q : float $)$	$\frac{1}{q-p}, p \leq t \leq q$
Fixed	fixed	$(k$: float $)$	$1, t=k$
Erlang	erlang	$(k$: integer, θ : float $)$	$\frac{t^{k-1} e^{-(t / \theta)}}{(k-1)!\theta^{k}}, \theta \geq 0$
Gamma	gamma	$(\theta:$ float, β : integer $)$	$\frac{(t / \theta)^{\beta-1} e^{-(t / \theta)}}{a \int_{0}^{\infty} e^{-x} x^{\beta-1} d x}$
Geometric	geometric	$(p$: float $)$	$p^{t-1}(1-p)^{t}, t \geq 0$
Normal	normal	$(\mu$: float, σ : float $)$	$\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{t-\mu^{2}}{\sigma}\right)}$

Table 1: Available distributions as part of the core. Each distribution has a name by which it can be used in the FSP specification, as well parameters it takes. In the corresponding distribution functions, the parameters are referred to by their given names.

