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4.2.2 Test two: Näıve list reverse . . . . . . . . . . . . . . . . . 45

4.2.3 Test three: Type inference . . . . . . . . . . . . . . . . . . 47

4.3 A qualitative evaluation . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.1 Spurious freshness constraints . . . . . . . . . . . . . . . . 49

4.3.2 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Conclusions 51

5.1 Was the project a success? . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Alternative approaches . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Bibliography 55

A Sample source code 57

Project proposal 65

iv



List of Figures

1.1 A simple instruction manual. . . . . . . . . . . . . . . . . . . . . . 2

1.2 A silly instruction manual. . . . . . . . . . . . . . . . . . . . . . . 2

1.3 An instruction manual divided into two sections. . . . . . . . . . . 2

2.1 The syntax and semantics of permutations. . . . . . . . . . . . . . 8

2.2 Inductive definition of equational judgements. . . . . . . . . . . . 10

2.3 Inductive definition of freshness judgements. . . . . . . . . . . . . 10

3.1 Effecting the substitution X := t by creating a pointer. . . . . . . 12

3.2 The seven kinds of graph node. . . . . . . . . . . . . . . . . . . . 13

3.3 Equational transformations. . . . . . . . . . . . . . . . . . . . . . 14

3.4 Freshness transformations. . . . . . . . . . . . . . . . . . . . . . . 19

3.5 An alternative version of equational transformation 7. . . . . . . . 22

3.6 The solution-finding algorithm . . . . . . . . . . . . . . . . . . . . 24

3.7 A demonstration of the 〈bktrk〉 and 〈abort〉 functions. . . . . . . . 26

3.8 A sample execution trace. . . . . . . . . . . . . . . . . . . . . . . 32

4.1 The normalisation of a suspension. . . . . . . . . . . . . . . . . . 40

4.2 Size of a graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 A graph of the time taken to execute queries of the form ?fn(c) in
terms of n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 A graph of the time taken to reverse a list of length n. . . . . . . 46

4.5 A graph of the time taken to infer the type of twn in terms of n. . 48

v



vi



List of Tables

3.1 The results of testing the nominal unifier. . . . . . . . . . . . . . . 25

3.2 A description of each formal argument of exec. . . . . . . . . . . 27

4.1 A demonstration of both determinacy and completeness. . . . . . 38

4.2 A demonstration that every equational transformation (except 11
and 12) reduces n2. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 A demonstration that every freshness transformation reduces n3. . 42

vii



viii



Chapter 1

Introduction

1.1 What is a name?

My name is John, but it need not be. I could change my name to Tom, and
life would be largely the same, provided that I instruct all of my acquaintances
henceforth to refer to me as Tom rather than John. Before changing my name,
I ought to check that there isn’t a Tom among my immediate family and closest
friends, for were there already such a Tom then much confusion would ensue upon
my becoming Tom too.

Names are given not just to humans but to all kinds of object. For instance,
an instruction manual for some machine (illustrated in Figure 1.1) might begin
with a diagram that labels one of the machine’s buttons as ‘A’ and the other as
‘B’. Consequential occurrences of the phrases ‘A’ and ‘B’ in the text are taken
to refer to the first and second buttons, respectively. This labelling is arbitrary:
an alternative instruction manual that described the first button as ‘B’ and the
second as ‘A’ (and swapped ‘A’ and ‘B’ in the text accordingly) would be equally
valid, as would one that named the buttons ‘1’ and ‘2’. Yet we are not completely
unrestricted on the choice of names: for instance, a manual that referred to both
buttons as ‘A’ would be hopelessly ambiguous (Figure 1.2).

There is one further subtlety: that of scoping. Consider a manual that is divided
into two sections, as shown in Figure 1.3. This manual uses the name ‘C’ to refer
to two different objects. While this has previously led to ambiguity, there is no
ambiguity in this case: occurrences of ‘C’ in the first section clearly refer to the
button while those in the second section clearly refer to the handle. It is implicit
that the buttons are in scope only in the first section and that the handle is in
scope only in the second section. Since the sections are disjoint, the two different
objects to which the name ‘C’ refers are never simultaneously in scope. In Figure
1.2, both buttons are in scope simultaneously so the use of the same name to

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: A simple instruction manual.

Figure 1.2: A silly instruction manual.

Figure 1.3: An instruction manual divided into two sections.



1.2. BACKGROUND: LOGIC PROGRAMMING 3

refer to both does lead to ambiguity.

These examples lead us to the two crucial properties that define the concept of a
name:

The Uniqueness Condition. We must not use the same name to refer to dif-
ferent objects that are in scope simultaneously.

The Choice Axiom. Provided we do not violate Uniqueness then any name
will suffice.

There are a few items of terminology that need to be introduced. A name-binder
is where we fix which name is to be used. In Figure 1.1, the occurrences of
‘A’ and ‘B’ in the diagram are name-binders. Occurrences of ‘A’ and ‘B’ in the
accompanying text are bound to those name-binders. Names that occur without
a corresponding name-binder are said to be free or unbound.

Within the realm of computer science, one place with names galore is the λ-
calculus. The names we give to bound variables such as the x and y in the
term below are subject to the same Uniqueness and Choice constraints as in the
definition above.

(λx.x)(λx.λy.x)

We may, for instance, swap all occurrences of x and y. We may use the variables
p and q instead of x and y. What we must not do is replace y with x, because this
would change the meaning of the term. Clearly, whenever we write a program that
deals with λ-calculus terms, we must ensure we implement the semantics of names
correctly. This can be tedious; we would rather use a programming language that
has an innate understanding of names already. Sadly, few programming languages
do. Nominal Prolog is one of the few.

1.2 Background: Logic programming

Nominal Prolog is an extension of the logic programming language, Prolog. The
reader is assumed to be familiar with both the syntax of Prolog and the way it
uses unification to find solutions to queries, as presented in [9].

Why is it worthwhile to add support for programming with names to Prolog?
Prolog is far from being a mainstream programming language, yet in selected
situations it is the language of choice: Prolog and its derivatives have been used
in such varied domains as the analysis of terrorist networks[1], the diagnosis of
dengue fever1, and the generation of end-user licence agreements for Microsoft

1http://www.iconnect-online.org/Stories/Story.import5095
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products2. Prolog is particularly suitable for implementing relations that are
defined by a set of inference rules. The typing relation for λ-calculus terms,
for instance, is usually defined in this way. A Prolog implementation of this
relation would see each inference rule in the definition correspond to a clause in
the program, with the consequent and set of premises of each rule corresponding
to the head and tail of a clause respectively. Such a tight correspondence between
definition and implementation makes our program easy to write, read and debug.
The only slack that remains is a result of Prolog’s awkward handling of bindable
variables in λ-calculus terms. The primary aim of Nominal Prolog is to reduce
this slack.

2http://www.business-integrity.com/press/news_2006_Microsoftrelease.htm



Chapter 2

Preparation

In this chapter we describe the underlying theory of Nominal Prolog that needed
to be understood before development could commence. The reader is referred to
the original project proposal (included at the end of this document) for details of
the back-up policy, choice of programming language, development model, possible
extensions, evaluation strategy, success criteria and project timetable.

2.1 Why Prolog is bad with names

How might we represent names in ordinary Prolog? The terms we have available
to do this are as follows.

Definition 2.1.1. (Prolog terms.) These are of the form given by the following
grammar. Note that when we have a term of the form f〈〉 it is customary to omit
the empty tuple and call the term a constant.

t ::= 〈t1, . . . , tn〉 (tuple)
| f t (data)
| X (unification variable)

We might try to represent names using unification variables, but this would be
silly: we cannot restrict the scope of unification variables, nor can we stop Pro-
log unifying unification variables that are supposed to be representing distinct
names. More sensible is the use of constants (e.g. strings) to represent names,
but this approach is still far from perfect: it regards λx.x and λy.y as different
terms, yet we would rather it regarded them as the same. (This was one strength
of the otherwise silly approach suggested above.) Moreover, consider the im-
plementation of a predicate that applies substitutions on λ-calculus terms. To
evaluate (λy.xy)[y/x] we first substitute a fresh name for the bound variable y,

5



6 CHAPTER 2. PREPARATION

z say, giving (λz.xz)[y/x], which evaluates to λz.yz. In order to make the choice
of z sufficiently deterministic, we must keep a store of unused variable names.
The additional complexity that results from maintaining this store and carrying
it around as an auxiliary argument, together with the inefficiency of performing
two substitutions in rapid succession, makes our implementation in Prolog far
from satisfactory.

2.2 Why Nominal Prolog is good with names

Nominal Prolog restores this satisfactoriness. As a quick demonstration, here
is an implementation of capture-avoiding substitution in Nominal Prolog that is
concise, correct, efficient and intuitive.

subst(var(X), E, X, E).

subst(var(Y), E, X, var(Y)) :- X =\= Y.

subst(app(E1,E2), E, X, app(E3,E4)) :-

subst(E1, E, X, E3), subst(E2, E, X, E4).

subst(lam(y\E1), E, X, lam(y\E2)) :-

y # E, subst(E1, E, X, E2).

The problem with Prolog is that it knows only of constants and unification vari-
ables, yet neither are suitable for representing names. Nominal Prolog introduces
a third category—atoms—which are suitable. An important property of atoms
is that unlike unification variables they are mutually distinct; that is, we cannot
unify two atoms that have different identifiers. Nominal Prolog also introduces
an atom abstraction construction, rendered a\t, which acts as a binder for all
free occurrences of the atom a in the term t. The use of this construction tells
Nominal Prolog that the choice of name for a is arbitrary and can be renamed as
necessary. Roughly speaking, atoms are more mutable than constants, but less
mutable than unification variables. Definition 2.2.1, which is based on that in
[11], describes nominal terms more precisely.

Definition 2.2.1. (Nominal terms.) We extend ordinary Prolog terms (Defini-
tion 2.1.1) with atoms and atom abstractions. The presence of permutations, π,
is a corollary of the algorithm that unifies nominal terms, which is the subject of
Section 2.3.

t ::= 〈t1, . . . , tn〉 (tuple)
| f t (data)
| a (atom)
| a\t (atom abstraction)
| π · X (suspended variable)
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2.3 Nominal unification

Roughly speaking, Prolog execution proceeds by repeatedly unifying goals with
clauses. In this section we consider how to extend the ordinary unification al-
gorithm such that it is able to unify nominal terms. The resulting ‘nominal
unification’ algorithm is that devised by Urban, Pitts and Gabbay in [12].

The goal of ordinary unification is to make a pair of terms equivalent. The goal
of nominal unification is to make a pair of terms α-equivalent; that is, equivalent
up to the Choice Axiom we defined earlier. Accordingly, we begin by defining a
notion of α-equivalence for each type of nominal term in Definition 2.2.1.

2.3.1 Tuples, data, atoms

Two n-tuples are α-equivalent if each of the n corresponding pairs of elements
are α-equivalent. Two data terms are α-equivalent if they have the same function
symbol and their arguments are α-equivalent. We mentioned earlier that atoms
are mutually distinct; consequently, two atoms are α-equivalent if they have the
same identifier.

2.3.2 Atom abstractions

The first complicated case is the decision of whether two atom abstractions are
α-equivalent, which divides into two subcases. If the binder is the same for both
terms, then we need only consider whether the ‘bodies’ of the two terms are α-
equivalent. Otherwise, the terms have different binders; that is, they are of the
form a\t and b\t′. Clearly these terms are not equivalent, but we may yet be able
to prove them α-equivalent.

We would like to rename b to a throughout t′, for should this make t equivalent
to t′ then our terms are indeed α-equivalent. This is a very dangerous operation
if a already appears in t′:

• If a appears free in t′ then stop immediately: the terms are clearly distinct
because a is free in the second term yet not free in the first.

• If a appears bound in t′, then to prevent the binder for a capturing b atoms
after they are renamed, we simultaneously rename a to b. This ‘swapping’
operation is written (a b).

Swapping atoms in a ground term is simple enough, but we cannot apply a swap
to a unification variable until we know what value it will take. Instead, we
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π ::= id | (a b) ::π

id(a)
def
= a

((b c) ::π)(a)
def
=


b if π(a) = c
c if π(a) = b
π(a) otherwise

π(〈t1, . . . , tn〉)
def
= 〈π(t1), . . . , π(tn)〉

π(f t)
def
= f(π(t))

π(a\t) def
= π(a)\π(t)

π(π′ · X)
def
= π@π′ · X

Figure 2.1: The syntax and semantics of permutations.

simply stack up a sequence of swaps outside the variable, ready for application
as soon as the variable assumes a value. We call a sequence of zero or more
swaps a permutation (see Figure 2.1), and a variable preceded by a permutation
a suspended variable.

Now armed with a suitable permutation function, we can state that a\t and b\t′
are α-equivalent if t is α-equivalent to (a b)(t′), and a does not appear free in t′.
This latter condition is somewhat verbose, so we shall henceforth write it as “a
is fresh for t′” or even just “a # t′”.

2.3.3 Suspended variables

For ordinary Prolog terms it is trivial to see that X and X are α-equivalent, and
in the nominal world the fact that π ·X is α-equivalent to π ·X is equally obvious.
What is somewhat less clear is whether we can show α-equivalence between π ·X
and π′ · X.

For a pedagogical example, consider the terms (a b) ·Y and Y 1. Were we later to
substitute a for Y then the left-hand term would become b, the right-hand one a,
and the terms would not be α-equivalent. The situation is the same were we to
substitute b for Y . Nevertheless, provided Y is not later replaced with a or b or
any term containing a free occurrence of a or b, then the terms are α-equivalent.

Returning to the general terms π ·X and π′ ·X, we find that a sufficient condition
for α-equivalence is to require that we do not substitute for X any term that
contains a free occurrence of any atom in the disagreement set of π and π′.

Definition 2.3.1. (Disagreement set.) The disagreement set of π and π′ is
defined as the set of atoms, a, for which π(a) 6= π′(a). It is written ds(π, π′).

The condition is satisfied exactly when we can show that a is fresh for X for all
a in ds(π, π′).

1Formally, the latter term should be written id·Y but it is customary to omit the permutation
when it is empty.
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2.3.4 Freshness judgements, equational judgements

In both the atom abstraction case and the suspended variable case, the demon-
stration of α-equivalence depended upon being able to prove that some atom a is
fresh for a term t. Doing this is trivial when t is a ground term; indeed, the only
case worth mentioning here is that when t is a suspended variable. For instance,
the problem of whether b is fresh for (b c) · Y is undecidable, simply because
we can later substitute for Y any term we like. We can make such problems
decidable, however, by augmenting them with extra information. The nature of
this extra information is a finite set of freshness constraints (called a freshness
environment and denoted ∇). Each freshness constraint is of the form a # X;
such a constraint expresses that we will never substitute for X any term con-
taining a free occurrence of a. A freshness problem augmented with a freshness
environment in this way is called a freshness judgement, is written ∇ ` a # t,
and expresses that under the assumptions in ∇ it is provable that a is fresh for t.

Since the demonstration of α-equivalence may depend on the demonstration of
freshness, and freshness judgements require a freshness environment, then (by
transitivity) judgements about α-equivalence (which we shall term equational
judgements) also require a freshness environment. Accordingly, an equational
judgement is written ∇ ` t ≈ t′; it expresses that under the freshness constraints
in ∇, it is provable that t and t′ are α-equivalent.

We are now ready to present the formal inductive definitions of equational judge-
ments and freshness judgements, which we do in Figures 2.2 and 2.3.

2.3.5 The unification process

The job of the unification algorithm is succinctly stated: given a list (denoted P )
of equational problems and freshness problems, the algorithm must find a freshness
environment, ∇, and a substitution of terms for variables, σ, such that for each
equational problem t ≈? t′ in P , the equational judgement ∇ ` σ(t) ≈ σ(t′) holds,
and for each freshness problem a #? t in P , the freshness judgement ∇ ` a # σ(t)
holds. The details of how the algorithm achieves this are given in Section 3.1.

A typical job given to the algorithm is to unify a pair of terms, t and t′; the input
in this case is a list containing the single equational problem t ≈? t′.
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(≈-tuple)
∇ ` t1 ≈ t′1 · · · ∇ ` tn ≈ t′n

∇ ` 〈t1, . . . , tn〉 ≈ 〈t′1, . . . , t′n〉
(≈-data)

∇ ` t ≈ t′

∇ ` f t ≈ f t′

(≈-atom)
∇ ` a ≈ a

(≈-abst-1)
∇ ` t ≈ t′

∇ ` a\t ≈ a\t′

(≈-abst-2)
a 6= a′ ∇ ` t ≈ (a a′)(t′) ∇ ` a # t′

∇ ` a\t ≈ a′\t′

(≈-var)
{a # X | a ∈ ds(π, π′)} ⊆ ∇

∇ ` π · X ≈ π′ · X

Figure 2.2: Inductive definition of equational judgements.

(#-tuple)
∇ ` a # t1 · · · ∇ ` a # tn

∇ ` a # 〈t1, . . . , tn〉
(#-data)

∇ ` a # t

∇ ` a # f t

(#-atom)
a 6= a′

∇ ` a # a′
(#-abst-1)

∇ ` a # a\t

(#-abst-2)
∇ ` a # t a 6= a′

∇ ` a # a′\t
(#-var)

(π−1(a) # X) ∈ ∇
∇ ` a # π · X

Figure 2.3: Inductive definition of freshness judgements.



Chapter 3

Implementation

This chapter details the implementation of an interpreter for Nominal Prolog.
Section 3.1 describes the implementation of nominal unification. Section 3.2
describes the solution-finding algorithm that employs nominal unification to try
to find solutions to queries. Section 3.3 describes the interactive shell that allows
a user to invoke the solution-finding algorithm.

A note on originality. The nominal unification algorithm is described in [12].
The implementation is original, but loosely based on that outlined in [2]. The
solution-finding algorithm is original, but informed by the method suggested in
[9].

We shall make use of the following definitions. A program is a set of clauses. A
clause comprises a nominal term (the head) and a list of predicates (the tail).
In Nominal Prolog, a predicate is either a freshness problem (which is true only
when the atom a can be proved to be fresh for the term t) or a cut (which is
always true) or a nominal term (which is true only if it appears as the head of
some clause and all of the predicates comprising the tail of that clause are also
true). A goal is a list of predicates.

3.1 Nominal unification

In Section 2.3.5 we established that the input to the nominal unifier is a list (P )
of equational problems (t ≈? t′) and freshness problems (a #? t), and that the
output is a freshness environment (∇) and a substitution of terms for variables
(σ) that are such that:

• for each (t ≈? t′) ∈ P , ∇ ` σ(t) ≈ σ(t′), and

• for each (a #? t) ∈ P , ∇ ` a # σ(t).

11
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Figure 3.1: Effecting the substitution X := t by creating a pointer.

In this section we explain what happens in between. We begin with three rea-
sons why this is a good implementation of the Urban-Pitts-Gabbay algorithm for
nominal unification.

It represents terms as graphs rather than trees. In αProlog, a similar sys-
tem to Nominal Prolog, a nominal term is represented as a tree. Nominal
Prolog represents a nominal term as a directed acyclic graph instead. The
main advantage of computing with a graph rather than a tree is that com-
mon sub-terms can be shared, thus improving the efficiency of computations
in both space and time.

It deals with substitutions efficiently. Recall that part of the output of the
nominal unifier is a substitution of terms for variables. A näıve implemen-
tation would effect the substitution X := t by replacing each occurrence
of the variable X with a copy of the term t. Since we are working with
a graph, and because graphs allow us to share all common sub-terms, we
know that although the variable X may appear numerous times in the tex-
tual representation of the term, there will never be more than one node
representing it in the graph. Therefore, a substitution need only replace
one occurrence of the variable X with a copy of the term t. We can do
better yet. Rather than create a copy of t we need simply create a pointer
from X to the t node that already exists. Figure 3.1 demonstrates. This
operation is sound provided we check that t does not contain a pointer to
X. This check is called the occurs-check. Note the use of a ‘TRAN’ node,
which exists purely to redirect. It can be thought of as a ‘transparent’ or
‘transitive’ node.

It deals with permutations efficiently. In the standard formulation of nom-
inal terms, a permutation may be suspended only over a variable. For
our implementation, the definition is relaxed to allow permutations to be
suspended over any nominal term. This allows us to be lazy, in that we
no longer have to push permutations inside terms until it is absolutely
necessary to do so. The näıve approach, which eagerly evaluates every per-
mutation it comes across, is liable to waste effort pushing a permutation
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(a) (b) (c) (d) (e) (f) (g)

Figure 3.2: The seven kinds of graph node: (a) tuple, (b) data, (c) atom, (d) atom
abstraction, (e) suspended permutation, (f) variable, (g) ‘TRAN’ node.
This figure uses a triangle to denote an arbitrary term graph; the fact
that the children of the tuple node appear disjoint should preclude neither
the possibility that they are connected, nor that the graphs may even be
identical.

all the way through a large term, only to find that this term is not even
needed.

This discussion leads us to the seven kinds of term graph that are given in Figure
3.2.

3.1.1 Overview of the algorithm

Central to the algorithm are the collection of transformations that are presented
in Figures 3.3 and 3.4. The left-hand side of each transformation specifies the
state in which the list of problems must be in order for that transformation to be
applicable; for example, the second transformation in Figure 3.3 can be applied
only if the first problem is an equational problem relating two data terms that
have the same function symbol. The right-hand side describes the state after the
transformation is applied; in the same example the transformation replaces the
first problem in the list with a new problem that relates the bodies of the two
data terms.

An overview of the procedure follows. The algorithm begins with an initial list
of problems, P . The first stage of the process is to apply as many equational
transformations as possible; that is, to construct a sequence P =⇒ · · · =⇒
P ′ such that P ′ matches the left-hand side of none of the transformations in
Figure 3.3. Should P ′ still contain equational problems, we abort the procedure.
Otherwise, we progress to the second stage, where we apply as many freshness
transformations as possible; that is, we construct a sequence P ′ =⇒ · · · =⇒ P ′′

such that P ′′ matches the left-hand side of none of the transformations in Figure
3.4. Should P ′′ be non-empty, then we abort the procedure; otherwise, we have
succeeded.
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(1) Reducing tuples.

(2) Reducing data.

(3) Reducing atoms.

(4) Reducing atom abstractions that have identical binders.

Figure 3.3: Equational transformations.
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(5) Reducing atom abstractions that have different binders.

(6) Pushing suspension inside tuple.

(7) Pushing suspension inside data.

Figure 3.3: Equational transformations, continued.
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(8) Pushing suspension inside one atom.

(9) Pushing suspension inside two atoms.

(10) Pushing suspension inside atom abstraction.

Figure 3.3: Equational transformations, continued.
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(11) Substituting suspended variable.

(12) Substituting un-suspended variable.

(13) Reducing variable.

Figure 3.3: Equational transformations, continued.
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(14) Reducing variable, one suspension.

(15) Reducing variable, two suspensions.

(16) Reducing TRAN node.

(17) Reducing TRAN node under suspension.

Figure 3.3: Equational transformations, continued.
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(1) Freshness of tuple.

(2) Freshness of data.

(3) Freshness of atom.

(4) Freshness of atom-abstraction that has common binder.

Figure 3.4: Freshness transformations.
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(5) Freshness of atom-abstraction that has different binder.

(6) Freshness of suspension.

(7) Freshness of variable.

(8) Freshness of TRAN node.

Figure 3.4: Freshness transformations, continued.
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3.1.2 The equational transformations

Transformations 1 through 5 are simple, and correspond exactly to the definition
of ≈ in Figure 2.2. Transformation 5 is the first to introduce new nodes to the
graph; such nodes are highlighted by a bold outline. It is crucial to note that no
rules remove nodes from the graph. We can see that this is important when we
realise that only part of the graph is depicted in the transformation diagrams.
The rest of the graph must be unaffected by the transformation; ensuring this
requires the preservation of any nodes that could be pointed to from nodes in the
rest of the graph.

Transformations 6 through 10 all push a suspended permutation inside a term.
They are based on the definition of the application of a permutation to a term
(Figure 2.1). Some of the nodes and edges in these transformations are dot-
ted; this means that the transformation applies both when all the dotted items
are present (in which case they remain present after the transformation) and
when all of the dotted items are absent (in which case they remain absent after
the transformation). Transformation 6 is the first of several to have a (poten-
tially) asymmetric left-hand side; for such transformations it is implicit that the
operands of ≈? can be commuted.

Remark 3.1.1. One might think that transformation 7 can equally well be for-
mulated in the simpler way given in Figure 3.5a, and that the other suspension-
pushing transformations can be reformulated similarly. It is certainly true that
the left-hand and right-hand graphs are, as drawn, equivalent. Nonetheless, we
must consider that there may be an edge from a part of the graph that is not
depicted, pointing to the data term f t. Such an edge is depicted in dashed form
on the left-hand side of Figure 3.5a. The problem is that the right-hand side has
no equivalent node to which this edge can point. The improved right-hand side
given in Figure 3.5b provides such a node1, thus restoring the transformation’s
soundness. Still, in making one problem less complicated, we may have made
another problem more complicated (for instance, any problem involving f t now
involves π−1 · f(π · t) instead). Fortunately, any sequence of transformations will
still terminate, but proving this is much harder. Accordingly, in the interest of
making the proof of termination easier (see Section 4.1.2), we shall stick with the
original transformation given in Figure 3.3.

Transformations 11 and 12 are particularly important—they are how the algo-
rithm performs the substitutions that are necessary to solve equational problems
that include non-ground terms. The equational problem depicted on the left-
hand side of transformation 11 is π · X ≈? t. This is solved by setting X to
π−1 · t. Transformation 12 deals with the simpler case where there is no permu-
tation suspended in front of the variable. In both cases, the node that contained

1since π−1 · f(π · t) is equivalent to f t
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(a) A first attempt

(b) A refinement

Figure 3.5: An alternative version of equational transformation 7.

the variable X has been replaced by a ‘TRAN’ node. The diagrams emphasise
the fact that the contents of the node has changed by setting the node’s text in
bold type. Indeed, these transformations are the only ones that actually modify
nodes: the most the others do is to create new nodes. So that these modifications
may later be reversed, we accumulate an 〈undo〉 function as the series of trans-
formations progresses. Transformations 11 and 12 are the only ones that modify
this function, and they both do so by prepending an instruction to revert the
newly created ‘TRAN’ node to the original variable node. We introduce here the
notation 〈x 〉, which denotes a function that takes a unit argument and returns
the value x—this is not to be confused with a 1-element tuple!

Remark 3.1.2. Transformations 11 and 12 impose seemingly unnecessary con-
straints on the type of node that t may be. For instance, the t in transformation
11 must not be a variable, yet the transformation would still be valid if it were.
The constraints exist to give the transformations the nice property of determi-
nacy: that is, for any list of problems there is never more than one transformation
whose left-hand side matches. Determinacy is the reason for the harsh constraint
imposed in transformation 7 (and the other suspension-pushing transformations):
we allow π · f t to unify only with a term of the form f t′ or π · f t′ because it
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reduces the number of pairs of terms that match this transformation. The alter-
native version of transformation 7 in Figure 3.5 neglects this constraint.

Transformations 13 through 15 correspond to the (≈-var) rule in Figure 2.2.
Recall that variables no longer need prefixing with a permutation. Accordingly,
the three transformations correspond to neither, one and both variables being
prefixed with a permutation, respectively. Transformations 13 and 14 can be
derived from 15 by taking one or both of the permutations to be the identity
permutation.

Finally, transformations 16 and 17 deal with the simple matter of reducing a
‘TRAN’ node. Since the ‘TRAN’ node is an invented concept, there is no formal
framework upon which it can rest, as there was for the other transformations.
Happily, the semantics of ‘TRAN’ nodes is very simple: the node should behave
as if it were not there. Transformation 16 reduces a solitary ‘TRAN’ node, and
transformation 17 reduces a ‘TRAN’ node while it is still inside a suspension.

3.1.3 The freshness transformations

Freshness transformations are fewer and simpler, and correspond exactly to the
definition of # in Figure 2.3. While performing equational transformations we
accumulate an 〈undo〉 function; while doing freshness transformations we accu-
mulate a freshness environment, ∇, instead. This manifests itself only in trans-
formation 7: to show that a is fresh for a variable X it is sufficient to add a # X
to our freshness environment and rely upon the (#-var) rule of Figure 2.3.

3.1.4 Unit testing

The vast majority of unification problems either do not unify or have trivial
solutions. Therefore, the testing of the nominal unifier is best done not by running
it on thousands of randomly-generated problems, but on a few carefully-selected
problems. A set of four unification problems that provide good testing coverage
are presented in [12]; the results of running these are presented in Table 3.1.

3.2 The solution-finding algorithm

Figure 3.6 presents a pseudocode for the algorithm used by Nominal Prolog to
find solutions to queries. This algorithm forms the core of Nominal Prolog, so it
is appropriate to devote this section to a detailed explanation.
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1 exec(pos, goal, ∇acc, 〈bktrk〉, 〈abort〉) =

2 match goal with

3 [ ] ⇒ Yes(∇acc, 〈bktrk〉, 〈abort〉)

4 pred :: rest of goal ⇒

5 match pred with

6 a #? t ⇒

7 try unify(a #? t) with

8 Fail ⇒ bktrk

9 Succeed(∇, 〈undo〉) ⇒

10 exec(0, rest of goal, ∇∪∇acc,
〈undo; bktrk〉, 〈undo; abort〉)

11 ! ⇒

12 exec(0, rest of goal, ∇acc, 〈No〉, 〈abort〉)

13 t ⇒

14 if pos ≥ |program| then

15 bktrk

16 else

17 let (c, 〈uncopy〉) = copy(program[pos ]) in

18 let 〈next〉 = 〈exec(pos + 1, goal, ∇acc, 〈bktrk〉, 〈abort〉)〉 in

19 try unify(c.head ≈? t) with

20 Fail ⇒

21 uncopy ; next

22 Succeed(∇, 〈undo〉) ⇒

23 exec(0, c.tail @ rest of goal, ∇∪∇acc,
〈undo; uncopy ; next〉, 〈undo; uncopy ; abort〉)

Figure 3.6: The solution-finding algorithm
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Problem Result

λa.λb.X1 b ≈? λb.λa.aX1 Passed: no solution.
λa.λb.X2 b ≈? λb.λa.aX3 Passed: X2 := b, X3 := a.
λa.λb.b X4 ≈? λb.λa.aX5 Passed: X4 := (a b) · X5

λa.λb.b X6 ≈? λa.λa.a X7 Passed: X6 := (b a) · X7, b # X7.

Table 3.1: The results of testing the nominal unifier. Here we use the syntax of the
λ-calculus over that of nominal terms for better readability.

3.2.1 The return type

We shall begin the analysis by examining the return type of exec. There may be
zero, one or many solutions for any given goal, and the return type of exec needs
to reflect this. We might propose a list of solutions as a suitable datatype, but
this would be inappropriate: the construction of such a list would necessitate the
evaluation of all solutions, of which there may be an infinite number. The desired
semantics is a result that expresses either “There are no solutions” or “There are
one or more solutions, and here is the first one.” Presented with a result of the
latter variant, we need a way of asking for another solution. This is best achieved
by including alongside the solution a function (which shall be known as 〈bktrk〉)
that can be invoked with unit argument to return another solution (which itself
might contain a 〈bktrk ′〉 function that can lead to yet another solution, and so
on).

The solution itself is a substitution of terms for variables, together with a fresh-
ness environment—at least, this is what is presented to the user. It is in fact
unnecessary and inefficient to explicitly output a substitution. As was explained
earlier, substitutions are best effected by simply creating redirection pointers.
So that we can detect what substitutions have occurred, we create a pointer to
each variable node in the graph before running the solution-finding algorithm.
Afterwards, we follow each pointer: if a pointer still points to a variable node,
then that variable must not have been substituted, but if the pointer now points
to a ‘TRAN’ node, then the variable must have been substituted.

Once we have finished finding solutions to a query, we need to ensure that all the
extra pointers that we created are erased, so that future queries have a ‘blank
slate’ on which to work. Cunningly, we can embed this erasing process inside the
〈bktrk〉 function, such that it first destroys the pointers that were created by the
previous solution before searching for the next solution. This means that the slate
is only fully clean, and ready to accommodate a new query, after the final solution
to the current query has been found. Since there may be an unlimited number
of solutions (or the user may be impatient), we would like a way of ‘aborting’
the query before all the solutions are found. This is achieved by providing not
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Figure 3.7: A demonstration of the 〈bktrk〉 and 〈abort〉 functions. From the start
state, exec leads us to the first solution, X := m. From there we can
either execute 〈abort〉 (which returns us to the start state) or we can
execute 〈bktrk〉, which leads us to the second solution, X := n. There are
no further solutions, so subsequent execution of either 〈abort〉 or 〈bktrk〉
will return us to the start state.

just the 〈bktrk〉 function, but an 〈abort〉 function too, which simply erases all
the pointers and ignores any other solutions. The heavily simplified diagram in
Figure 3.7 should clarify the usage of these functions.

We are thus led to the following return type of exec.

type execute result = No
| Yes of freshness environment

∗ unit → execute result
∗ unit → unit

3.2.2 The arguments

Table 3.2 gives a brief description of each of exec’s arguments. We give the type
and briefly state the purpose of each argument. Being a recursive function, it is
also informative to record what value should be given to each argument at the
initial invocation.
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Identifier Type Purpose Initial value

pos integer the pos th clause is the next one
we should try to unify the goal
with

0

goal predicate list a list of predicates that are yet
to be solved

provided
by user

∇acc freshness
environment

accumulates the set of freshness
constraints evoked by each suc-
cessive unification

∅

〈bktrk〉 unit →
execute result

when executed, searches for an
alternative solution

〈No〉

〈abort〉 unit → unit accumulates a sequence of oper-
ations that, when executed, will
restore our graph to its start
state

〈skip〉

Table 3.2: A description of each formal argument of exec.

3.2.3 The operation of the algorithm

Since a goal is a conjunction of predicates, then an empty goal is trivially true, so
we have located a solution (line 3). Otherwise, goal must contain a first predicate,
which we call pred (line 4). Predicates come in one of three variants: freshness
problems, the cut predicate, and terms. We consider each case in turn.

Freshness problems (line 6)

A freshness problem, such as a #? t, is satisfied by demonstrating that the atom
a is fresh for the term t. This is a problem of nominal unification. Should
this unification fail (line 8), then we unable to prove our goal: a goal being a
conjunction of predicates means that we require every predicate (including pred)
to be provable. Nonetheless, it is possible that the original goal can yet be
proved, by proving instead a different set of predicates not including pred. We
explore this possibility by executing the 〈bktrk〉 function. Note, in line 8, that
we have removed the angular braces from 〈bktrk〉—we are no longer referring to
the function itself, but to the result of its application to a unit argument.

Should the unification succeed, we issue a recursive call of exec (line 10). Having
proved pred, it remains only to prove rest of goal ; this is our new goal. We add
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to our accumulating freshness environment the set of constraints evoked by the
unification. In order to backtrack or abort, we need first to undo the state changes
that were effected by the successful unification. Thus we arrange for execution
of the new 〈bktrk〉 and 〈abort〉 functions first to invoke 〈undo〉 (which reverses
the changes to the graph made by the unification procedure) then to do the same
work as that done by the previous one. Note that it was unnecessary to undo any
state changes made by the unsuccessful unification on line 8, because by returning
Fail, the unify function guarantees that no state changes are exported.

The cut predicate (line 11)

The cut predicate, rendered as ‘!’, always succeeds. Hence, in the recursive call to
exec, we need only prove the predicates in rest of goal. No changes are necessary
to the freshness environment, nor need we modify the 〈abort〉 function. Indeed,
the cut predicate would be largely redundant, were it not for its effect on the
〈bktrk〉 function. Until this point, the 〈bktrk〉 function had contained all the
information we needed to be able to find alternative solutions should we fail to
solve a predicate. Upon solving a cut predicate, we reset the 〈bktrk〉 function to
its default value, 〈No〉, effectively destroying all of this information. We are now
in the unhappy situation whereby failure to prove rest of goal precipitates failure
of the entire goal, despite the possibility that execution of the 〈bktrk〉 function
(before it was erased) would have led to a solution. Still, in some cases, it is the
programmer’s intention that such a solution is not found, and this is where a cut
is most handy.

Terms (line 13)

A term, t, is true if and only if there exists a clause whose head matches t and
for which each predicate in its tail is also true. To find such a clause, we iterate
over each of the program’s clauses in turn, using pos as the iteration counter,
checking each to see if it meets the above condition. At line 15, pos has exceeded
the number of clauses in the program; this means that none of the clauses meet the
condition for t to be given the value ‘true’, so we should abandon our attempt to
prove this predicate and backtrack in the hope of finding an alternative solution.

Otherwise, we have established that program[pos ] is a clause in the program2.
Before we set about checking if it meets our condition, we take a copy of it,
which we call c (line 17). This is necessitated by the destructive nature of the
unification process—it permanently modifies the term graph by creating new
pointers. It is commonplace for a single execution to use the same clause many
times, and it is clearly unsatisfactory if, because of some previous unification

2Here we imagine program to be a zero-based array of clauses.
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step, the clause is different every time we want to use it. Accordingly, we keep
an ‘original’ of each clause, and only hand out copies to be unified. The copy
function, when given a clause, returns a deep copy of the clause that can be safely
modified without affecting the original. It also returns an 〈uncopy〉 function that
can later be invoked to remove the copy from the graph; this prevents memory
from being filled up with redundant copies of clauses.

The term t is true if t matches the head of c and all of the predicates in the tail of
c can be proved. The first hurdle—deciding whether t matches the head of c—is
dealt with by our unify function. Should this fail (line 20), it is clear that c is not
the right clause to use, so we increment our iteration counter and re-invoke exec.
If t does match the head of c, then all that remains is to prove each predicate
in the tail of c. This is accomplished by yet another recursive call to exec (line
23). For this call, we reset pos to zero, ready for any future iteration over the
set of clauses. Our goal now is to prove the tail of c; having done that we must
finish proving the goal we were previously working on. Hence we set goal to be
c.tail with rest of goal appended after it. We augment our freshness environment,
∇, with those freshness constraints that arose from the successful unification of
c.head with t. The new 〈abort〉 function needs to undo the effects of the calls to
copy and unify (and it should do so in the opposite order to that in which they
were applied). Thus we arrange for execution of the new 〈abort〉 function first to
invoke 〈undo〉, secondly to invoke 〈uncopy〉, and thirdly to do the same work as
that done by the previous one. The 〈bktrk〉 function follows a similar structure
in that it firstly reverses the effect of unify and secondly reverses the effect of
copy. However, having done that, we realise that c happening to be a clause
whose head matches t does not imply that there are no further clauses with this
property. Accordingly, the third step of the new 〈bktrk〉 function should be to
continue iterating over the rest of the clauses, starting at the (pos + 1)th clause.
Only once these remaining clauses have been checked should the original 〈bktrk〉
function be invoked.

3.3 The interactive shell

An interactive shell was produced, to allow users to interact with Nominal Prolog.
The accepted form of input, which is parsed by a lexer and parser built using
OCamlLex and OCamlYacc, is given by the following grammar.

input ::= directive | query | definition
The user provides definitions of clauses, then runs
queries on them. Directives invoke miscellaneous
commands.
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directive ::= #verbose on.

| #verbose off.
In ‘verbose’ mode, the interpreter prints the sequence
of steps taken during execution of the query.

| #trace on.

| #trace off.
In ‘trace’ mode, upon every iteration of the exec
function, a pictorial representation of the current
state of the graph is outputted to a .ps file. See
Section 3.3.1.

| #clear.
Deletes all clauses in the program.

| #use filename.
Inputs the contents of the file with the given file-
name. The file should comprise a sequence of input
commands, separated by line breaks.

| #mkgraph filename.
Outputs a pictorial representation of the current state
of the graph to filename.ps. See Section 3.3.1.

query ::= ? predlist.
A query is provided as a list of predicates preceded
by a question mark.

definition ::= term. | term :- predlist.

A clause is either a fact or a rule.

predlist ::= pred | pred, predlist

pred ::= term | ! | atom # term
A predicate is either a term, a cut or a freshness prob-
lem.

term ::= (termlist) | func term | const | @atom
| atom \ term | [susp] term | var

We see here the syntax for a tuple, data term, a con-
stant (syntactic sugar for a data term whose body
is the empty tuple), an atom (prepended with the @

symbol in order to distinguish it from a constant),
an atom abstraction, a suspended permutation and a
variable. ‘TRAN’ nodes are only used internally so
have no concrete syntactic form.

termlist ::= term | term, termlist

susp ::= atom atom | atom atom, susp
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func, const, atom ::= lowercase alphanumeric∗

That is, a lowercase letter followed by zero or more
alphanumeric characters.

var ::= uppercase alphanumeric∗

That is, an uppercase letter followed by zero or more
alphanumeric characters.

Source files may contain comments written using the ML notation, (* . . . *).

Upon execution of a query, the interpreter responds with “No.” and returns to
the main prompt if the query has no solutions. Should a solution exist, with
perhaps σ = [X := f Y ] and ∇ = {a # X}, the interpreter responds as follows:

Yes.

X := f(Y)

a # X

more?

At this point, the user must type either ‘;’ to invoke the 〈bktrk〉 function that
searches for further solutions, or ‘.’ to invoke the 〈abort〉 function that returns
the user to the main prompt.

3.3.1 Pictorial tracing

The pictorial traces of the execution are generated using the dot program from
the Graphviz suite of graph-drawing software3. The input to dot is a description
of the nodes and edges of the required graph; dot then lays these out in a way
that minimises edge lengths and node overlaps, before outputting the graph as a
.ps image. Nominal Prolog includes a module that is responsible for generating
dot source from the current state of the term graph. The source code of this
module is included as Appendix A.

Figure 3.8 illustrates an example trace. All three diagrams were produced entirely
autonomously by Nominal Prolog. The trace was generated by the following
program:

#trace on.

equal(X,X).

?equal(lam(a\@a), lam(b\Y)).

which, upon execution, gave the following output:

3http://www.graphviz.org
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Yes.

Y:=@b

3.4 Testing

αProlog is distributed with a number of sample programs. An appropriate testing
strategy, then, is to run each sample program on both αProlog and Nominal
Prolog, and check that the results are equivalent. It is necessary first to manually
rewrite each sample program into the syntax of Nominal Prolog. The thirteen
sample programs, and the results of running each, are presented in the following
table.

Test program Length of
program

Result and comment

1. A type-checker for
the λµ-calculus

21 lines Passed. Nominal Prolog sometimes
generated more freshness constraints
than αProlog, and sometimes fewer.
This discrepancy is deemed not to be a
cause for concern because those partic-
ular constraints were spurious anyway.
The generation of such spurious fresh-
ness constraints seems to be an inherent
limitation of this form of nominal logic
programming, and is discussed further
in section 4.3.1.

2. Symbolic
differentiation

12 lines Passed. The conversion from αProlog
syntax to Nominal Prolog syntax was
hampered by Nominal Prolog’s lack of
support for numeric constants.

3. Translation
between de Bruijn
and nominal
formulations of
λ-calculus terms

18 lines Passed.

4. Testing
definitional
equality

13 lines Passed.

5. An interpreter for
the λ-calculus with
explicit
substitutions

22 lines Passed.
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Test program Length of
program

Result and comment

6. Rewriter and
Skolemiser for
first-order logic

91 lines Passed.

7. A type-checker for
intuitionistic linear
logic

43 lines Passed. As in the first test, the results
differed only in the number of spurious
freshness constraints that were gener-
ated.

8. An interpreter and
type-checker for
the λ-calculus

79 lines Failed. Again there were some dif-
ferences in the spurious freshness con-
straints. More worrying was the query
for which αProlog outputted ‘Yes’ while
Nominal Prolog outputted ‘No’. It is
thought that this is a result of the two
systems’ slightly different handling of
atoms, which is discussed in Remark
3.4.1.

9. A natural
deduction calculus
for pure nominal
logic

53 lines Passed.

10. The Needham–
Schroeder and
Needham–
Schroeder–Lowe
cryptographic
authentication
protocols

66 lines Passed. The conversion from αProlog
syntax to Nominal Prolog syntax was
hampered by Nominal Prolog’s lack of
support for ‘definite clause grammar’
notation.

11. An interpreter for
the π-calculus

61 lines Passed. Once again, there were some
differences in the spurious freshness
constraints.

12. Regular
expressions and
finite automata

72 lines Failed. There were some discrepan-
cies between several queries in this test.
The reason is the same as that for test
8, and is discussed in Remark 3.4.1.
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Test program Length of
program

Result and comment

13. Translation from
the λ-calculus to
an object calculus

54 lines Failed. A small discrepancy arose ow-
ing to Nominal Prolog’s syntax not
quite being expressive enough to em-
ulate the αProlog program. Consider
the freshness problem a #? t: in Nomi-
nal Prolog the a must be an atom, but
in αProlog it can be a variable that is
substituted for an atom.

Remark 3.4.1. Nominal Prolog differs from αProlog in the way it makes atoms
that appear in a clause unique. Given, for instance, the single clause f(a) and
the query ?f(a), Nominal Prolog would return ‘No’ while αProlog would return
‘Yes’. Nominal Prolog represents the atom a in the clause internally as a1 (the
subscript indicating the clause number), because it takes the view that atoms
should be local only to the clause in which they are defined. This makes it a
distinct atom from that which appears in the query, so the query fails. αProlog
represents both atoms as a, so the query succeeds. This discrepancy is considered
to be largely a matter of taste.
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Chapter 4

Evaluation

The evaluation is presented from three angles. We begin, in Section 4.1, with
a ‘mathematical’ evaluation of the project, where we provide proofs of various
properties of the implementation. Section 4.2 comprises a quantitative evaluation,
and we conclude with qualitative comments in Section 4.3.

4.1 A ‘mathematical’ evaluation

We begin by proving various properties about our implementation of nominal
unification. The proofs of determinacy and completeness are original. The proof
of termination is similar to that presented for a näıve implementation of nominal
unification in [12], but has been significantly extended to make it suitable for our
efficient implementation.

4.1.1 Determinacy and completeness of Nominal Unifica-
tion

It is clear that the freshness transformations are deterministic (that is, there is
never more than one suitable transformation for any list of freshness problems)
and complete (that is, for any non-empty list of problems for which a solution
exists, there is always at least one suitable transformation). The equational trans-
formations also have these properties, though this is less trivial to see. In Table
4.1, we have listed each possible pairing of terms that can form an equational
problem. Each row corresponds to a possible left-hand side, and each column
corresponds to a possible right-hand side. Terms that have a suspended permu-
tation have been expanded to the next level, which is why there are thirteen rows
and columns rather than just seven. Each entry in the table is of one of the
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Table 4.1: A demonstration of both determinacy and completeness.
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Table 4.1: A demonstration of both determinacy and completeness, continued.
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Figure 4.1: The normalisation of a suspension.

following forms:

• a number, which identifies the equational transformation to use in this
situation;

• the letter ‘F’, which indicates that the left-hand side and right-hand side
definitely do not unify, so the algorithm should fail; or

• a dash, –, which indicates that this situation can never arise (see Remark
4.1.1).

For determinacy it suffices to verify that at each place where the number of a
particular transformation is given, no other transformation can be used instead.
For completeness, it suffices to verify that at each place where ‘F’ is given, the
left and right-hand sides definitely do not unify.

Remark 4.1.1. Table 4.1 assumes that the situation can never arise whereby
one permutation is suspended outside another; that is, we never have terms of
the form π · π′ · t. This is because immediately such a term is created, it is
normalised to the term π@π′ · t. The equational transformations that are liable
to create such ‘double suspensions’ are 5, 6, 7, 10, 11 and 17, so after any of
these transformations take place we perform the normalisation step illustrated in
Figure 4.1.

4.1.2 A proof that unify terminates

In this section we prove that there is no infinite sequence P1, P2, ... such that
for all i ≥ 1, there exists some transformation Pi =⇒ Pi+1. This allows us to
deduce that unification will always terminate. We do not prove formally that
the unification algorithm gives the correct result upon termination, although the
justifications given in Sections 3.1.2 and 3.1.3 suggest fairly convincingly that the
transformations are correct. The first part of this proof establishes that there are
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1 +
∑n

i=1 |ti| 1 + |t| 1 1 + 2|t| 2|t| 1 1 + |t|

Figure 4.2: Size of a graph. The top row lists the seven types of graph node, and the
bottom row defines the size of each. The size of the graph representing
the term t is denoted |t|. Note that |t| ≥ 1, and that even if some of the
children of a tuple node are identical, each still contributes separately to
the summation.

no infinite sequences of equational transformations; the second does the same for
the freshness transformations.

For the first part, we define the size of a list of problems to be the pair of natural
numbers, (n1, n2), where n1 is the number of distinct variables in the list of
problems and n2 is defined by Equation 4.1, which uses the |–| function defined
in Figure 4.2. This definition of |–| is rather surprising—why are there factors of
two strewn seemingly at random? Still, after considering many alternatives, it is
the only definition that was found to work.

n2
def
=

∑
(t≈?t′)∈P

|t|+ |t′|. (4.1)

We show that every equational transformation strictly reduces (n1, n2), using a
lexicographical ordering. Recall that for a lexicographical ordering <L, we have:

(n1, n2) <L (n′1, n
′
2) ⇔ n1 < n′1 ∨ (n1 = n′1 ∧ n2 < n′2).

Now, transformations 11 and 12 both remove a variable, thus decrementing n1.
All the other transformations leave n1 unchanged, so we need to be sure that
they reduce n2. Table 4.2 demonstrates that this is indeed the case.

For the second part, we show (in Table 4.3) that every freshness transformation
reduces the natural number n3, defined by:

n3
def
=

∑
(a#?t)∈P

|t|.
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Equational
transformation

n2 before n2 after

1 1 +
∑n

i=1 |ti|+ 1 +
∑n

i=1 |t′i|
∑n

i=1(|ti|+ |t′i|)
2 1 + |t|+ 1 + |t′| |t|+ |t′|
3 2 0
4 1 + 2|t|+ 1 + 2|t′| |t|+ |t′|
5 1 + 2|t|+ 1 + 2|t′| |t|+ 2|t′|
6 2(1 +

∑n
i=1 |ti|) + rhs 1 +

∑n
i=1 2|ti|+ rhs

7 2(1 + |t|) + rhs 1 + 2|t|+ rhs
8 3 0
9 4 0
10 2(1 + 2|t|) + rhs 1 + 2(2|t|) + rhs
13 2 0
14 3 0
15 4 0
16 1 + |t|+ |t′| |t|+ |t′|
17 2(1 + |t|) + |t′| 2|t|+ |t′|

Table 4.2: A demonstration that every equational transformation (except 11 and 12)
reduces n2. We write ‘rhs’ to signify the right-hand side of an equational
problem if does not change. Note that the calculation of n2 is incom-
plete: it considers only one equational problem at a time, despite n2 being
defined as the sum over all equational problems in the list of problems.
Nonetheless, it is easy to verify that all the ‘other’ problems in the list
remain unchanged by each transformation. This is because no transforma-
tions (save 11 and 12, which are not included in the table) modify existing
nodes in the graph. Accordingly, we are simply omitting a constant from
both columns in each row of the table, which clearly does not change the
result.

Freshness
transformation

n3 before n3 after

1 1 +
∑n

i=1 |ti|
∑n

i=1 |ti|
2 1 + |t| |t|
3 1 0
4 1 + 2|t| 0
5 1 + 2|t| |t|
6 2|t| |t|
7 1 0
8 1 + |t| |t|

Table 4.3: A demonstration that every freshness transformation reduces n3.
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4.2 A quantitative evaluation

We present the results of three tests that were designed to compare how quickly
Nominal Prolog and αProlog execute programs of increasing complexity. In each
case we define a variable n to represent the program complexity.

4.2.1 Test one

The family of programs used in this test were of the following form, for n ≥ 1.

f0(c).
f1(X) :− f0(X), f0(X).
f2(X) :− f1(X), f1(X).

...
fn(X) :− fn−1(X), fn−1(X).
?fn(c).

The graph in Figure 4.3 compares how long Nominal Prolog and αProlog each
take to execute the query ?fn(c). Execution times less than about 0.01 seconds
were reported as zero, so cannot be plotted on the logarithmic scale. This is an
artefact of using a system clock that advances in discrete time intervals.

Interestingly, at n = 14, αProlog raised an ‘Out of stack space’ exception. Nomi-
nal Prolog did not raise the same exception until it tried to execute the 18th query.
This would seem to mark a victory (at least in terms of memory efficiency) for
the graph-based, term-sharing representation of terms of Nominal Prolog over
the tree-based, non-sharing representation of αProlog.

This leaves us with few data points; fortunately, the points we have are very
well-behaved. Clearly, αProlog executes convincingly quicker for every value of
n: even when the data points are at their closest (at n = 13), αProlog is almost
twice as quick. Nevertheless, the lines are unmistakably converging, and, given
how well the data we have fits the drawn lines of best fit, it seems reasonable
to suppose that for sufficiently large values of n, Nominal Prolog would execute
faster. By extending the lines of best fit, we estimate the smallest ‘sufficiently
large’ value of n to be 17.

This family of programs does not use atoms, atom abstractions or suspended
permutations, so the reason for Nominal Prolog’s (eventual) better performance
most likely lies in its more efficient implementation of substitutions. There is a
greater computational overhead when working with graphs (as Nominal Prolog
does) rather than trees (as αProlog does), which is probably the main reason for
αProlog’s quicker execution when n is small.
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Figure 4.3: A graph of the time taken to execute queries of the form ?fn(c) in terms
of n. The lines of best fit are both exponential (despite appearing linear
on the logarithmic scale) and were drawn by Microsoft Excel.
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4.2.2 Test two: Näıve list reverse

Näıve list reverse is a classic benchmark for logic programming languages. The
family of programs used in this test were of the following form, for n ≥ 1.

reverse〈nil, nil〉.
reverse〈cons〈Head ,Tail〉, R〉 :−
reverse〈Tail ,RTail〉,
append〈RTail , cons〈Head , nil〉, R〉.

append〈nil, L, L〉.
append〈cons〈Head ,Tail〉, L, cons〈Head , R〉〉 :−
append〈Tail , L, R〉.

?reverse〈 cons〈c, cons〈c, . . .〉〉︸ ︷︷ ︸
a list of n c’s

, cons〈X, cons〈X, . . .〉〉︸ ︷︷ ︸
a list of n X’s

〉.

The graph in Figure 4.4 compares how long Nominal Prolog and αProlog each
take to execute the programs in the family defined above.

In this test, αProlog is the clear winner: it reverses the list faster than Nominal
Prolog does. Moreover, the graphs show no signs of converging. It seems that the
simpler, lower-overhead approach taken by αProlog still pays dividends in some
cases.

For both graphs, the lowest degree of polynomial that fits well is a quartic, as
plotted by Microsoft Excel in Figure 4.4. This suggests that both αProlog and
Nominal Prolog perform the näıve list reverse algorithm in O(n4) time. Yet the
näıve reverse algorithm is known have quadratic time complexity—from where
have the two extra factors of n come? While one extra factor is justifiable by
reference to the solution-finding algorithm presented in Figure 3.6 (we are making
a copy of rest of goal, which is a list whose length is linear in n, for each recursive
invocation of exec1), the reason for the presence of two extra factors remains
unclear.

Of interest is the outlier at n = 84. One might assume this to be the result of a
disruption caused by an ill-timed context switch, did it not appear in exactly the
same position on three separate trials. The actual reason that Nominal Prolog
takes unusally long to reverse a list of length 84 is to do with its implementation
of directed acyclic graphs. A hash table stores mappings from terms to graph
nodes; this lets us quickly find where a given term is located in the graph. The
default size of this hash table is 100. The first time this proves inadequate is
when we try to reverse a list of length 84—at this point, the hashtable is grown
to twice its original size. It is this operation that causes the execution to take a
little longer than expected.

1A better implementation might pass a reference to rest of goal rather than the value itself.
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Figure 4.4: A graph of the time taken to reverse a list of length n. The lines of best
fit are both quartics, and were drawn by Microsoft Excel.
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4.2.3 Test three: Type inference

This final test analyses the performance of the ‘nominal’ features of Nominal
Prolog, and makes use of the following program.

mem〈A, cons〈A, T 〉〉.
mem〈A, cons〈B, T 〉〉 :− mem〈A, T 〉.
tc〈G, var X, A〉 :− mem〈〈X, A〉, G〉.
tc〈G, app〈M, N〉, B〉 :− tc〈G, M, arrow〈A, B〉〉, tc〈G, N, A〉.
tc〈G, lam(x\M), arrow〈A, B〉〉 :− x #? G, tc〈cons〈〈x, A〉, G〉, M, B〉.

We use the simple type inferrer defined above to assign types to λ-calculus terms
of the form twn, where tw is defined as λf.λx.f(f x), and tw 3 is an abbreviation
for tw tw tw. The type, for any n, is (α → α) → α → α. The graph in Figure
4.5 compares how long Nominal Prolog and αProlog each take to infer this type,
for increasing values of n.

The resounding victory in this test belongs to Nominal Prolog. The time taken by
αProlog is exponential in n, while Nominal Prolog performs the same operation
in polynomial time (probably cubic). There are a few reasons why this might
be; the dominant factor is suspected to be Nominal Prolog’s lazy evaluation of
permutations, because this is the first test in which Nominal Prolog has really
shone and is also the first test to make use of permutations.

4.3 A qualitative evaluation

The project generally proceeded very smoothly throughout development. The
‘incremental and iterative’ model of development described in the project pro-
posal worked well. Despite being unfamiliar at the project outset, OCaml proved
a suitable language in which to implement the interpreter. The main difficulty
that was not foreseen in the planning phase was that of finding a way to pretty-
print term graphs: a textual representation is satisfactory for trees but does not
suffice for directed acyclic graphs. While the pictorial representation that was
selected took a significant amount of time to develop, it proved invaluable during
debugging. The backing-up process was unobtrusive, and back-ups were called
upon a few times both to rectify mishaps and as a useful history of the evolution
of the code, which was helpful in conjunction with the information in the project
log when writing the progress report.
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Figure 4.5: A graph of the time taken to infer the type of twn in terms of n. The line
of best fit for αProlog is exponential while that for Nominal Prolog is a
cubic.
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4.3.1 Spurious freshness constraints

Both Nominal Prolog and αProlog are liable to output spurious freshness con-
straints. For instance, given the single clause f(X) :− a #? X and the query
?f(X), both systems reply with ‘Yes’ plus the freshness constraint a′ # X, where
a′ is a freshened version of the atom a. This freshness constraint is spurious
because a′ is meaningless outside the clause in which it is used. Neither system
reports the substitutions that are applied to internal unification variables, only
those that affect the unification variables given in the query; surely then, we
should only report the freshness constraints that are between atoms and unifi-
cation variables given in the query. It transpires, however, that it is very hard
to keep track of which atoms were given in the original query, and which have
been generated during execution; to do so would require major changes to be
made to the algorithm of nominal unification. For this reason, it seems that we
must accept these spurious freshness constraints as a limitation of nominal logic
programming.

4.3.2 Extensions

The project proposal (included at the end of this document) details two project
extensions: the addition of a strong typing system and the caching of recently-
unified terms. Neither extension was realised. It was decided that a typing system
would add much complexity to the project while contributing little toward meet-
ing the core aims. One unfortunate corollary of αProlog’s strong type system is
that its programs are cluttered with typing declarations, while Nominal Prolog’s
programs are refreshingly concise, and are hence better suited to a prototype lan-
guage undergoing rapid development. Traditional Prolog does employ a minimal
type system, which simply checks that a predicate is invoked with the right num-
ber of arguments. Nominal Prolog does not do this, but perhaps it should: such
a system would have shortened a couple of debugging sessions that were caused
by having the wrong number of arguments, and would not have required verbose
typing declarations. The second extension, the caching of recently-unified terms,
was soon discovered to be far more involved than first imagined, particularly
because the process of unification incurs various side-effects. The idea merits
further investigation, but was deemed to be beyond the scope of this project.
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Chapter 5

Conclusions

5.1 Was the project a success?

According to the original project proposal, the project can be deemed a success
upon delivering a working Nominal Prolog interpreter that. . .

1. . . . accepts input as strings (i.e. concrete syntax) and pretty-prints results
of queries.

Status: Achieved. The interpreter accepts input directly from
the command line or from a source file. The results of queries
are clearly displayed. Moreover, the interpreter offers a pictorial
tracing facility, whereby the evolution of the goal is outputted as
a series of images.

2. . . . uses the Urban-Pitts-Gabbay algorithm to perform nominal unification.

Status: Achieved. The Urban-Pitts-Gabbay algorithm for nom-
inal unification is at the heart of Nominal Prolog.

3. . . . uses an efficient implementation of the Urban-Pitts-Gabbay algorithm
(based on that of Calvès and Fernández).

Status: Achieved. The most striking testimony to the efficiency
of Nominal Prolog’s implementation is the graph in Figure 4.5,
which shows Nominal Prolog performing the same task in poly-
nomial time that αProlog only managed in exponential time.

4. . . . gives the same results as αProlog on a suite of test programs.

Status: Mostly achieved. The remaining discrepancies were
discussed in Section 3.4.
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5.2 Alternative approaches

The project set out to extend an existing programming language with support
for programming with names. We took the ‘nominal’ approach for representing
names, but this is not the only way. We briefly consider a couple of alternative
approaches.

de Bruijn indices

The de Bruijn representation of λ-calculus terms does away with names al-
together[5]; it identifies an occurrence of a bound variable not by its name but
the number of binders between that occurrence and its corresponding binder. For
example, the term

λx.λy.λz.xz(yz)

is written λ(λ(λ(3 1(2 1)))) using de Bruijn indices. One might think that the
problem of unifying terms up to α-equivalence has already been solved by the
use of de Bruijn indices, there being a bijection between de Bruijn terms and
α-equivalence classes of λ-calculus terms. However, de Bruijn indices have a few
drawbacks, the most obvious being that they are difficult for humans to work
with—we much prefer to use names over numbers to refer to variables. Secondly,
by giving a variable a name, we can refer to that variable again, outside the scope
of the term in which it appears. Thirdly, the bijection breaks down when we allow
terms to contain unification variables, X; the de Bruijn term λ(λ(X)) represents
both λx.λy.X and λx.λx.X despite these terms not being α-equivalent1.

Higher-order abstract syntax.

In HOAS[10], we can specify the syntax of the untyped λ-calculus as follows:

t ::= fn : (t → t) → t

| app : t× t → t

In the first-order representation of λ-calculus terms, the fn constructor is provided
with both a binder and a body that may refer to that binder. In the higher-order
approach, we simply provide the fn constructor with a function. As it happens,
it remains convenient to express this function using names and name-bindings,
but these are no longer part of the syntax. For instance, we can represent the
term λx.λy.x in HOAS as fn(λx.fn(λy.app(x, y))). Much work has been done on

1Admittedly, there are ways to recover the bijection, such as the application of ‘explicit
substitutions’ to the unification variables [7]. However, such approaches amass considerable
complexity on top of an already unintuitive representation of terms.
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‘higher-order unification’ that is based on such a representation of terms: see [6]
for a survey. Sadly, unlike their nominal counterparts, higher-order unification
problems may lack most general unifiers, or even be undecidable. A special case
called ‘higher-order pattern unification’[8] is decidable in linear time, and has
been shown by Cheney[3] to be reducible to nominal unification.

5.3 Epilogue

The type inference task described in section 4.2.3 was later presented to both the
OCaml and the Moscow ML toplevel interpreters. Both compilers processed the
tw 6 case almost instantaneously, yet both ran out of memory before they could
finish finding the type of tw 7. This is a rather surprising result, considering that
Nominal Prolog accomplished the same task using its simplistic type inferrer in
about fifty milliseconds. One wonders if they would both do better to implement
their type inferrers using Nominal Prolog instead. . .
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Appendix A

Sample source code

(** The code below comprises the module that is responsible for

the creation of pictorial representations of term dags. In

Section 3.3.1 we present some output from this module. *)

open Clause;;

open Term;;

open Unifier;;

(** The value of [ctr] is used to give unique ids to nodes in the

graphviz output. *)

let ctr = ref 0;;

let next_int() = (incr ctr; !ctr);;

(** An association list of (term reference [ref t], integer [i])

pairs, where "term[i]" is the unique id of the graphviz node

representing term [t]. *)

let keynums_term : (term ref * int) list ref

= ref []

;;

(** An association list of (perm reference [ref p], integer [i])

pairs, where "perm[i]" is the unique id of the graphviz node

representing perm [p]. *)

let keynums_perm : (Perm.perm ref * int) list ref

= ref []

;;

(** see below **)

let findnode (keynums : (’a ref * int) list ref)

57
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(k:’a ref) : string

= string_of_int(

try List.assq k (!keynums)

with Not_found ->

let i = next_int() in

(keynums := ((k,i)::(!keynums));

i));;

(** Finds the unique id of the given term reference in

[keynums_term], if it exists. Otherwise, makes, stores and returns

a new id. *)

let findnode_term (kt : term ref) : string

= "term" ^ (findnode keynums_term kt)

;;

(** Finds the unique id of the given perm reference in

[keynums_perm], if it exists. Otherwise, makes, stores and returns

a new id. *)

let findnode_perm (kp: Perm.perm ref) : string

= "perm" ^ (findnode keynums_perm kp)

;;

let gen_term (kt:term ref) : string

= let termk = (findnode_term kt) in

match (!kt) with

| TUPL(kus) ->

let f ku i = termk ^ " -> " ^ (findnode_term ku)

^ " [label = " ^ (string_of_int i) ^ "]; \n"

in

termk ^ " [label = TUPL]; \n"

^ (Mylist.implode2 0 "" f kus)

| DATA(c,ku) ->

termk ^ " [label = " ^ c ^ "]; \n"

^ termk ^ " -> " ^ (findnode_term ku) ^ "; \n"

| ATOM(a) ->

termk ^ " [label = \"" ^ a ^ "\"]; \n"

| ABST(a,ku) ->

termk ^ " [label = \"" ^ a ^ "\\\\\"]; \n"

^ termk ^ " -> " ^ (findnode_term ku) ^ ";\n"

| SUSP(kp,ku) ->

termk ^ " [label = SUSP]; \n"

^ termk ^ " -> " ^ (findnode_perm kp) ^ "; \n"

^ termk ^ " -> " ^ (findnode_term ku) ^ "; \n"
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| VAR(x) ->

termk ^ " [label = \"" ^ x ^ "\"]; \n"

| TRAN(x,ku) ->

termk ^ " [label = \"" ^ x ^ "\"]; \n"

^ termk ^ " -> " ^ (findnode_term ku)

^ " [style = dashed]; \n"

;;

(** Generates the graphviz output for all the terms in the given

dag. *)

let gen_terms (): string

= let f _ kt prev = (gen_term kt) ^ prev

in Dag.fold_term f ""

;;

(** Generates the graphviz output for all the perms in the given

dag. *)

let gen_perms () : string

= let p_str p = "\"" ^ (Perm.perm_toStr p) ^ "\"" in

let f p k prev = (findnode_perm k)

^ " [label = " ^ p_str p ^ "]; \n" ^ prev

in Dag.fold_perm f ""

;;

(** Generates the graphviz output for the given clause. *)

let gen_clause (c:clause) : string

= let nodeid = "\"clause" ^ (string_of_int c.clause_id) ^ "\"" in

let label =

let f p i =

"<t" ^ (string_of_int i) ^ ">"

^ (match p with

| CUT -> " !"

| TERM _ -> ""

| FR_PRED(a,_) -> " " ^ a ^ "#")

in

let rest = Mylist.implode2 0 " | " f c.neglits in

let first_bit = "<t0> c" ^ (string_of_int c.clause_id) in

let mid_bit = if rest = "" then "" else " | " in

first_bit ^ mid_bit ^ rest

in

let edges =

let f p i =

match p with
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| CUT -> ""

| FR_PRED(_,kt)

| TERM(kt) ->

nodeid ^ ":t" ^ (string_of_int i)

^ " -> " ^ (findnode_term kt) ^ "; \n"

in

let rest = Mylist.implode2 0 "" f c.neglits in

let first_bit = nodeid ^ ":t0"

^ " -> " ^ (findnode_term c.poslit) ^ "; \n" in

first_bit ^ rest

in

nodeid ^ " [\n"

^ "label = \"" ^ label ^ "\" \n"

^ "shape = \"record\" \n"

^ "]; \n"

^ edges

;;

(** Generates the graphviz output for the given program. *)

let gen_prog (prog:program) : string

= Hashtbl.fold (fun _ c e -> (gen_clause c) ^ e) prog ""

;;

(** Generates the graphviz output for the given goal. *)

let gen_goal (goal : goal) : string

= let label =

let f p i =

"<t" ^ (string_of_int i) ^ ">"

^ (match p with

| CUT -> " !"

| TERM _ -> ""

| FR_PRED(a,_) -> " " ^ a ^ "#")

in

Mylist.implode2 0 " | " f goal

in

let edges =

let f p i =

match p with

| CUT -> ""

| FR_PRED(_,kt)

| TERM(kt) ->

"goal:t" ^ (string_of_int i)

^ " -> " ^ (findnode_term kt) ^ "; \n"



61

in

Mylist.implode2 0 "" f goal

in

"\"goal\" [\n"

^ "label = \"" ^ label ^ "\" \n"

^ "shape = \"Mrecord\" \n"

^ "]; \n"

^ edges

;;

(** Generates the graphviz output for the given list of

problems. *)

let gen_probs (probs:prob list) : string

= let rec gen_prob_nodes (probs:prob list) (len:int) : string

= match probs with

| [] -> ""

| (EQ(kt1, kt2)) :: probs ->

let problen = "prob" ^ (string_of_int len) in

problen ^ " [label = \"=?\"]; \n"

^ (gen_prob_nodes probs (len-1))

| (FR(a,kt)) :: probs ->

let problen = "prob" ^ (string_of_int len) in

problen ^ " [label = \"" ^ a ^"#?\"]; \n"

^ (gen_prob_nodes probs (len-1))

in

let rec gen_prob_edges (probs:prob list) (len:int) : string

= match probs with

| [] -> ""

| (EQ(kt1, kt2)) :: probs ->

let problen = "prob" ^ (string_of_int len) in

problen ^ " -> " ^ (findnode_term kt1) ^ "; \n"

^ problen ^ " -> " ^ (findnode_term kt2) ^ "; \n"

^ (gen_prob_edges probs (len-1))

| (FR(a,kt)) :: probs ->

let problen = "prob" ^ (string_of_int len) in

problen ^ " -> " ^ (findnode_term kt) ^ "; \n"

^ (gen_prob_edges probs (len-1))

in

let num_of_probs = List.length probs in

"{\n"

^ "rank = source; \n"

^ (gen_prob_nodes probs num_of_probs)

^ "}\n"
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^ (gen_prob_edges probs num_of_probs)

;;

let gen_subst (s:Subst.subst) : string

= let f prev kt =

let termk = findnode_term kt in

"subst -> " ^ termk ^ "; \n" ^ prev

in

"subst[shape=plaintext];\n"

^ (List.fold_left f "" s)

;;

(** Generates the entire graphviz output. *)

let gen_all (s:Subst.subst) (probs:prob list)

(prog:program) (goal:goal) : string

= "digraph G { \n"

^ (gen_subst s)

^ (gen_probs probs)

^ (gen_prog prog)

^ (gen_goal goal)

^ (gen_terms ())

^ (gen_perms ())

^ "}"

;;

(** Resets the node identifiers. *)

let reset() =

ctr := 0;

keynums_term := [];

keynums_perm := []

;;

(** [produce_graph d probs prog goal out_filename] makes a graph

of [d], [probs], [prog] and [goal], and stores it in

"graphs/[out_filename].ps". *)

let produce_graph (s:Subst.subst) (probs:prob list)

(prog:program) (goal:goal) (out_filename:string) : unit

= reset();

let dotcode = gen_all s probs prog goal in

print_string("Putting dot code into " ^ out_filename ^

".tmp \n");

let tmp_filename = "graphs\\" ^ out_filename ^ ".tmp" in

let tmp_file = open_out tmp_filename in
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output_string tmp_file dotcode;

close_out tmp_file;

let filetype = "ps" in

let mode = "ps2" in

print_endline("Making " ^ out_filename ^ "." ^ filetype ^ ".");

let _ = Sys.command("dot \"" ^ tmp_filename ^ "\" -T" ^ mode ^

" > \"graphs\\" ^ out_filename ^ "." ^ filetype ^ "\"") in

print_endline("Finished.")

;;
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Introduction and Description of the Work

The main aim of the project is to design and implement an interpreter for Nominal Prolog, a
Prolog-like language that, by performing unification up to α-equivalence, provides support
for programming with names and name-binders.

The λ-calculus provides a motivating example; consider the following definition of capture-
avoiding substitution:

y[e/x] =

{
e x = y
y x 6= y

(e1 e2)[e/x] = e1[e/x] e2[e/x]

(λy.e1)[e/x] = λy.(e1[e/x]) y /∈ FV (e) ∪ {x}

We need not consider the case where the condition on the third rule is not satisfied, because
we can always rename the variable y to a new name, z say, such that the condition does
hold. Although this function can be defined in Prolog, the renaming process is problematic
because the choice of z is so open-ended. In solving the problem we are forced to write
code that is either inefficient or obfuscated.

Meanwhile, in Nominal Prolog, the following definition of capture-avoiding substitution is
correct, succinct and efficient.

subst(var(x), E, x, E).

subst(var(y), E, x, var(y)).

subst(app(E1,E2), E, x, app(E3,E4)) :-

subst(E1, E, x, E3), subst(E2, E, x, E4).

subst(lam(y\E1), E, x, lam(y\E2)) :- y # E, subst(E1, E, x, E2).

The predicate is defined such that subst(e1, e2, x, R) is true if and only if R = e1[e2/x].
This example demonstrates two features of Nominal Prolog. Firstly, terms of the form
x\t (where x is a variable and t is an arbitrary term) have the meaning of binding free
occurrences of x in t. Secondly, the predicate x#t (read: “x is fresh for t”) is true if and
only if there are no free occurrences of x in t. These two features are made possible by
the use of nominal unification, a method for solving both unification problems (“Can two
terms be made α-equivalent?”) and freshness problems (“Is x fresh for t?”). An algorithm
for performing nominal unification has been devised by Urban, Pitts and Gabbay[6].

Nominal Prolog will be similar to an existing system called αProlog[2], designed by James
Cheney. αProlog uses the Urban-Pitts-Gabbay algorithm to perform nominal unification,
however the implementation of the algorithm lacks efficiency.1 An efficient implementation

1Indeed, Cheney remarks in the source code: “TODO: Use a faster version of unification such
as using reference cells”.
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has since been invented by Calvès and Fernández[1]. Nominal Prolog will base its imple-
mentation of the Urban-Pitts-Gabbay algorithm on that of Calvès and Fernández, and by
doing so it has the potential to be more efficient (and hence more useful) than αProlog.
The existence of a similar system will be useful during the evaluation phase: my interpreter
can be compared against Cheney’s interpreter for both efficiency and correctness.

Since the core of the interpreter is a resolution-based theorem prover, a functional program-
ming language is the most suitable programming language to use for its implementation.
I have selected OCaml[4], the language in which αProlog was written. OCaml is an ML
variant that is both more widely used and better supported than Standard ML.

Resources Required

I will use the machine in my room for development, which has the following specification:

• 3.4GHz Intel Pentium 4 processor

• 1.0GB RAM

• 240GB hard disk space

• Microsoft Windows XP Home SP2

I will use the PWF for backup and for running overnight tests.

Back-up Policy

A CVS repository will be set up on my machine to store all files related to my project.
Twice daily, a snapshot of the repository will be copied to both my PWF space and my
external hard drive. A ‘Scheduled Task’ will be configured such that Windows does this
automatically. Weekly backups will be made to CD using my machine’s CD writer.

Starting Point

Although I have never programmed in OCaml, it should not prove too challenging to learn,
as the differences it has with ML are almost all syntactic rather than semantic (at least
for the language features that I will need).

In preparation for the project I have spent some time in the last few weeks studying research
papers related to nominal unification. I am familiar with the process of resolution-based
theorem-proving from the Part IB course Logic and Proof. I have built an interpreter for
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a limited functional language as part of my work for the Part IB course Semantics, but I
have not experimented with an interpreter for a logic programming langugage before.

I will be using the OCaml versions of Lex and Yacc to generate a lexer and a parser for my
language. Part of the timetable has been set aside for gaining familiarity with these tools,
as I have not used them before.

Substance and Structure of the Project

Nominal unification is part of a challenging and new area of Computer Science based on
nominal logic[5], so a significant part of the initial phase of this project will comprise
reading in and around the topic so that I am able to implement the algorithms involved.

I will observe an incremental and iterative model of development. By ‘incremental’, I mean
that I will first identify and build the smallest subset of the proposed system that is able
to stand alone, and then proceed to continually augment this small system with one new
feature at a time. By ‘iterative’, I mean that when building a particular feature, I will first
do so in a very näıve way, but over time I will revisit the feature and improve it.

With this model in mind, the first phase of development will comprise designing and
building a näıve interpreter for a limited version of ordinary Prolog (that is, without
nominal unification). The interpreter will operate on the abstract syntax trees of nominal
terms, but it will ignore name-binding and alpha-conversion at this stage. Simple pretty-
printing will be used to display output, and the implementation of the resolution-based
proof search will be näıve. Later on, the use of ‘success continuations’[3] in resolution-based
proof search may give a more intuitive and efficient implementation. Work will be done to
research this technique and investigate how it may be applied to this project.

The second phase will comprise implementing the Urban-Pitts-Gabbay algorithm for nom-
inal unification. This will be done in an iterative way: first a näıve implementation of
the algorithm will be produced, and then this will be refined to become an efficient im-
plementation. The third phase will involve integrating the nominal unification algorithm
into the Prolog interpreter built in the first phase. It is anticipated that this will be quite
challenging for the following reason: the output of the ordinary unifier is a substitution,
whereas the output of the nominal unifier is a substitution plus a set of freshness con-
straints. Considerable changes may have to be made to the interpreter to accommodate
this.

The next phase of the project development will involve deciding upon a suitable concrete
syntax for the language and generating a parser to accept this syntax. This stage has
intentionally been left until this stage of the project so that the concrete syntax can be
chosen to reflect the implementation of the underlying interpreter.

There are various ways in which the interpreter can be improved. One way to improve its
efficiency is to keep a cache of recently unified terms, thus taking advantage of temporal
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locality of reference (having unified a pair of terms, we are likely to ask to unify them again
shortly afterwards). A strong typing system may be added (as used in αProlog) but this
is currently deemed to be an optional extension.

How can we evaluate the project? The correctness of the interpreter can be justified by
running test programs and comparing the output to that of αProlog. The efficiency of
the interpreter can be assessed by running equivalent programs on both this interpreter
and the αProlog interpreter, and plotting some measure of program complexity against
execution time. It will be informative to compare the execution speed of the interpreter
using the näıve implementation of the Urban-Pitts-Gabbay algorithm and the efficient
implementation.

Success Criteria

The project can be deemed a success upon delivering a working Nominal Prolog interpreter
that:

• accepts input as strings (i.e. concrete syntax) and pretty-prints results of queries,

• uses the Urban-Pitts-Gabbay algorithm to perform nominal unification,

• uses an efficient implementation of the Urban-Pitts-Gabbay algorithm (based on that
of Calvès and Fernández), and

• gives the same results as αProlog on a suite of test programs.

Timetable and Milestones

Weeks 1 – 2 Fri 19th Oct – Fri 2nd Nov

Install OCaml. Set up CVS repository and practise the backing-up procedure. Install
αProlog and experiment with some test programs. Begin study of relevant theory. Write
a basic Prolog interpreter.

Deliverable:

• working prototype of basic Prolog interpreter (using ordinary unification)

Weeks 3 – 4 Fri 2nd Nov – Fri 16th Nov

Produce näıve version of Urban-Pitts-Gabbay algorithm. Produce efficient version.

Deliverable:
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• two working nominal unifiers: one näıve version, one efficient version

Weeks 5 – 6 Fri 16th Nov – Fri 30th Nov

Incorporate Urban-Pitts-Gabbay algorithm into basic Prolog interpreter, giving first ver-
sion of Nominal Prolog.

Deliverable:

• working first version of Nominal Prolog (with input as abstract syntax)

Weeks 7 – 12 (Christmas Vacation) Fri 30th Nov – Tue 15th Jan

Install the OCaml versions of Yacc and Lex and practise using them. Decide upon concrete
syntax, and use Yacc and Lex to generate a lexer and a parser for Nominal Prolog. Research
‘success continuations’ and investigate how they can be added to the interpreter. Build
harness for measuring execution speed of αProlog. Build harness for measuring execution
speed of Nominal Prolog. Optional: add a strong typing system.

Deliverables:

• working version of Nominal Prolog (with input as concrete syntax)

• working test harness for αProlog

• working test harness for Nominal Prolog

Weeks 13 – 14 Tue 15th Jan – Fri 25th Jan

Use test harnesses to run overnight tests on PWF of αProlog and Nominal Prolog. Write
progress report.

Complete progress report by Fri 25th Jan.

Deadline for submission of progress report: Fri 1st Feb.

Weeks 15 – 21 Fri 25th Jan – Fri 14th Mar

Write first draft of dissertation.

Submit to supervisor by Fri 7th Mar.

Write second draft of dissertation.

Submit to supervisor by Fri 14th Mar (end of Lent term).
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Weeks 22 – 26 (Easter vacation) Fri 14th Mar – Tue 22nd Apr

Planned contingency. (Revise for examinations.)

Weeks 27 – 30 Tue 22nd Apr – Fri 16th May

Finalise dissertation. Get dissertation printed and bound.

Submit dissertation by Fri 2nd May.

Deadline for submission of dissertation: Fri 16th May.
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