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Abstract—When mapping C programs to hardware, high-
level synthesis (HLS) tools reorder independent instructions,
aiming to obtain a schedule that requires as few clock cycles as
possible. However, when synthesising multi-threaded C programs,
reordering opportunities are limited by the presence of atomic
operations (‘atomics’), the fundamental concurrency primitives
in C. Existing HLS tools analyse and schedule each thread in
isolation. In this article, we argue that thread-local analysis
is conservative, especially since HLS compilers have access to
the entire program. Hence, we propose a global analysis that
exploits information about memory accesses by all threads when
scheduling each thread. Implemented in the LegUp HLS tool,
our analysis is sensitive to sequentially-consistent (SC) and weak
atomics, and supports loop pipelining. Since the semantics of
C atomics is complicated, we formally verify that our analysis
correctly implements the C memory model using the Alloy model
checker. Compared to thread-local analysis, our global analysis
achieves a 2.3× average speedup on a set of lock-free data
structures and data-flow patterns. We also apply our analysis
to a larger application: a lock-free, streamed, and load-balanced
implementation of Google’s PageRank, where we see a 1.3×
average speedup compared to thread-local analysis.

I. INTRODUCTION

When mapping C programs to hardware, high-level syn-
thesis (HLS) tools attempt to schedule all operations of a
program into as few clock cycles as possible. They do so by
identifying opportunities to reorder and parallelise independent
operations without affecting program behaviour. However,
when synthesising multi-threaded programs, the ability to
reorder instructions is inhibited by the presence of atomic
operations (‘atomics).

Atomics are the fundamental concurrency primitives of the
C language [2, §7.17], upon which more complex concurrency
mechanisms such as mutual-exclusion locks, semaphores and
various other lock-free data structures are built. An atomic
operation must appear to be instantaneous to all threads and
must also obey ordering constraints given by the C memory
model [2]. Ramanathan et al. [3] showed that atomics can be
implemented via HLS by injecting additional scheduling con-
straints within each thread. Following the standard practice of
conventional compilers, memory constraints were determined
locally, i.e. each thread was scheduled in isolation.

In this article, we argue that thread-local analysis of multi-
threaded programs via HLS is overly conservative. HLS com-
pilers have access to the entire program at compile-time, and
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thereby can consider the inter-thread memory synchronisations
while scheduling individual threads. Hence, we propose a
global analysis that exploits information about the memory
accesses of all threads to determine, for each thread, all the
pairs of memory accesses whose order must be preserved.
We do so by enumerating all the possible pairs of memory
operations through which the threads of an input program may
synchronise with each other.

Example 1: Consider the following program, which con-
sists of an ordinary (non-atomic) store to x followed by an
atomic store to y:

x=1;

atomic_store(&y,1);
(Program 1)

Assuming x and y do not alias, these two operations can
be parallelised safely. The analysis proposed in this article
correctly determines that both operations can be scheduled
into the same clock cycle. Unfortunately, HLS compilers
that only use thread-local analysis have to assume that there
might be other threads concurrently accessing x and y, so
these operations cannot be reordered safely.

For instance, there could be an additional thread that
loads atomically from y and then non-atomically from x,
as shown below, where || separates the two threads:

x=1; if(atomic_load(&y))

atomic_store(&y,1); r0=x;
(Program 2)

Here, the two stores in the left thread must not be reordered.
This is because the C standard dictates that when an atomic
load observes an atomic store in another thread, the two
threads synchronise [2, §5.1.2.4.11]. As a consequence,
all memory accesses that happen before the atomic store
are guaranteed to become visible to all memory accesses
after the atomic load. This guarantee could be violated in
Program 2 if the stores are executed out of order.

We implement our global analysis as an LLVM pass in
the LegUp 5.1 HLS tool [4] and evaluate our implementation
against thread-local analysis [3]. Since the C memory model
is notoriously complicated, we formally verify our analysis to
ensure the correctness of our generated hardware. We do so
by using automated model checking via Alloy [5].

To evaluate the effects of our global analysis, we use a set
of lock-free data structures and data-flow patterns as bench-
marks. When we restrict our analysis to support sequentially-
consistent (SC) atomics (the default consistency mode in
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C), our results show that our global analysis leads to an
2.6× average speedup, compared to thread-local analysis. Our
analysis can also handle ‘weak’ atomics [2, §7.17.3], which
impose fewer ordering requirements compared to SC atomics.
Supporting weak atomics within our global analysis leads
to a 1.9× average speedup on our benchmark experiments,
compared to use of weak atomics within thread-local analysis.
Furthermore, our global analysis supports loop pipelining of
atomics, which requires considering inter-iteration constraints.
Enabling loop pipelining within global analysis provides an
average speedup of 2.5× on our benchmark experiments,
compared to pipelined thread-local analysis.

To investigate the extent to which our analysis can be effec-
tive on larger applications, we explore Google’s PageRank [6]
as a case study. In addition to a baseline implementation of
PageRank from an existing benchmark suite [7], we also apply
standard lock-free streaming and dynamic load-balancing opti-
misations to this baseline. These optimised programs are hand-
written and provided to both thread-local and global analyses
for HLS generation. We show that, on average, global analysis
improves the hardware runtimes of these implementations of
PageRank by 1.3×, compared to thread-local analysis.

Article outline: Section II gives an overview of our key
ideas by working through how our analysis applies to a
simple program. Section III provides necessary background
on high-level synthesis, and how concurrency works in C.
Section IV describes the design and implementation of our
global analysis, and how we ensure its correctness. Section V
evaluates the effectiveness of our analysis on a set of small
but representative benchmark programs. Section VI presents a
case study on Google’s PageRank.

Comparison to prior work: This article extends our confer-
ence paper [8] in two ways.

Firstly, we include a case study of Google’s PageRank
algorithm to demonstrate the effects of global analysis on
a more complex and substantial application. We demonstrate
that global analysis can identify complex patterns, such as
streaming and load-balancing, effectively reducing schedule
latencies of PageRank implementations. We also show that
global analysis can generate all scheduling constraints for
these programs within seconds, despite their scale.

Secondly, we extend our global analysis to support loop
pipelining. Supporting pipelining requires path enumeration to
consider iterations, which our prior work does not [8] since we
assumed that memory operations do not overlap across itera-
tions. In this article, we do not make this assumption. Hence,
we discuss the necessary steps to support pipelining within
global analysis and evaluate the effects of pipelined global
analysis on our benchmarks, compared to pipelined thread-
local analysis [3]. Furthermore, pipelined global analysis is
critical in our case study since it improves streaming.

Companion material: Our companion material [1] includes
benchmarks, Alloy models, and performance data.

II. MOTIVATING EXAMPLE

In this section, we provide a more realistic program to
intuitively showcase the benefits of global analysis.

Consider the three-threaded program in Fig. 1a. It has four
global variables, of which two are atomic. Thread T0 consists
of straight-line code performing four stores to independent
locations, where the second ( xh2 ) and fourth ( xh4 ) accesses
are atomic. Threads T1 and T2 both consist of a for-loop
containing two loads, where the first load is atomic ( xh5 or xh7 )
and the second load is non-atomic ( xh6 or xh8 ) respectively. All
atomic accesses in this example are sequentially-consistent.

This program represents a parallel programming idiom
where a master thread distributes work to multiple threads via
an independent sets of memory locations, or channels. Threads
T1 and T2 attempt N times to read the message passed by T0
via a for-loop. If the respective flags of each channel are set,
i.e. xr for T1 and yr for T2 ( xh5 and xh7 ), only then should
the respective non-atomic data be read ( xh6 and xh8 ). Hence,
the program assertion enforces that if the flag is set, then the
non-atomic data written by T0 must indeed be available.

A. Previous work: thread-local analysis

Figure 1b shows an as-soon-as-possible (ASAP) sched-
ule, without resource constraints, achieved by the constraints
generated by thread-local analysis for each thread. Thread-
local analysis is agnostic of inter-thread behaviour, thereby
scheduling threads in isolation. Within T0, xh2 is atomic, so it
must execute after xh1 and before xh3 and xh4 . Similarly, xh4 is
atomic, so it must execute after xh1 , xh2 and xh3 . Taken together,
these constraints enforce serialisation of the four instructions
in T0, and hence T0 takes four cycles to complete. In T1,xh5 is atomic, so it must execute before xh6 , and in T2, xh7 is
atomic, so it must execute before xh8 . Hence, each iteration of
T1 and T2 takes two cycles to complete.

To pipeline the loops in T1 and T2, we must consider both
inter- and intra-iteration dependencies. Loop pipelining aims to
minimise the start times of consecutive iterations, referred to as
initiation interval (II ). Each operation within the loop repeats
itself every II cycles, without violating any dependencies.
When pipelining loops, thread-local analysis considers two
consecutive iterations – this leads to the vertices xh5’ , xh6’ ,xh7’ and xh8’ in Fig. 1b. Thread-local analysis does not allow
atomic operations to be reordered with memory accesses from
other iterations. Hence, xh5 and xh7 must execute before any
operation in the following iteration, and xh5’ and xh7’ must execute
after any operation in the previous iteration. We show these
inter-iteration constraints using blue arrows. These constraints
implicitly enforce iteration serialisation, inhibiting pipelining.
Hence, the II and loop latency of these loops are the same and
both loops still take 2× N cycles to complete.

B. Our work: global analysis

When we consider the memory accesses of the entire pro-
gram, we can identify that there are two independent channels
whose memory accesses actually need not be serialised. Let
us consider all aliasing atomic accesses that can synchronise
at runtime, i.e.: xh2 can synchronise with xh5 and xh4 can
synchronise with xh7 , as highlighted by the red bi-directional
arrows in Fig. 1a. These atomic synchronisations cause other
aliasing non-atomic operations to synchronise. If xh2 and xh5
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int x=0, atomic_int xr=0;
int y=0, atomic_int yr=0;

T0() { T1() { T2() {
x=42;¶ for(i=1;i<N;i++) { for(i=1;i<N;i++) {
atomic_store(&xr, 1);· º r1=atomic_load(&xr); ¼ r3=atomic_load(&yr);
y=17;¸ if(r1==1) if(r3==1)
atomic_store(&yr, 1);¹ » r2=x; ½ r4=y;

} } }
} }

assert(r1==1 =⇒ r2==42 && r3==1 =⇒ r4==17)

(a) a program, where all atomic accesses are, sequentially-consistent (SC) accesses by default.
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(b) thread-local analysis (pipelining enabled)
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(c) global analysis (pipelining enabled)

Fig. 1. A three-threaded example to showcase the benefits of global analysis. Each thread is scheduled independently, and each operation is assigned to a
clock cycle. The red arrows represent synchronisation opportunities of the input program, whereas the black and blue arrows represent intra- and inter-iteration
memory dependencies respectively. All memory operations within a shade belong to the same iteration.

synchronise, then every operation that precedes xh2 must be
visible to every operation that follows xh5 , and every operation
that precedes xh5 must be visible to every operation that followsxh2 . In our example, this means that xh1 must be visible toxh6 . Similarly, if xh4 and xh7 synchronise, xh3 must be visible
to xh8 . Hence, the only pairs of memory accesses that must
be executed in strict program order are: [( xh1 , xh2 ),( xh5 , xh6 )] and
[( xh3 , xh4 ), ( xh7 , xh8 )]. Consequently, as shown in Fig. 1c, global
analysis schedules T0 in two cycles (rather than four).

In the context of loop pipelining, symbolic unrolling of
a loop iteration introduces additional synchronisation edges
and paths between threads. In this example, xh2 can syn-
chronise with xh5’ and xh4 can synchronise with xh7’ . These
edges introduces additional paths: [( xh1 , xh2 ),( xh5’ , xh6’ )], [( xh3 , xh4 ),
( xh7’ , xh8’ )], [( xh1 , xh2 ),( xh5 , xh6’ )] and [( xh3 , xh4 ), ( xh7 , xh8’ )]. These paths
include both intra- and inter-iteration memory constraints.
Also, we must preserve order between aliasing operations
across iterations: ( xh5 , xh5’ ), ( xh6 , xh6’ ), ( xh7 , xh7’ ) and ( xh8 , xh8’ ). As shown
in Fig. 1c, global analysis enables loops in T1 and T2 to
execute with an II of one, taking N + 1 cycles to execute
instead of 2N cycles (by thread-local analysis).

III. BACKGROUND

In this section, we present aspects of the C memory model
(§III-A), HLS scheduling (§III-B) and related work (§III-C).

A. C memory model

The C memory model defines two types of memory opera-
tions: ordinary and atomic memory operations [2, §5.1.2.4,
§7.17]. Ordinary memory operations can either be regular
loads or stores. Atomic operations, atomics, are memory
operations that: 1) must appear to be instantaneous to all
threads and 2) are not allowed to be reordered with other
memory operations within a thread. However, these properties
ensure that all atomic accesses obey SC i.e. they are SC
atomics. C11 also defines a set of weakly consistent C atomics,
or weak atomics, that can be reordered with other memory
operations under certain conditions.

The C standard does not define the meaning of atomics
on their own, but rather in terms of which executions of an
entire program are allowed and disallowed. An execution is
a set of runtime events with various dependencies between
them. A runtime event is a memory event with four properties:
event type, consistency mode, memory location and its value.
There are two memory types: a write (W) or read (R). There
are also four atomic consistency mode: sequentially consistent
(SC), acquire (ACQ), release (REL) and non-atomic (na). Each
event’s written or read value is stated to the right of the
location. Note that runtime events are not differentiated by
thread, since executions are considered globally.

For example, the picture below shows the three ‘candidate
executions’ of Program 2 from Example 1. This example has
two locations: x and y.
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Wna x 1

WSC y 1

RSC y 0
po

rb

Wna x 1

WSC y 1

RSC y 1

Rna x 1

po po
rf

rf
Wna x 1

WSC y 1

RSC y 1

Rna x 0

po po
rf

rb

In all executions, po (‘program order’) is the order of memory
operations as stipulated by the programmer. The first candidate
is the execution where the if-statement’s test condition fails.
Here, the rb (‘reads before’) edge indicates that the second
thread’s read of y is overwritten by the first thread’s write to
y. In the second candidate, the test condition succeeds and the
new value of x is observed. Here, the rf (‘reads from’) edges
indicate that the writes of x and y are observed by the other
thread’s reads (values of reads from the same location must
match with its latest writes). In the third candidate, the test
condition succeeds but the old value of x is observed.

C allows the first and second candidate executions, but for-
bids the third. The mechanism for rejecting the third execution
is the detection of a cycle made of rf edges between SC
atomics, po edges, and rb edges. The precise rules that C
uses to forbid executions are detailed by Lahav et al. [9].

B. HLS scheduling

Scheduling is an important step in HLS where operations
get assigned to clock cycles [10], without violating any de-
pendencies. Typically, an input C program is represented as
a control data-flow graph (CDFG) at the scheduling stage. A
CDFG is a directed graph where each vertex is a basic block
(BB) and each edge represents a control-flow path. Each BB is
a data-flow graph (DFG) with operations as vertices (Vop) and
dependencies as edges (Ed ⊆ Vop× Vop×N). Each edge is a
triple comprising a source operation, a target operation and a
dependence distance, which is a natural number representing
the number of loop iterations between these operations, if any.

One approach to implementing loop pipelining in HLS is
modulo scheduling [11], [12]. Modulo scheduling computes a
schedule where each operation is assigned to a particular cycle
and repeated every II cycles, where II is the initiation interval.
Typically, smaller II s lead to faster execution but larger area.

The system of difference constraints (SDC) scheduling
method [13] is a well-known method that is used by both
industrial and academic HLS tools such as VivadoHLS [14]
and LegUp [15]. Many scheduling requirements can be en-
coded as SDC constraints and powerful optimisations can be
performed within this unified mathematical framework. Our
work generates SDC constraints, where we focus on generating
data dependencies (Ed). The SDC constraint that captures data
dependencies is as follows:

∀(v, v′, dist) ∈ Ed : start(v′)− end(v) ≥ II × dist . (1)

That is, for every edge (v, v′, dist) where operation v′ depends
on v, the number of cycles between the end of operation
v and the start of operation v′ must be at least the loop
initiation interval (II ) multiplied by the loop dependence
distance (dist). A dependence is intra-iteration when dist = 0,
and is otherwise inter-iteration. Note that, in the absence of
loop pipelining, the RHS of (1) reduces to zero.

C. Related Work

Eliminating scheduling constraints in HLS is similar to
eliminating fences in a conventional compiler. Our work is
therefore related to that of Vafeiadis et al. [16] and Morisset
et al. [17], who present (and prove correct) compiler optimi-
sations that remove unnecessary fences from multiprocessor
assembly code. Unlike our work, their optimisations exploit
only a thread-local analysis.

Alglave et al. [18] present a whole-program analysis that
determines where fences need to be inserted into a program
to ensure SC behaviour when it is executed on weakly-
consistent hardware. Their analysis is, like ours, based on
enumerating inter-thread edges between conflicting accesses,
and combining these with po edges to build paths. However,
their analysis does not handle C atomics – all memory accesses
are treated equally. As such, their analysis always guarantees
SC behaviour. Our method, on the other hand, imposes only
enough ordering to guarantee the behaviour specified by the
programmer (which may be weaker than SC if weak atomics
are used). Also, their analysis targets CPUs, enforcing order-
ings via fences, whereas our analysis targets custom hardware,
enforcing instruction orderings via scheduling constraints.

Crary and Sullivan [19] propose a new concurrent program-
ming paradigm in which the programmer explicitly annotates
their code with the program order edges that must be pre-
served. Our work also involves preserving a subset of the
program order, but where Crary and Sullivan’s proposal is
that this subset is entered by the programmer via a specialised
language construct, we deduce it via a program analysis of an
existing language.

GCC [20] and LLVM1 both provide link-time optimisation
(LTO), where the compiler has access to intermediate repre-
sentation (IR) of all linked libraries and hence can treat the
link-time program as a single compilation unit. Even though,
LTO may have access to a single compilation unit, it may still
be unclear as to which functions are to be executed, unlike
in HLS. LTO also has its own challenges such as lack of
correspondence between IR and source code, restricting all
source code to be compiled with the same compiler options,
and memory overheads of preserving IR.

Hsiao et al. [21] recently extended the LegUp scheduler to
schedule all threads together. In comparison to our work: we
employ a global analysis of all threads to devise one schedule
for each thread, whereas Hsiao et al. devise one schedule
that includes all operations in all threads. By considering
multiple threads in a single CDFG, operations that share the
same resource can be scheduled without resource contention.
However, they must stall or pad loop bodies to ensure conflict-
free memory accesses; our approach does not require stalls
because our constraints guarantee that all possible executions
of the input program will be correct.

IV. METHOD

In this section, we present a global analysis of multi-
threaded programs with atomics that generates scheduling

1https://llvm.org/docs/LinkTimeOptimization.html

https://llvm.org/docs/LinkTimeOptimization.html
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constraints on a per-thread basis. That is, we use an inter-
thread analysis to generate intra-thread constraints. Our anal-
ysis enumerates all the possible ways that the threads of a
multi-thread program can synchronise. We use this information
to decide which memory operations in each thread must not
be reordered. We assume that all memory accesses are to on-
chip memory elements and occur instantaneously, since current
HLS tools [4], [22], [23] enforce direct mapping of memory
without caches or write buffers. This assumption ensures that
the only source of memory reordering is operation scheduling.

We implement our analysis in LegUp 5.1 [4]. We inject an
LLVM pass between the Allocation stage and the Schedul-
ing stage. All atomicity and consistency information of the
memory accesses is available in the LLVM IR. We utilise
LegUp’s alias analysis [24], which based on Andersen points-
to analysis, to determine which accesses are to the same
memory location. Our analysis supports loads, stores, and
compare-and-swap (CAS) operations, both on scalar variables
and on arrays. C global variables and arrays are synthesised
to registers and block RAMs respectively, where each shared
memory construct is protected by an arbiter.

In this section, we discuss the following. In §IV-A, we
describe the inputs to our analysis. In §IV-B, we explain
how we explore all the possible ways that the threads of
a multi-threaded program may synchronise. In §IV-C, we
explain how we make our analysis sensitive to weak atomics.
In §IV-D, we add support for loop pipelining. In §IV-E, we add
support for atomic compare-and-swaps. In §IV-F, we present
an optimisation that reduces the number of paths that must be
enumerated. Finally, in §IV-G, we explain how we ensure the
correctness of our analysis via automated model checking.

A. Input to our Analysis
The inputs to our analysis are sets of memory operations

and relations over these sets. These sets and relations can be
obtained from the LLVM IR and LegUp’s alias analysis.

1) Sets: Let Vmem be the set of all memory operations for
all threads in the entire program. Let Vld and Vst be the sets
of loads and stores, so Vmem = Vld∪Vst. (When we add CAS
operations later, they will consist of two separate operations:
one load and one store.)

Let Vat be the set of atomics, Vat ⊆ Vmem. Each atomic has
one of four different consistency modes. Let Vsc, Vacq, Vrel and
Vrlx be the set of sequentially consistent, acquire, release, and
relaxed atomics, Vat = Vsc ∪ Vacq ∪ Vrel ∪ Vrlx. Furthermore,
we have Vacq ⊆ Vld, Vrel ⊆ Vst and Vsc ⊆ Vmem, because an
acquire atomic must be a load and a release atomic must be
a store. An SC atomic can be either a load or a store [2].

2) Relations: Our analysis also relies on the following
relations between those operations:
• po, the ‘program order’ relation, which relates all the

memory accesses within each thread in a strict total order,
as stipulated by the programmer,

• sloc, the ‘same location’ relation, which relates all ac-
cesses to the same memory location (as determined by
an alias analysis), and

• sthd , the ‘same thread’ relation, which relates all accesses
within the same thread.

int x=0; atomic_int y=0, z=0;
T0 T1 T2

x=17; r1=ald(&y); r2=ald(&z);
ast(&y,1); if(r1==1) if(r2==1)

ast(&z,1); r3=x;
assert((r1==1 ∧ r2==1) =⇒ r3==17)

Fig. 2. A three-threaded program that motivates the need to consider
paths of canSync edges. ast and ald are short for atomic_store and
atomic_load respectively.

B. Identifying instructions that must not be reordered

Our analysis begins by identifying pairs of operations that
can cause threads to synchronise. It does this by defining the
canSync relation, which connects any two atomic operations
on the same location from different threads.

canSync = (Vat × Vat) ∩ sloc \ sthd .

For instance, the canSync edges of our motivating example
are given by the red arrows in Fig. 1a. If two operations in
canSync, say A and B, do synchronise at runtime, then all
memory operations that A has observed must become visible
to operations that follow B. For instance, if · synchronises
with º then operation ¶ must be visible to ». To ensure this,
both po edges (¶,·) and (º,») must be preserved. Ensuring
these intra-thread edges is sufficient to guarantee correct
memory behaviour globally. Correct behaviour is guaranteed
because these intra-thread ordering restrictions ensure safe
interleavings between ¶,·, º and » globally.

In general, we must consider not just isolated canSync
edges, but paths of them, in order to handle programs like
the one shown in Fig. 2. Here, thread T0 can synchronise
with T2 indirectly, via thread T1, as shown by the arrows. If
both flags y and z are observed, then T2 must observe the
value of x that is written by T0, as captured by the assertion.
This program shows that the global order in which memory
accesses are allowed to occur can depend on paths between
the accesses that are made up of several canSync edges.

Hence, to enumerate all possible synchronisation opportu-
nities, we construct a set, called AllPaths , of paths through
the memory operations of the entire program. Here, a ‘path’ is
an ordered list of edges, and each edge is a pair of po-related
operations. The set AllPaths is defined to contain the path

[(v0, v
′
0), . . . , (vn, v

′
n)]

if and only if all of the following conditions hold:

∀i. 0 ≤ i ≤ n =⇒ (vi, v
′
i) ∈ po (2)

∀i. 0 ≤ i < n =⇒ (v′i, vi+1) ∈ canSync (3)
∀i, j. 0 ≤ i < j ≤ n =⇒ (vi, vj) /∈ sthd (4)
(v0, v

′
n) ∈ sloc (5)

(v0, v
′
n) ∈ Vld × Vld =⇒ (v0, v

′
n) ∈ Vat × Vat (6)

Condition (2) states that the path is a ordered list of n+1 edges
from po. Condition (3) states that the target operation of each
po edge is connected to the source operation of the next po
edge in the path via canSync. We only consider paths that
do not revisit a thread (Condition 4), since such paths can be



6

minimised or form cycles. This condition means that n cannot
exceed the number of threads, and thus limits the length of
paths that must be considered. Also, we are only interested
in paths that start and end with accesses to the same location
(Condition 5) because the order in which memory accesses to
different locations occur cannot be directly observed. Finally,
if a path begins and ends with loads, then we only consider
it if both loads are atomic (Condition 6). Non-atomic loads
can be reordered because this reordering cannot be observed
unless the program has a data race [9], and we can assume
that, in C11 at least, a data race is a programmer error.

Finally, having enumerated all relevant paths, we preserve
all the po edges that appear in at least one path. That is, we
define the preserved program order, ppo, as follows:

ppo = {(v, v′, 0) | ∃p ∈ AllPaths. (v, v′) ∈ p}. (7)

We then provide all elements of ppo as SDC constraints to
the scheduler.

As an example, in the absence of loop pipelining, there
are only two paths in Fig 1a that satisfy Conditions (2) to (6):
[(¶,·), (º,»)] and [(¸,¹), (¼,½)]. Hence, these four memory
orderings need to be preserved, as shown in Fig. 1c: (¶,·,0),
(¸,¹,0), (º,»,0) and (¼,½,0). Since these memory orderings
are intra-iteration constraints, their dependence distance must
be zero.

C. Adding support for weak atomics

Thus far, we have handled all atomics using the default,
strictest consistency mode: sequential consistency (SC). How-
ever, the C standard also supports a range of ‘weak’ atom-
ics that offer acquire, release, and relaxed consistency [2,
§7.17.3.1]. Weak atomics allow more reordering of memory
accesses within a thread, which can improve performance,
though they can be harder for programmers to use correctly.
In this subsection, we describe how we extend our analysis to
exploit weak atomics, then in §V, we show that the resultant
reduction in scheduling constraints does indeed yield better-
performing hardware.

We redefine the pairs of atomics that can cause threads to
synchronise, as follows:

canSync = ((Vrel×Vacq)∪(Vsc×Vat)∪(Vat×Vsc))∩sloc\sthd .

This new definition relates two atomics to the same location
on different threads if: (a) the first operation is a release atomic
and the second is an acquire, or (b) either of the operations is
an SC atomic. Condition (a) captures the one-way nature of
release/acquire synchronisation [2, §5.1.2.4.11], while Condi-
tion (b) lets SC atomics retain their full synchronising abilities.
Relaxed atomics do not introduce inter-thread synchronisation
opportunities, and hence do not feature in this definition.

Figure 3a gives an example of a program that is affected
by this weakening of the canSync relation. It illustrates
the ‘store buffering’ pattern, which appears in, for instance,
Dekker’s algorithm [25]. It consists of two atomic locations,
x and y, two release stores, and two acquire loads. If all the
memory accesses were SC, the outcome r1==r2==0 would
be forbidden by C. To ensure that this outcome cannot happen,

atomic_int x=0, y=0;
¬ ast(&x,1, ® ast(&y,1,

release); release);
­ r1=ald(&y, ¯ r2=ald(&x,

acquire); acquire);

(a) a program

¬

­

®

¯

(b) SC

¬

­

®

¯

(c) Weak

Fig. 3. The ‘store buffering’ programming pattern, and its canSync edges
under SC and weak consistency

our analysis would place canSync edges as shown in Fig. 3b;
this would lead to paths such as [(¬,­), (®,¯)] and hence
both po edges are preserved.

However, our refined definition of canSync is sensitive to
the program’s use of release/acquire atomics. It produces one-
way canSync edges, as seen in Fig. 3c. No legal paths can be
constructed with these edges, and hence the two instructions
in each thread can be reordered.

D. Adding support for loop pipelining

Our input program may contain loops that can be pipelined.
In such cases, memory operations could get reordered across
iterations. Therefore, we must extend our analysis to not only
consider paths with intra-iteration constraints, but also with
inter-iteration constraints. In this article, we restrict all inter-
iteration constraints to have a dependence distance of one. By
doing so, our analysis can focus on preserving memory order-
ings between any two consecutive iterations, since an inter-
iteration constraint that applies to two consecutive iterations
inductively applies to subsequent iterations.

We can support loop pipelining within our global analysis
with three additional steps. Firstly, we symbolically unroll
each loop body by one extra iteration. Secondly, we extend
the po relation to include this extra iteration, and also create
one additional relation that is used by our analysis:
• nite, the ‘next iteration’ relation, which relates all mem-

ory operations in the current iteration to all memory
operations of the next iteration.

We then define the orderings to be preserved by loop
pipelining as ppo-pipe:

ppo-pipe = ppo-intra ∪ ppo-inter (8)

where

ppo-intra = {(v, v′, 0) | ∃p ∈ AllPaths.
(v, v′) ∈ p ∧ (v, v′) /∈ nite}

ppo-inter = {(v, v′, 1) | ∃p ∈ AllPaths.
(v, v′) ∈ p ∧ (v, v′) ∈ nite}.

Finally, we analyse the output of our global analysis to
identify the inter-iteration memory constraints. All pairs of
operations that are part of AllPaths must be part of ppo-pipe.
The ppo-intra relation contains all the edges from the non-
pipelined analysis, but assign them all with a dependence
distance of zero. The ppo-inter relation contains those edges
that are also in nite; these have dependence distance of one.

We explain how our analysis supports loop pipelining by
revisiting the example from Fig. II. First, we symbolically
unroll the loop bodies of T1 and T2. Then, we define

nite = { xh5 , xh6 } × { xh5’ , xh6’} ∪ { xh7 , xh8 } × { xh7’ , xh8’}.
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We then extend po to include ( xh5’ , xh6’ ), ( xh7’ , xh8’ ) and nite .
From this, our global analysis identifies the following new
paths: [( xh1 , xh2 ),( xh5 , xh6’ )], [( xh1 , xh2 ),( xh5’ , xh6’ )], [( xh3 , xh4 ), ( xh7 , xh8’ )] and
[( xh3 , xh4 ), ( xh7’ , xh8’ )]. Additionally, it also identifies inter-iteration
aliasing constraints. This leads to:

ppo-intra = {( xh1 , xh2 , 0), ( xh3 , xh4 , 0), ( xh5 , xh6 , 0), ( xh7 , xh8 , 0)}
ppo-inter = {( xh5 , xh6 , 1), ( xh7 , xh8 , 1), ( xh5 , xh5 , 1), ( xh6 , xh6 , 1),

( xh7 , xh7 , 1), ( xh8 , xh8 , 1)}.
where the ppo-intra and ppo-inter are the black and blue
arrows in Fig. 1c respectively.

E. Adding support for compare-and-swaps

We now explain how our analysis is extended to support
atomic compare-and-swaps (CAS), which are central to many
fine-grained concurrent algorithms [26]. A CAS operation is
parameterised by an atomic location, an expected value, and
a desired value. If the location holds the expected value, it
is instantaneously swapped to the desired value, otherwise its
value is unchanged.

For our analysis, we treat a CAS as a pair of accesses:
an atomic load followed by an atomic store. If our analysis
produces a ppo edge that constrains either the load or the
store, we automatically map it to constrain the original CAS.
This mapping guarantees the order of the CAS compared
to all other operations in the thread. Additionally, CAS’s
load and store are guaranteed to execute in-order, since our
analysis always preserves orderings of aliasing operations. The
consistency modes of the load and the store are determined
from the consistency mode of the original CAS. We map the
consistency modes of a CAS operation into different load and
store pairs: a relaxed CAS becomes a relaxed load and a
relaxed store, an acquire CAS becomes an acquire load and
a relaxed store, a release CAS becomes a relaxed load and a
release store, an acquire-release CAS becomes an acquire load
and a release store, and an SC CAS becomes an SC load and an
SC store. CAS operations can be assigned different consistency
modes for their success and failure cases; we only consider
the success mode as it is always stronger [2, §7.17.7.4.2].

Guaranteeing the load and store order of a CAS is in-
sufficient to guarantee these two operations happen instanta-
neously. A straightforward method of ensuring this in HLS is
to perform the load and store while holding a lock [27]. How-
ever, using locks to implement atomics is inefficient because
extra cycles are needed to acquire and release the lock. Locks
also prevent a CAS operation from being reordered, even if it
uses the relaxed consistency mode. Therefore, instead of using
locks, we modify LegUp’s RTL generator to support CAS
operations directly in hardware. This modification ensures that
no other memory operations to the same location can occur
between the load and store of a CAS.

Figure 4 shows the generated memory architecture when
two threads access a shared array. A thread asserts its enable
(en) signal to request (req) access from the arbiter. On each
cycle, the arbiter grants (grant) access only to one thread
while other unsuccessful threads must stall (stall) until
the arbiter grants access to them. To perform a CAS on a

THREAD 0 ARBITER THREAD 1

MUX MUX

BRAM

addr wr_data

rd_data

addr wr_data

rd_data

hold

en

hold

en

stall stall

req[0] req[1]

hold

grant

addr data_in

data_out

Fig. 4. A (simplified) circuit showing how CAS works for two threads. The
shaded region indicates circuitry added by us.

¬

­

®

¯

°

±

²

³

´

µ

Fig. 5. Illustrating primary (solid) and secondary (dotted) canSync edges

RAM, a thread requires two consecutive cycles to complete
an uninterrupted sequence of a read and write. To achieve this
effect, we first add circuitry that holds (hold) the arbiter’s
grant signal for an extra cycle, as shown in the shaded region
of Fig. 4. Then, we modify each thread’s state machine to
pack the read and write into consecutive cycles. Finally, we
implement comparison logic within the thread. Note that a
CAS on a register does not require the hold signal since
registers have zero-latency reads.

F. An optimised implementation of our analysis

A naı̈ve implementation of our analysis is to enumerate the
AllPaths set and then to extract the ppo edges, as described
in §IV-B. The problem is that realistic programs have a large
number of canSync edges and these edges can exponentially
increase the number of paths to explore. To improve the
scalability of our analysis, we now describe a more efficient
method to calculate ppo. The idea is to identify a subset of
the canSync edges as ‘secondary’, and to remove them while
enumerating paths; then to re-introduce them on a per-path
basis when calculating ppo.

For example, Fig. 5 shows the shape of a program with three
threads and four canSync edges. A naı̈ve implementation
of global analysis explores four paths with three edges
each: [(¬,­), (°,±), (´,µ)], [(¬,­), (°,²), (³,µ)],
[(¬,®), (¯,±), (´,µ)] and [(¬,®), (¯,²), (³,µ)]. The
eight ppo edges from these paths are (¬,­), (¬,®), (¯,±),
(¯,²), (°,±), (°,²), (³,µ) and (´,µ). Notice that the
number of edges obtained from path enumeration is larger
than the number of ppo edges obtained. Our optimisation
aims to reduce these redundancies.

The two dotted canSync edges are secondary edges. For any
path that passes through one or more of these secondary edges,
there always exists a path between the same endpoints that
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ald(&y1); ald(yN−1); ald(yN);
x=42; ald(&z1); ald(zN−1); ald(zN);
ast(&y1,1); ast(&y2,1); · · · ast(yN,1); r0=x;
ast(&z1,1); ast(&z2,1); ast(zN,1);

Fig. 6. A class of programs on which our analysis scales poorly, because the
number of paths scales exponentially with program size.

does not pass through any secondary edges. More formally,
we define the primary canSync edges as:

canSyncPrimary =
{(va, vb) ∈ canSync | @(vc, vd) ∈ canSync.
(va, vc) ∈ po∗ ∧ (vd, vb) ∈ po∗ ∧
(vc 6= va ∨ vd 6= vb)}.

That is, (va, vb) is a primary edge providing there exists
no other canSync edge (vc, vd) such that vc is either equal to
va or po-after it, and vd is either equal to vb or po-before it.
(Note that r∗ is the reflexive transitive closure of r.)

We then define the set of primary paths, PrimaryPaths ,
as those that pass only through primary canSync edges, by
redefining (3) to:

∀i. 0 ≤ i < n =⇒ (v′i, vi+1) ∈ canSyncPrimary . (3a)

Having calculated the set of primary paths, it remains to
generate the ppo relation in a way that re-includes non-primary
paths on a per-path basis. The idea is, for each edge in each
path, to put into ppo not just that po edge, but also any other po
edge that a non-primary path between the same threads could
have taken. For example, in Fig. 5, [(¬,®), (¯,²), (³,µ)]
is the only primary path to explore. Thus, we have avoided
exploring three other paths. Nonetheless, we can post-process
this primary path with all secondary canSync edges to obtain
the same ppo. For instance, from (­,°), we can obtain (¬,­)
and (°,²). From (±,´), we can obtain (¯,±) and (´,µ).
Finally, from (­,°) and (±,´), we can obtain (°,±).

More formally, we generate ppo as follows:

ppo =
{(w1, w2) | ∃[(v0, v′0), . . . , (vn, v′n)] ∈ PrimaryPaths.
∃i. 0 ≤ i ≤ n ∧
(w1 = vi ∨

((vi, w1) ∈ po ∧ (w1, v
′
i−1) ∈ (canSync−1 ; po∗)) ∧

(w2 = v′i ∨
((w2, v

′
i) ∈ po ∧ (vi+1, w2) ∈ (po∗ ; canSync−1))}

(noting that r ; s is the sequential composition of relations r
and s, and r−1 is the inverse relation of r). That is, the path
edge (vi, v

′
i) leads to the po edge (w1, w2) being put into ppo

whenever:
• w1 is equal to vi, or it is po-after vi and is the target of

a canSync edge whose source is po-before or equal to
the previous operation in the path (namely, v′i−1), and

• w2 is equal to v′i, or it is po-before v′i and is the source
of a canSync edge whose target is po-after or equal to
the next operation in the path (namely, vi+1).

Scalability: In practice, our optimisation can reduce the
runtime of our global analysis on many real programs, as we
discuss in §V-C and §VI-D. Nonetheless, the runtime of our
optimisation could still scale exponentially with program size,

in the worst case. Exponential growth can occur when our
path enumeration must consider paths that encounter pairs of
threads that have multiple primary canSync edges, which can
result in a cascading effect on number of paths to explore.
However, this behaviour may rarely occur since the program
must be rather contrived or very large, both of which are
unlikely in a HLS setting.

For example, Fig. 6 shows a pathological example of how
this can occur. For each program obtained by instantiating the
parameter N , there are 2N primary paths from x=42 to r0=x
that must be explored. There are two possible path choices
for each stage in the chain, either via a y-variable or via a
z-variable. Our optimisation does not eliminate any of these
canSync edges, since they do not overlap. Such programs are
good tests to understand scalability of global analysis, but are
unlikely to be written in practice.

G. Ensuring correctness

The semantics of atomic operations in C, particularly the
weakly consistent variants, is rather complicated. Therefore,
to ensure that our analysis is valid, we turn to automated tool
support. We use the Alloy model checker [5], which has been
successfully employed to validate other compiler mappings
and optimisations in a weakly consistent setting [28], [3].

Let us define a buggy execution to be an execution that
is forbidden by C yet allowed by our implementation. The
existence of such an execution would demonstrate that our
implementation does not preserve enough of the program
order. Characterising the executions that are forbidden by C
is straightforward: they are the executions that violate at least
one of Lahav et al.’s rules. Characterising the executions that
our implementation allows is a little more subtle.

As discussed previously, the only source of memory reorder-
ing in our implementation is by the corresponding instructions
being reordered. Therefore, our starting point for characteris-
ing executions that our implementation allows is simply SC.
Shasha and Snir [29] characterise SC executions using the rule

acyclic(po ∪ rf ∪mo ∪ rb) (Shasha and Snir)

which states that there are no cycles made up of po, rf , rb,
and mo edges. The ‘modification order’, mo, is a relation
between write events on the same location that represents
the order in which writes are executed. The rule works by
rejecting executions in which data-flow (as captured by rf ,
rb, and mo) contradicts the program order (as captured by
po). Intuitively, rf , rb and mo relate read-after-write, write-
after-read and write-after-write events to the same location and
Shasha-Snir asserts that these events must not form cycles with
the order stipulated by programmer (po).

We weaken the Shasha and Snir rule by removing all the
po edges that our analysis does not preserve, to obtain the
following rule:

acyclic(ppo ∪ rf ∪mo ∪ rb).

This rule has the same effect as Shasha and Snir applied to a
program with a less constrained program order.
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Fig. 7. Time taken for Alloy to verify our global analysis for up to a bounded
number of memory events

T1 d1 T2
. . . dn+1 Tn+2

(a) Chaining

T2 d1

Tn+1 dn

T1
...

(b) Reduction

T1

d1 T2

dn Tn+1

...

(c) Distribution

Fig. 8. The different data-flow patterns that we experiment for each data
structure. Transparent squares represent threads and shaded squares represent
data structure objects; arrows represent data flow.

Alloy was able to confirm that there are no buggy executions
with seven events or fewer, both for the naı̈ve method of
calculating ppo (§IV-B) and for our more efficient version
(§IV-F). Figure 7 shows that the time taken for Alloy to deduce
this result increases exponentially with the event bound. This
is because Alloy casts the constraint-solving problem as a
Boolean SAT query. Although a bound of seven events appears
small, note that Alloy’s search space covers executions of all
programs, so any bug that can be minimised to seven events
or fewer will be found. Experience indicates that most bugs
related to weak memory can be minimised to between four and
six events [30], so Alloy’s result is a useful, if not completely
watertight, validation of our method. Our verification of ppo
also holds for loop pipelining of global analysis, since the C
memory model does not distinguish events by iterations.

1) Comparison to thread-local analysis: In most cases, our
global analysis imposes fewer constraints than the thread-local
analysis, as seen in Example 1, since local analysis must make
conservative assumptions. However, there also exist programs
for which our global analysis imposes more constraints than
the local analysis. This happens only in programs that access
the same location using both an SC atomic and a non-SC
atomic, and such programs are “not common” [9]. Mixing
SC and non-SC atomic accesses can inadvertently introduce
bidirectional inter-thread synchronisations within global anal-
ysis. As such, these additional synchronisation opportunities
increase the likelihood that global analysis generates more
constraints compared to thread-local analysis. Indeed, we have
used Alloy to verify that for all programs that do not mix SC
and non-SC atomics on the same location, our global analysis
never imposes more constraints than the local analysis. Alloy
was able to prove this property for all programs with up to
twenty operations in about a second.

V. BENCHMARK EVALUATION

In this section, we evaluate the performance of the hardware
generated by global analysis, relative to thread-local analysis,

on a set of experiments based on three data structures and three
data-flow patterns. The data structures chosen are from high-
performance software libraries, such as the Linux kernel [31]
and Boost [32], and the data-flow patterns chosen are standard
programming idioms for communicating across threads [26].
The aim of this section is to understand how our global analy-
sis performs under scenarios that mimic real-world programs.
We analyse how our analysis affects the performance (§V-A),
resource usage of the generated hardware (§V-B) and how long
our analysis takes to run (§V-C).

Data structures: We evaluate three data structures:
the Treiber stack [33], a single-producer-single-consumer
buffer [34] and the Michael–Scott queue [35]. We use versions
of the stack and the queue that are implemented using weak
atomics; these are due to Norris and Demsky [36].2

The stack and queue are implemented using linked lists,
while the buffer is implemented as an array. The stack is last-
in-first-out (LIFO) with only one atomic pointer, whereas the
buffer and queue are first-in-first-out (FIFO) with two atomic
pointers. The buffer only allows concurrent access between
one writer and one reader, whereas the stack and the queue
allow multiple readers and writers.

Data-flow patterns: We evaluate these data structures on
three data-flow patterns: chaining, distribution and reduction.
As shown in Fig. 8, these patterns test the one-to-one, one-to-
many, and many-to-one relationships between threads:
• For the chaining pattern, shown in Fig. 8a, T1 pushes to
d1, and Ti pops data from di−1 and pushes it to di.

• For the reduction pattern, shown in Fig. 8b, T2 to Tn+1

push data to d1 to dn respectively and T1 pops data from
all n data structure objects.

• For the distribution pattern, shown in Fig. 8c, T1 pushes
data to all n data structure objects, and T2 to Tn+1 pop
data from d1 to dn respectively.

Experimental setup: For all experiments, we scale the
thread count, until n = 8, to test both the performance
of the generated hardware and the time taken to run our
global analysis. These experiments are provided as inputs to
the LegUp HLS tool. We use Quartus v15.0 to synthesise
and place-and-route our designs to a Cyclone V SoC FPGA
(5CSEMA5) with 32075 ALMs, 128300 registers, and 3970
Kb of RAM blocks.

A. Results: performance of generated hardware

Fig. 9 shows the speedups observed on the generated
hardware across all our experiments. All subfigures compare
the hardware generated by global analysis against hardware
generated by theread-local analysis, under different settings.

Global analysis versus thread-local analysis using SC atom-
ics: Fig. 9(a) shows the speedup gained by implementing
our global analysis on SC atomics, compared to thread-local
analysis. These speedups primarily differ by data-flow pattern.
The speedups of the chaining pattern is 1.4× whereas the
speedups of reduction and distribution patterns are 2.3× and
2.6× respectively. The speedups of chaining do not scale

2http://plrg.eecs.uci.edu/git/model-checker-benchmarks.git/

http://plrg.eecs.uci.edu/git/model-checker-benchmarks.git/
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Fig. 9. Speedups (time) of hardware generated by global analysis compared to hardware generated by thread-local analysis per benchmark of our experiments,
where subplots explore all possible configurations of type of atomics (SC or weak atomics) and pipelining capability. Datapoints are grouped by data structure,
then by data-flow pattern, then by thread count. The rightmost bars show the average speedup across all data points for each barplot. Some data points are
marked as × to reflect cases where thread-local analysis generated too many constraints that LegUp’s modulo scheduling times out without a feasible solution.

with thread count, whereas the other patterns do since global
analysis can identify independent routines.

Additionally, different data structures have have varying de-
grees of memory parallelism depending on their complexity of
their routines. This can be identified via the chaining pattern,
since each thread executes a fixed number of routines. The
higher the complexity of a data structure, the more parallelism
opportunities exist within its routine, and the higher speedups
in the chaining experiments. Consequently, the queue offers
the most parallelism opportunities, followed by the buffer and
then the stack.

Utilising weak atomics via global analysis: Fig. 9(b) shows
the speedups gained by global analysis, compared to thread-
local analysis, when both these analyses are sensitive to
weak atomics. Since weak atomics reduces the inter-thread
synchronisation opportunities, global analysis can identify
more instruction parallelism within threads. On average, global
analysis is 1.9× faster than thread-local analysis, when both
use weak atomics. Similar to Fig. 9(a), the speedups are largely
dependent on data-flow pattern. Hence, we see that global
analysis is 2.3× and 2.6× faster than thread-local analysis
for the reduction and distribution experiments, but only 7%
faster for the chaining experiments.

Loop pipelining: Fig. 9(c) and (d) show the speedups
achieved by loop pipelining within global analysis, compared
to thread-local analysis, when using SC and weak atomics
respectively. Thread-local analysis conservatively restricts the
number of overlapping iterations to two iterations to guarantee
correctness. On the other hand, global analysis enables mem-
ory overlappings beyond two iterations, depending on the data-
flow pattern. Speedups can be more than 2× for the reduction
and distribution experiments, but not for the chaining exper-
iments. On average, loop-pipelined global analysis is 3.6×
and 1.5× for SC and weak atomics respectively, compared to
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Fig. 10. Adaptive logic module (ALM) count generated by global analysis
versus thread-local analysis for every data point in our experiments. Points
below the diagonal show ALM savings when using global analysis.

pipelined thread-local analysis.
Occasionally, thread-local analysis generates too many con-

straints, forcing LegUp’s modulo scheduler to time out without
a solution (marked as × in our plots). In comparison, global
analysis never times out since it generates far fewer constraints
than thread-local analysis. The number of memory constraints
of thread-local analysis is either proportional to the use of SC
atomics or the complexity of data structure. This is why the
queue experiments are most likely to time out. The queue’s
routines consists of 22 memory operations, of which 20
operations are atomic including 5 CAS operations. In contrast,
the buffer’s and stack’s routines only have 8 and 6 operations
each.

B. Results: resource usage of generated hardware

Implementing global analysis imposes minimal resource
overheads, compared to thread-local analysis, as shown in
Fig. 10. The number of adaptive logic modules (ALMs)
for designs generated by thread-local and global analysis is
mostly close to the diagonal. Global analysis reduces schedule
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Fig. 11. Analysis times of three different analyses across all experiments.
The y-axis of both plots are the time taken by our optimised global analysis
and we compare it against time taken by thread-local analysis (left) and and
naı̈ve global analysis (right) respectively. Points below the diagonal indicate
cases where our optimised analysis is faster than the compared analysis.

latencies of our experiments, but packs more operations per
scheduled cycle. These two factors affect resource usage
inversely.

C. Results: Analysis time

In §IV-B and §IV-F, we discussed naı̈ve and optimised path
enumeration of global analysis respectively. Fig. 11 shows two
scatter plots comparing the analysis times of our optimised
global analysis against thread-local and naı̈ve global analyses
respectively. Fig. 11(a) shows that thread-local analysis always
generates scheduling constraints faster than global analysis, by
an average of 1000×. Fig. 11(b) shows that optimised global
analysis is mostly faster than naı̈ve global analysis, by an
average of 3.3×.

Our optimisation works well when there are many secondary
canSync edges. It reduces the worst-case analysis time by up
to 4700×. In particular, it is useful in the case of SC atomics,
since using SC atomics tends to manifest more secondary
canSync edges, compared to weak atomics.

Utilising weak atomics naturally reduces the number of
secondary canSync edges. Most data points above the di-
agonal in Fig. 11(b) are programs with weak atomics. The
maximum slowdown from using our optimisation is 5×,
suggesting that programs with weak atomics may not require
our optimisation. However, our optimisation can be seen as a
precaution for programs that are fairly optimised, given that
its time overheads are negligible compared to the time taken
by hardware synthesis.

VI. CASE STUDY: GOOGLE PAGERANK

In this section, we move beyond benchmarks, to show
how more substantial lock-free programs can be synthesised
efficiently with global analysis. We transform a multi-threaded
C implementation of PageRank to incorporate standard hard-
ware optimisations via lock-free data structures, including
streaming and load-balancing. Subsequently, we demonstrate
that global analysis can identify the memory patterns of
these transformations, thereby permitting additional memory
reorderings compared to thread-local analysis.

PageRank was first devised by Brin and Page [6] to improve
web search engines by ranking webpages based on the graph of

the web. A webpage is highly-ranked if the sum of the ranks of
the webpages pointing to it is high. PageRank is interesting for
several reasons. First, it is a well-known algorithm [37] that at-
tracts a lot of acceleration work, especially on GPUs [7], [38].
Second, PageRank is in the form of a sparse matrix–vector
multiplication (SpMV), which is a common pattern for graph
algorithms. Third, PageRank’s computation involves floating-
point operations, providing a good balance between compute
and memory intensity. Fourth, PageRank’s workload cannot
be evenly partitioned across threads, making it irregular.

In this case study, our baseline implementation is an
OpenCL implementation of PageRank from the Pannotia
suite [7]. In §VI-A, we minimally modified this OpenCL
implementation into a pthreads implementation that is com-
patible with LegUp. However, this baseline is ill-suited to
FPGA computation. So, in §VI-B, we introduce lock-free
streaming to our baseline, by partitioning it into a streaming
implementation that is capable of loop pipelining. Then,
in §VI-C we introduce lock-free dynamic load-balancing to
our streaming implementation. All lock-free data structures
in this case study utilise weak atomics and all our analyses
are configured to support weak atomics. Finally, in §VI-D,
we show the hardware performance obtained by synthesising
these versions of PageRank.

A. Introducing the off-the-shelf PageRank

1 int row[N]; int col[E];
2 float inR[N]; atomic_uint outR[N];
3
4 void *prk(int id){
5 for(int v = id*N/P; v<(id+1)*N/P; v++){
6 int start = row[v];
7 int end = row[v+1];
8 for(int edge=start; edge<end; edge++){
9 int u = col[edge];

10 add_float_atomic(&outR[u],
11 inR[v]/(end-start));
12 } } }
13
14 void main(){
15 pthread_t thds[P];
16 for(int i=0; i<P; i++)
17 pthread_create(thds[i], prk, &i);
18 for(int j=0; j<P; j++)
19 pthread_join(thds[j], NULL);
20 }

Listing 1. Pthreads implementation of PageRank, inspired by the Pannotia
suite [7]. The add_float_atomic function in line 10 implements a
floating-point atomic addition (details in the Pannotia codebase).

Listing 1 shows the C pthreads implementation of the
PageRank algorithm, which we treat as our baseline. The
only changes made are to spawn pthreads instead of OpenCL
NDRange kernel (Lines 15–19) and to target all OpenCL local
and global memories as C shared arrays (Lines 1–2).

The function prk is spawned as a thread with a unique
thread identifier id. Each prk thread is a compute unit, which
is a hardware circuit that can execute PageRank independently.
We refer to the number of compute units as P.

PageRank consists of three input arrays and one output
array. Array inR is the input rank and outR is the output
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rank. The row and col arrays represent the input graph in
the Compressed Sparse Row (CSR) format. N and E are the
number of nodes and edges of the input graph respectively.

The algorithm consists of two nested loops. The outer loop
iterates over all nodes (v) and the inner loop iterates over all
neighbours (u) of a node. The input rank of each node must
also be divided by its number of links before incrementing the
output rank of u (line 11). Since several threads can update
the same u simultaneously, atomic additions are required
(line 10). Atomic floating-point additions are not supported
in C natively. So, Pannotia implements this via a spin loop
with an addition and a CAS.

Fig. 12a shows the hardware architecture that LegUp gen-
erates from the code in Fig. 1, when P=2. Each thread
is a compute unit, and these compute units share the four
arrays. This straightforward implementation of PageRank is
synthesisable via HLS, but it is not optimised.

B. Partitioning PageRank into a streaming pipeline

To improve the performance of PageRank, we implement
lock-free streaming on our baseline in §VI-A. We partition
each compute unit into five pipelinable stages, each of which
are a thread. As shown in Fig. 12b, these stages communicate
with five lock-free buffers in a one-to-one streaming manner.

Partitioning PageRank into five stages required manual
effort. Based on Listing 1, PageRank naturally partitions into
three functional stages: fetching the CSR memory accesses
(lines 5-9), dividing the rank by number of links (line 11) and
atomically incrementing ranks (function call in line 10). The
first stage (Fetch) has a small latency and the second stage
(Div) can be easily pipelined. The third stage is complex since
it implements the atomic addition. Consequently, we partition
this stage into three smaller stages to improve pipelining: 1)
the FAdd stage, which performs the floating-point addition; 2)
the CAS stage, which performs the CAS; 3) the Merge stage,
which merges new packets and packets with failed CASes.

C. Dynamic load-balancing via work-stealing

In previous implementations, an equal node ranges are allo-
cated to each compute unit (line 5). This static allocation does
not guarantee that compute units have equal workloads, since
each node has a varying number of neighbours (line 8). One
approach to reduce workload disparity is work-stealing [39].

Work-stealing requires use of a lock-free double-ended
queue (or ‘deque’). We adapt the weakly consistent deque
proposed by Lê et al. [40] for this study. A deque consists
of two atomic pointers, protecting a non-atomic array. Each
compute unit owns a deque that it can pop tasks from. When
a compute unit’s deque is empty, then it attempt to steal tasks
from other deques. PageRank has two properties that permit
further optimisation. First, PageRank’s task is its node, so the
non-atomic array and, consequently, all memory fences are not
required. Second, PageRank does not spawn tasks, so we can
eliminate the push routine and simplify other routines.

As mentioned earlier, we provide one deque per compute
unit. Fig. 12b shows how work-stealing is implemented for
P=2. Each compute unit is assigned a deque (q1 and q2).

TABLE I
DESIGN POINTS OF OUR PAGERANK IMPLEMENTATIONS AND THEIR BEST

ACHIEVABLE THROUGHPUTS (MILLION EDGES PER SECOND).

Short name Input Analysis Streamed Stealing Throughput
LocalBaseline §VI-A Local no no 6.7

GlobalBaseline §VI-A Global no no 6.7
LocalStreaming §VI-B Local yes no 14.6

GlobalStreaming §VI-B Global yes no 19.5
LocalStreamingWS §VI-C Local yes yes 20.3

GlobalStreamingWS §VI-C Global yes yes 30.0

Only the first stage, Fetch, needs to access the deques.
Fetch1 and Fetch2 have exclusive pop access to q1 and q2

respectively. In the event that either ot them run out of work,
they can steal work from the other deque. For larger P s, the
stealing pattern can be generalised to subsequent deques.

D. Evaluation
We evaluate PageRank on the same HLS tool and hardware

as in our benchmark evaluation, described in §V We evaluate
PageRank on the same graph used by Pannotia [7]: the DBLP
co-author graph. We select the first 210 nodes (N = 1024) and
the corresponding edge list (E = 5924) to reside on RAM.

We evaluate six design points, all of which vary in terms
of input code provided to LegUp HLS tool and the type of
analysis we enable within LegUp to apply to the input code,
as shown in Table I. We enable loop pipelining for all design
points, by default. We scale the number of compute units (P)
to understand their performance relative to area overheads,
as shown in Fig. 13. The last column of Table I reports the
best throughput achieved by each design point, regardless of
number of compute units.

Baseline: LocalBaseline and GlobalBaseline show the re-
sults of an unmodified PageRank provided to LegUp, that is
analysed by thread-local and global analyses respectively. The
performance trends of both design points are so similar, that
they overlap each other in Fig. 13. When PageRank is analysed
off-the-shelf, global analysis does not offer much speedup.

Streaming: Streaming improves hardware performance sig-
nificantly, since smaller pipelinable stages are better suited to
FPGA computation. When P is maximised, LocalStreaming is
2.2× faster than non-streamed implementations.

Global analysis improves the runtime of streamed Page-
Rank implementations. Global analysis allows futher mem-
ory reorderings, compared to thread-local analysis, since it
can identifies the one-to-one data pattern of streaming. This
streaming pattern is similar to chaining in Fig. 8a. As we scale
P, GlobalStreaming is always faster than LocalStreaming.
When we maximised P, GlobalStreaming is 1.3× faster than
LocalStreaming and 2.9× faster than GlobalBaseline.

Dynamic load-balancing: PageRank’s workload can not be
evenly partitioned at compile time. To balance its workload
dynamically, we implement work-stealing. At P=2, Local-
StreamingWS is 1.2× faster than LocalStreaming. The larger
the P, the larger workload disparity across compute units. As
we scale P, work-stealing provides better speedups. When we
maximise P, LocalStreamingWS is 1.4× faster than Local-
Streaming.

When we apply global analysis to the streamed load-
balanced PageRank implementation, GlobalStreamingWS, we
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Fig. 12. Hardware diagram of the off-the-shelf and lock-free implementations of PageRank, synthesised by LegUp with either thread-local or global analysis.
Transparent rectangles are threads that implement stages of a compute unit (subscripts are used to label compute unit). Circles are shared memory constructs.
Shaded rectangles are lock-free data structures introduced to enable streaming and load-balancing, where b and q are lock-free buffers and deques respectively.
Each subscript labels the compute unit ownership of each data structure and each superscript in the buffer represents its stage in the pipeline.
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Fig. 14. Analysis times of our global analysis versus the number of
instructions of our Pagerank implementations, as in Table I and Fig. 13.

further improve hardware performance for two reasons, com-
pared to LocalStreamingWS. Firstly, global analysis can iden-
tify that compute units access multiple independent deques,
similar to reduction in Fig. 8b. Secondly, work-stealing keeps
all the streaming pipelines busy with work. Hence, when we
maximise P, GlobalStreamingWS is 1.5× faster than Local-
StreamingWS. Also, since global analysis requires marginally
fewer resources, we can fit five compute units on-chip for
GlobalStreamingWS but only four for LocalStreamingWS.

Analysis times: Fig. 14 shows the analysis times for global
analysis given the number of memory instructions for the

different PageRank implementations. We see that GlobalBase-
line has very few memory instructions and it is the quickest
to analyse. GlobalStreaming and GlobalStreamingWS have a
much larger number of instructions than GlobalBaseline, since
they implement complex lock-free data structures.

As we scale the number of compute units, P, we see
that, in practice, our analysis times grow polynomially with
instructions. At the P=5, our optimised analysis can generate
all constraints within 11 seconds although these designs can
have up to 30 threads, tens of thousands of po edges and
hundreds of canSync edges.

E. Summary
In this case study, we demonstrate that global analysis can

improve memory scheduling by analysing complex patterns
of lock-free data structures within the context of an impor-
tant real-world application, namely Google PageRank. Results
show that global analysis reduces the number of memory
constraints generated, in comparison to thread-local analysis.
On average, global analysis improves the performance across
these PageRank implementations by 1.3×.

VII. CONCLUSION

In this article, we have proposed a global analysis for
multi-threaded C programs that determines which pairs of
instructions within each thread must not be reordered. Our
global analysis can handle weak atomics as well as loop
pipelining. We implemented our analysis in the LegUp HLS
tool and evaluated it on a set of benchmark experiments,
consisting of three data structures and three data-flow patterns.
Overall, on average, we see that global analysis can achieve
a 2.3× speedup, compared to thread-local analysis. Global
analysis also enables us to manually apply standard HLS
transformations to an HLS implementation of Google’s Page-
Rank, achieving a speedup of 1.3× compared to the original
unmodified implementation. Having shown in this article that
global analysis of multi-threaded programs can be valuable,
we hope to encourage further investigation into the benefits of
global analysis within other HLS contexts.
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