Finding and Finessing Static Islands
in Dynamically Scheduled Circuits

Jianyi Cheng John Wickerson George A. Constantinides
Imperial College London Imperial College London Imperial College London
London, UK London, UK London, UK
jianyi.chengl7@imperial.ac.uk j-wickerson@imperial.ac.uk g.constantinides@imperial.ac.uk
ABSTRACT C/C++ 4?:ng—> LLVM IR —*® LLVMIR
In high-level synthesis, scheduling is the process that determines Input Program << frontend % $® Offsot optimizer
the start time of each operation in hardware. A hardware design can LR R
be scheduled either at compile time (static), run time (dynamic), or @ static istand a,,a,yse,f ¥ Dynamatic
both. Recent research has shown that combining dynamic and static forloces J onend
scheduling can achieve high performance and small area. However, ® stato oona ana/y:’r " dfl st i
there is still a challenge to determine which part to schedule stat- for insiructions 39 orets
ically and which part dynamically. An inappropriate choice can "L"I" R "f‘ _
lead to suboptimal design quality. This paper proposes a heuristic- vits HLS I; I e © © DasS backend
driven approach to automatically determine ‘static islands’ - i.e., L L e
code regions that are amenable for static scheduling. Over a set of b el (U

benchmarks where our approach is applicable, we show that our
tool can achieve on average a 3.8-fold reduction in area combined
with a 13% performance boost through automatic identification and
synthesis of static islands from fully dynamically scheduled circuits.
The performance of the resulting hardware is close to optimum
(as determined by an exhaustive enumeration of all possible static
islands).

CCS CONCEPTS

+ Hardware — High-level and register-transfer level synthe-
sis; Logic synthesis; Modeling and parameter extraction.

KEYWORDS
High-Level Synthesis, Static Analysis, Dynamic Scheduling

ACM Reference Format:

Jianyi Cheng, John Wickerson, and George A. Constantinides. 2022. Finding
and Finessing Static Islands in Dynamically Scheduled Circuits. In Proceed-
ings of the 2022 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (FPGA ’22), February 27-March 1, 2022, Virtual Event, CA, USA.
ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3490422.3502362

1 INTRODUCTION

High-level synthesis (HLS) is a process that automatically trans-
forms programs in a high-level language like C/C++ into hardware
descriptions in a low-level language like Verilog/VHDL. HLS tools
ideally allow software engineers without hardware background
to program custom hardware to achieve high performance. As a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

FPGA °22, February 27-March 1, 2022, Virtual Event, CA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9149-8/22/02...$15.00
https://doi.org/10.1145/3490422.3502362

Output hardware design

Figure 1: Our work integrated into the open source DASS
tool from [12]. The steps numbered (1) to (5) are contribu-
tions of this paper. Section 4.4 explains the details.

promising trend in recent years, various HLS tools have been de-
veloped in both academia, such as LegUp from the University of
Toronto [5], Dynamatic from EPFL [32], and industry, such as Xil-
inx Vivado/Vitis HLS [48], Intel’s HLS Compiler [28], Catapult HLS
from Mentor [10] and Stratus HLS from Cadence [41].

Still, it remains the case that automatically synthesising high per-
formance and area-efficient hardware from arbitrary high-level pro-
grams is challenging. To tackle this problem, techniques have been
proposed to produce optimised hardware architectures for specific
domains, such as image processing [42, 49], deep learning [39, 47,
51] and other matrix computation-based applications [21]. However,
users of these tools are still required to have hardware background
to write efficient code for optimal performance. The problem re-
mains unsolved for general applications due to the presence of
complex control flow that can only be partially parallelised [34].

Scheduling is one of the main steps in HLS. It determines the
start time of each operation in the input code. Static scheduling
enables high area efficiency, and dynamic scheduling enables high
performance. Our prior work known as ‘DASS’ [12] combines the
best of both worlds by supporting statically scheduled (SS) hard-
ware that forms internal components, named static islands, within
dynamically scheduled (DS) hardware. However, this work left it
to the user to determine which pieces of code in an arbitrary pro-
gram should form the static islands and which parts should be
dynamically scheduled. The primary contribution of this paper,
then, is a heuristic-driven technique for finding good static islands
in arbitrary code.

Our secondary contribution has to do with how these static
islands, once identified, are interfaced with the surrounding DS

https://doi.org/10.1145/3490422.3502362
https://doi.org/10.1145/3490422.3502362

FPGA 22, February 27-March 1, 2022, Virtual Event, CA, USA

1| float alN], r[NI;

2| void vecNormTrans () {
3 float weight = 0.0f;
4 loop_0:

5 for (int i=0; i<N; i++) {
6 float d = alil;

7 if (d < 1.0f)

8 // weight = ss_func_0(
9 // d, weight);

10 weight = ((d*d+19.5)*d
11 +3.7)*d+0.73%xweight;

3
13 // ss_func_1(weight);

14 loop_1: '
15 for (int i=0; i<N-4; i++) !
16 rli+4] = rlil+alil/w; Voo
713 ss_func_0 ss_func_1 - kel

(a) Source (b) Data flow graph

H

\ ; L
A \ | % 5 10
- e | DSPs

Jianyi Cheng, John Wickerson, and George A. Constantinides

DS - Dynamic scheduling only
SS - Static scheduling only -10*
= T T
300 7?:‘1 ° h 2
memory arbiter T ©
(%) S
-
o 200 7§ ° o 8 B 1.5
£ g
- = o @
- \I\oop_1 = . o o <] =
. B 8 § g g L, R
s N] o o 5
r\ = 100} ss® g ¢ g g ©° .
'
h “ | B 8 0O 8
| ¢ 8 8
| \ 0.5
a7 b:" i Our work Improved Eur[brnnncc DS
! anc
vy | ' . . |
15

20
sink 7

(c) Area and delay of designs for all possible selec-
tion of static islands

Figure 2: A normalised transformation kernel as a motivating example. There are 102 possible selections of static islands, and
most of them lie at the top right of the figure (big & slow). The polynomial expression on line 10 and the loop named loop_1
should be synthesised as two static islands. Automatically determining the optimal selection is challenging,.

circuit. Prior work assumes that when a static island has multiple
inputs, all inputs are required at the start of computation [12]. This
assumption can lead to observable inefficiency in the final circuit,
because if some inputs are valid before the others, they must be
held until the others are valid too, even if some of the static island’s
computation could proceed using only those inputs that are valid.
We remove this assumption made in [12], and demonstrate that
doing so can lead to a 2.6X speedup. As an analogy, we can imagine
a timing diagram with time on the vertical axis and resource on
the horizontal axis. In such a picture, the static islands introduced
in [12] can be thought of as rectangles (where all the inputs are
aligned on the top edge). Meanwhile, the static islands in this work
have a less regular shape. We refer to the process of ‘derectangu-
larising’ the islands as finessing them, because it is our method for
squeezing better performance out of them.

Taken together, our two contributions extend the state of the
art in HLS by automating the choice between static and dynamic
scheduling and efficiently synthesising hardware that combines
both scheduling approaches. In summary, this paper presents:

o atechnique that finds an optimised allocation of static islands
by analysing the features of each code region and evaluating
the hardware performance by different scheduling strategies
(@ and () in Figure 1),

e an automated HLS pass that calls the commercial tool Xilinx
Vitis HLS to efficiently synthesise static islands with high
performance by supporting non-simultaneous inputs (3), @)
and () in Figure 1), and

e analysis and results showing that the proposed approach
achieves on average a 3.8-fold reduction in area combined
with a 13% performance boost through automatic identifica-
tion and synthesis of static islands compared to fully dynam-
ically scheduled circuits. Compared to the fastest designs
discovered via exhaustive search, our approach generates
designs that are within 2% of the performance.

Table 1: Comparison between our approach and baselines
using static scheduling or dynamic scheduling only.

LUTs DSPs Cycles Fmax (MHz) Time (us)
Vitis HLS 1614 5 12327 120 102
Dynamatic 21290 20 6079 90 68
Our work 2860 7 6703 106 63

The rest of our paper is organised as follows. Section 2 gives a
motivating example to illustrate the challenge in selecting sched-
uling approaches. Section 3 presents background in scheduling
in HLS and related works. Section 4 formalises the problem and
presents a tool to automatically find good static islands. Section 5
evaluates the effectiveness of our tool on a set of benchmarks.

2 MOTIVATING EXAMPLE

In this section, we use a motivating example to demonstrate the chal-
lenge in selecting code regions for static scheduling within dynamic
surroundings. Figure 2a shows a code example to be scheduled and
synthesised. In the code, a loop named loop_0 loads an array ele-
ment ali] and adds a Horner-style polynomial evaluated at a[i]
onto a variable named weight if the array element is less than
1. The value of weight is then used in a subsequent loop named
loop_1 for the transformation of array r.

Figure 2b shows the corresponding data flow graph assuming it
is fully dynamically scheduled using the approach presented in [32].
Recent work [12] proposes to statically schedule part of the data
flow graph as individual static islands, indicated as dotted circles, for
resource sharing inside each island. Combining dynamic and static
scheduling techniques onto a single circuit can achieve both high
performance and area efficiency. Dynamic scheduling is beneficial
for input-dependent control flows, such as the if condition in
loop_0, while static scheduling is beneficial for predictable data

Finding and Finessing Static Islands in Dynamically Scheduled Circuits

flow, such as the polynomial expression on line 10. The goal of our
work is to determine all the best possible static islands under given
performance constraints and efficiently synthesise them.

Automatically determining static islands is challenging. We enu-
merate all the possible sets of (non-overlapping) subgraphs (each
of which must have at least two instructions to be worth statically
scheduling) from the graph in Figure 2b, resulting in 102 designs in
Figure 2c. The design that only uses dynamic scheduling is at the
bottom right of the figure; it has low latency but large area. The
design that only uses static scheduling is at the left of the figure;
it has higher latency but smaller area. The other designs use both
approaches, with different code regions using different approaches.
Some designs perform much worse than either fully static or fully
dynamic scheduling. For instance, the design at the top right of
the figure has high latency and large area. This motivates us to for-
malise and automate the search for code features that are amenable
for static scheduling as part of a fully-automated tool flow.

For this example, our tool suggests to statically schedule the
polynomial expression on line 10 and the entire loop_1 as shown
in Figure 2b. This results in a design with similar performance to
the DS design but similar area to the SS design, as indicated in
Figure 2c. The absolute results are shown in Table 1.

The selection suggested by our tool results in a high-quality de-
sign for three reasons. First, the synthesised design still computes
at a high throughput because the input-dependent if statement
remains dynamically scheduled. Second, DSPs are significantly re-
duced due to resource sharing in the polynomial expression. Finally,
instead of using area-expensive load-store queues (LSQs) to handle
inter-iteration memory dependence for dynamic scheduling, stat-
ically scheduling loop_1 saves many LUTs and still achieves the
same throughput. In the rest of this paper, we will explain in detail
how these features are modelled and optimised by our tool.

3 BACKGROUND

This section first reviews static scheduling and dynamic schedul-
ing in HLS. Then we compare existing works on combining static
and dynamic scheduling with our work. Finally, related works on
module selection and optimisation are also reviewed.

3.1 Static Scheduling

Static scheduling is a process to determine the start time of each
operation in the input program at compile time [27]. In static sched-
uling, the input code is translated into a control- and data-flow
graph (CDFG) [18]. A CDFG has two levels. At the higher level, the
graph illustrates control flows of a program. Each vertex represents
a basic block (BB) in the code, and each edge represents a control
transition between two BBs. Each of these vertices corresponds to
a subgraph at the lower level. Each subgraph vertex represents an
operation, and each edge between these vertices represents a data
dependence between two operations. Given a CDFG, a static sched-
uler determines the start and end clock cycles of each operation in
the CDFG, under which the control flow, data dependencies, and
constraints on latency and hardware resources, are all satisfied.
One of the most commonly used static scheduling techniques
is to formulate and solve the problem as a system of difference
constraints (SDC) [16]. This approach is used in popular HLS tools

FPGA 22, February 27-March 1, 2022, Virtual Event, CA, USA

such as Vitis HLS [48] and LegUp [5]. This approach to scheduling
has also been extended to pipelining to achieve high throughput
loops and functions [4, 50].

A static scheduler can achieve efficient resource optimisation
since the whole schedule is predictable at compile time. However,
this methodology does not suit programs with input-dependent
control flow. In this case, the scheduler has to assume the worst
case to ensure correct results at the price of performance compared
to dynamic scheduling.

3.2 Dynamic Scheduling

Dynamic scheduling is a process that schedules operations at run-
time. Initial work on synthesising DS hardware from a high-level
language proposed a framework for automatically mapping an
occam program into a synchronous hardware netlist [26]. This
work was later extended to a commercial language named Handel-
C [11]. Venkataramani et al. [45] propose a framework that auto-
matically transforms a C program into an asynchronous circuit.
They implement each node in a data flow graph of Pegasus [3] into
a pipeline stage. Recent work [32] proposes an HLS tool named
Dynamatic that generates synchronous dataflow circuits from C
code. Dynamatic takes arbitrary input code, automatically exploits
the parallelism of the hardware and uses handshaking signals for
dynamic scheduling to achieve high throughput. This approach is
also realised in an MLIR-based HLS flow named CIRCT [17].

As formalised by Carloni et al. [7], dynamic scheduling extends
the CDFG of the input code into a hardware-like data flow graph. In
the data flow graph, each vertex represents a pre-defined hardware
component, and each edge represents a handshake connection be-
tween two components. Apart from the operations that are directly
mapped from the code, a set of elastic operations are placed in the
data flow graph to achieve parallelism.

In this paper, we use Dynamatic HLS to generate DS hardware.
Here we introduce a few elastic operations in Dynamatic that are
related to our analysis:

(1) A merge receives an item of input data from one of its mul-
tiple predecessors, with a pre-defined priority order, and
forwards it to its single successor.

(2) A mux is similar to a merge but the input data is chosen
based on the select bit.

(3) A branch passes a piece of data to one of its two successors,
depending on the input condition.

One difficulty in dynamic scheduling is scheduling memory ac-
cesses. CIRCT forces the memory accesses to be carried out in
the same order as the program order, at the price of no memory
parallelism. Dynamatic uses generic LSQs [31, 33] to monitor and
schedule memory accesses at run-time.

Compared to static scheduling, dynamic scheduling enables ear-
liest computation of an operation based on the presence of its input
data, which can have better performance. However, resource opti-
misation is challenging since the hardware behaviour is unknown
at compile time, resulting in lower area efficiency.

3.3 Combining Dynamic & Static Scheduling

Combining dynamic and static scheduling can balance the trade-off
between performance and area. There are works that extend static

FPGA 22, February 27-March 1, 2022, Virtual Event, CA, USA

scheduling to support dynamic mechanisms for custom features.
Alle et al. [2] and Liu et al. [36] propose a source-to-source trans-
formation technique to enable run-time selection among multiple
schedules based on certain values. Tan et al. [44] propose a tool
flow named ElasticFlow to optimise pipelining of irregular loop
nests that have dynamically-bound inner loops. Dai et al. [19, 20]
propose pipeline flushing for high throughput of the pipeline and
dynamic hazard detection circuitry for speculation in specific ap-
plications. These works are still restricted by the conservatism of
static scheduling and the hardware performance is still limited for
general cases, such as complex memory accesses or control flows.

Extending dynamic scheduling to support SS components is also
popular. Carloni [6] describes how to encapsulate static modules
into a latency-insensitive system. This approach is realised in an
HLS tool named DASS that supports SS circuits inside a DS cir-
cuit [12]. DASS still requires manual selection of the code regions
as static components. In CIRCT [17], an MLIR dialect named Stati-
cLogic is implemented with a pass as an initial step that automati-
cally extracts the non-elastic operations from the code. However,
that MLIR pass only analyses the code at instruction level and can-
not recognise whether a loop should be statically scheduled. Also,
the hardware synthesis of StaticLogic is not supported. We auto-
mate the process of finding these SS components at both instruction
level and loop level, and synthesise them into efficient hardware. In
this paper, we extend the open-source DASS tool, but our approach
can be equally applied to other tool flows such as CIRCT.

3.4 Module Selection & Optimisation in HLS

Module selection is a process to select an optimal module design
among a set of choices with the same functionality to improve
performance or area. Module selection in HLS has been widely
studied. Ishikawa and Micheli [29] propose a module selection
algorithm that optimises the schedules of hardware with a finite set
of predefined components. Ahmad et al. [1] present a problem-space
genetic algorithm for static scheduling. Ito et al. [30] propose an ILP-
based model for optimising the schedule of data flow architecture.
Sun et al. [43] combine the module selection and resource sharing in
design exploration. Cong et al. [15] propose an ILP-based scheduling
including module selection for streaming applications. However,
these approaches all target SS hardware only. The behaviour of DS
surroundings can be unpredictable, and these methods cannot be
applied without assuming the worst-case computation.

In dynamic scheduling, latency-insensitive system graphs (lis-
graphs) are used for hardware optimisation, such as loop pipelining,
re-timing and buffering [8, 9, 14, 40]. This is extended to marked
graphs in HLS tools like Dynamatic [32]. Cheng et al. [13] propose
a Petri net-based technique to optimise the initiation interval (II) of
each SS component in a DS circuit. In pipelining, an II is defined as
the number of clock cycles between the start times of two consecu-
tive iterations. However, none of these works optimise the offsets
of component ports. Our work optimises the offsets of static islands
to achieve better performance (explained in Section 4.3).

4 METHODOLOGY

This section shows how to determine good static islands for min-
imal performance loss and maximal resource sharing. Resources

Jianyi Cheng, John Wickerson, and George A. Constantinides

in a static island can only be shared inside the static island due to
dynamic behaviour in its surroundings. The scheduler can deter-
mine the states of a static island once the island starts to compute,
but it cannot determine when it starts in relation to other static
islands. Therefore, a larger static island contains more resources to
share and can achieve higher area efficiency. However, if a large
static island contains data-dependent operations, the conservatism
in static scheduling may cause performance loss and violate the
performance constraints.

In order to automatically determine these optimally sized static
islands, we first summarise the fundamental features of code that
are amenable for static scheduling. Based on these features, we
then show how our tool extracts static islands. Next, we illustrate
how to optimise the interface between static islands and their DS
surroundings for high performance. Finally, we demonstrate the
complete tool flow integrated into DASS.

4.1 Features Amenable for Static Scheduling

In general, static scheduling is optimal if the code behaviour is fully
predictable, otherwise the scheduler always assumes the worst case
in time. A code region that is amenable for static scheduling should
satisfy following conditions:

(1) Code should have no data-dependent control flow, or only
have data-dependent control flow where all control flow
paths have the same throughput.

(2) If code contains loops, each loop should have no inter-iteration
dependence, or only have inter-iteration dependences with
constant dependence distances.

For these code regions, the timing of the synthesised hardware is
predictable in clock cycles, that is, the SS design can achieve the
same throughput as the DS design. The features that are amenable
for static scheduling by Vitis HLS are explained later.

4.2 Constructing Static Islands

Constructing static islands is a two-step process, one targeting
high-level operations in loops and the other targeting low-level op-
erations in instructions. For each function, if the function contains
loops, our analyser first checks whether each loop can be statically
scheduled. If it can, our tool identifies the whole loop as a static
island. Otherwise, our analyser checks instructions in the func-
tion/loop body and constructs static islands in the form of groups
of instructions. Each group of instructions forms a subgraph in the
data flow graph of the input program as illustrated in Figure 2b.

Step 1: Constructing Static Islands from Loops. Here we introduce
four pre-conditions for determining whether a loop should be stat-
ically or dynamically scheduled. The first two pre-conditions are
restricted by the tools we use, and the other two pre-conditions are
restricted by the input code.

Condition 1: Vitis HLS Loop Restrictions. Apart from the fea-
tures in Section 4.1, Vitis HLS, the tool we use for static scheduling,
has additional restrictions for loops to achieve efficient loop pipelin-
ing [37, 46]. First, loop nests that cannot be merged into a single
loop cannot be optimally pipelined by Vitis HLS. If a loop nest can-
not be merged, Vitis HLS either pipelines the top-level loop with
all the inner loops fully unrolled, or only pipelines the innermost

Finding and Finessing Static Islands in Dynamically Scheduled Circuits

loops with the rest of the code sequential. Additionally, support
for estimating loop trip count from variable loop bounds is limited
in Vitis HLS. The scheduler prefers that all the loop bounds and
step of a loop to be constant. Finally, all the array indices should
be in affine form as the analyser only supports affine analysis. We
formalise these features into following constraints:

® Lgingle: the loop is a single loop ! or the loop is a loop nest
that can be merged into a single loop.

® Bt all the loop bounds and steps are constant.

® Auffine: all the array indices are in affine form.

A pre-condition of a loop to be scheduled by Vitis HLS is:
Cvmis = Lsingle A Best A Aaffine

Condition 2: DASS Shared Memory Restrictions. DASS, the
tool we use as an HLS tool, also has restrictions on shared memory
between static islands and DS hardware. Static islands are treated as
black boxes by the DS hardware, and memory dependence between
SS and DS hardware cannot be handled by DASS [12]. That is, a
loop should not have memory dependence with external code. In
the data flow graph, the memory dependence is controlled by LSQs.
Here we restrict that loops sharing an LSQ with other loops cannot
be statically scheduled. We define the following:

o L ={lp,I1,...}: the set of all the loops in the program.

o (: the set of all the LSQs in the data flow graph of a program
if the program is dynamically scheduled.

o Q;: the set of all the LSQs connected to the data flow graph
of loop 1 if the loop is dynamically scheduled. Q; € Q

The restriction by DASS for a loop [is then:
Cpass = (VI' € L\ {1}.Q;n Qp = 0)

Condition 3: Loop with No Branches. Now we discuss the con-
ditions restricted by the code. A minimum II for an loop iteration
is the number of cycles that the iteration must wait after its last
iteration starts. Dynamic scheduling supports different minimum
IIs across loop iterations, while static scheduling allows a constant
II value for all the iterations. If the minimum II is the same across
all the loop iteration, the loop should be statically scheduled. Oth-
erwise, all the IIs are relaxed to the maximum value among all the
minimum IIs, which causes reduced throughput.

AnTI of a loop depends on two constraints, iteration latency and
inter-iteration dependence [50]. Assuming that all operators take
constant time, the iteration latency is a constant if the loop body
does not have branch.? The inter-iteration dependence is amenable
when a loop does not have inter-iteration dependence or its depen-
dence distance is constant. We define following constraints:

® Dinter: the loop has inter-iteration dependence.

e Dcg: the distances of all the inter-iteration dependences in
the loop are constant.

® By,: the loop body has branches.

Then the loops that satisfy the following condition should be stati-
cally scheduled, where iteration latency and dependence distance
are both constant, resulting in a constant II:

Co = =By A (Dest V ~Dinter)

1A innermost loop of a loop nest can be considered as a single loop.
2This assumes that all the functions called in the loop are inlined.

FPGA 22, February 27-March 1, 2022, Virtual Event, CA, USA

Table 2: Reference for the scheduling approach that needs to
taken for a loop. DS = dynamic scheduling. SS = static sched-
uling. DS/SS = depending on our performance model.

. Dependence distance
Iteration latency

No dependence Constant Variable
Constant SS SS DS
Variable SS/DS SS/DS DS
=0
X

1| float s = 0;

2| float d1, d2;

3| for (int i=0; i<N;
4 i++) {

5 float d = A[i];
6

7

8

9

Ts = (9, 5) R .
Ws = (0.5, 0.5) . 1
=0. .]
Y v
[t

// P(true)=0.5

if (d < 1)
/7 II=9
s = s*xd + d2x(Ti =(1)
d+0.1); wi=(1)
10 else
11 // II=5
12 s = s+di;

Figure 3: A loop example that conditionally updates a vari-
able s based on the value of array element A[i]. A data flow
graph of the loop is shown at the bottom of the figure. The
cycles indicate dependences. The carried dependence on s
has two possible latencies, illustrating two possible IIs. The
extracted static islands are shown as dotted circles based on
the given Ts and W in the figure.

For instance, a loop below has no branch but inter-iteration de-
pendence on array A. When f(i) = i*i, the dependence distance
varies over iterations, then the loop cannot be statically scheduled.
When f (i) = i+10, the dependence distance is 10, then the loop
can be statically scheduled.

1| for (int i=0; i<N; i++)
2 ALF(i)] = ALiD;

Condition 4: Loop with Branches. A loop that contains branches
may have a set of iteration latencies and could lead to a set of IIs. In
static scheduling, the maximum value of Il among these IIs is used
for all the loop iterations. Such approximation could cause through-
put loss compared to dynamically scheduling the loop. In order to
evaluate the throughput loss caused by the II approximation, we
propose a performance model specified by following constraints:

e Ve = {uvg, 01, ...}: the set of all the variables in the loop that
have carried dependences.

o P,: the vector of all the cycles for a variable that has carried
dependences. v € V.

o T,: the vector of the latencies of these cycles in clock cycles.

e W,: the vector of the probabilities of computing these cycles.
W, -1=1

e Jg: affordable loss factor.

FPGA 22, February 27-March 1, 2022, Virtual Event, CA, USA

In order to perform throughput analysis, a data flow graph is
generated from the source of the loop. In the graph, each carried
dependence on a variable is represented as a set of cycles. For in-
stance, the left side of Figure 3 shows a loop example that contains a
branch. The loop checks whether the value of an array element A[1]
is less than 1. If it is, the variable s is updated by sxd+d2x(d+0.1),
otherwise s accumulates d1.

The data flow graph of the loop example is on the right of Figure 3.
There are two variables that have carried dependences, Vo = {s, i}.
In the figure, the cycle on on the top right represents the carried
dependence on i. The value of i always increments by 1 in each
iteration, where |P;| = 1. The cycles on the left represent the carried
dependences on s. The value of s depends on the if condition, so
there are two cycles in graph representing the results from true
and false branches respectively, where |Ps| = 2.

Each cycle has a latency and a probability, formalised as elements
in Ty and Wy respectively. The latency indicates the minimum
time in clock cycles required to update the variable with carried
dependence, also known as the iteration latency of the cycle. Wy,
are obtained by profiling. In Figure 3, the cycle for i has a fixed
latency of 1. Therefore, T; = (1) and W; = (1). Assuming that
the probability of if condition being true is 0.5, Ws = (0.5,0.5),
and assuming that the latency of a floating point adder is always
5 cycles and the latency of a floating point multiplier is always 4
cycles, the cycle for the true branch has a latency of 9, and the cycle
for the false branch has a latency of 5, that is, Ts = (9, 5).

The performance of the loop can be estimated using the latencies
and probabilities of cycles. Dynamic scheduling supports a variable
iteration latency, and the average iteration latency for a variable v
is represented as Ty gynamic- Static scheduling supports a constant
iteration latency, and the iteration latency for a variable v is then
the maximum latency among all the cycles, represented as T, static-

Tv,dynamic =Ty Wy

Tv,static =max Ty

We simplify our analysis by restricting that the loop only has
no inter-iteration dependence or inter-iteration dependences with
constant dependence distance. A loop that has dynamic dependence
distances should be dynamically scheduled. The average IIs are:

Ty i
ynamic
T ic = max T, i 1 e = ——
dynamic eV o,dynamic dynamic d
Tstatic
Tstatic = max Tv,static Igtatic = ——
veVe d

The satisfied loop then has a constant minimum dependence dis-
tance, d. The final II of both SS and DS loops is restricted by the
maximum II among all the variables that have carried dependences.
In Figure 3, the II is restricted by the variable s. The performance
loss caused by switching a DS loop to a SS loop can be estimated
using a loss factor A.

_ Istatic — denamic _ Tstatic — Tdynamic

denamic Tdynamic

The constant d is then cancelled. If the throughput loss caused by
approximating the II is affordable for a user-defined threshold Ao,

Jianyi Cheng, John Wickerson, and George A. Constantinides

|]
g]
S
= A O b et =
g ! {08 &
£, 80 T E
287 &
£A 6f S
@ 0.2 9
bn -
g1l s =
L~ I I | |
S 0 g
< g 0 0.2 0.4 0.6 0.8 1 k7
A Probability of if condition being true (I = 9)

Figure 4: DS = the design without any static island. DASS1 =
the design statically scheduling line 9 of Figure 3. DASS2/SS
= the design statically scheduling the whole loop. The aver-
gae IIs of DASS1 design and DS design vary from 5 to 9 be-
cause of the dynamically scheduled if condition. The II of
DASS2/SS design has a constant IT of 9. The loss factor of the
loop in Figure 3 increases with the probability of if condi-
tion being true. The maximum error between the estimated
loss factor and the actual loss factor by simulation is 0.5%.

the loop is then statically scheduled.
Cy=(—-120)

A curve of the loss factor for the loop in Figure 3 over the distribu-
tion of if condition being true is shown in Figure 4. Our estimated
loss factor is close to the one by simulation. For the example in
Figure 3, 1 = 0.28. Assuming g = 0.05, our tool suggests to dynam-
ically schedule the loop. The loop still has SS parts in the loop body,
resulting in the DASS1 design by step 2, which are explained later
in this paper. Based on the performance model, loops that satisfy
the following condition should be statically scheduled:

C1 = Bpr A (Dest V = Dinger) A Ca

Summarised Condition. The summarised condition that indi-
cates whether a loop should be statically scheduled is shown in
Equation 1. Table 2 summarises Equation 1 based on the source
patterns. Each loop to be statically scheduled is considered as a
single static island. Any two adjacent SS loops are further merged
into a static island in step 2.

Cstatic loop = CvHLS A Cpass A (Co V C1) (1)

Step 2: Constructing Static Islands from Instructions. If a loop is not
amenable for static scheduling, our tool extracts static islands from
the loop body at instruction level. We consider each extracted SS
loop or each DS operation as a single node in the data flow graph
of the function. We define following terms:

o N: the set of all the nodes in the data flow graph.

e E — N X N: the set of all the edges in the graph.

e M — {0, 1}: whether these nodes can be merged.

e S — N: the ID of static island to which a node belongs.

We specify the merging rule as follows:

(1) Each node is considered as a static island.

Finding and Finessing Static Islands in Dynamically Scheduled Circuits

(2) Node that does not have the same throughput at all its in-
put and output ports cannot be merged, e.g. Merge, Branch
and Mux. This avoids performance loss in pipelining data-
dependent operations.

(3) Nodes that connects to a LSQ cannot be merged for the same
reason explained in Condition 2.

Based on the rules above, our tool iteratively merges nodes into
larger static islands. For instance, the dotted circles in Figure 3
represent the merged static islands in the graph. Each island can
be synthesised into a single component. The following condition
holds after extracting static islands.

V(no,n1) € E, S(no) = S(n1) V =(M(no) A M(n1))

The main benefit of static scheduling is enabling resource sharing
in a static island. As an optimisation process, our tool evaluates
the size of each island by counting the number of operations. If an
island is too small that has no space for resource sharing, then it
remains dynamically scheduled. For the example in Figure 3, only
the island at the bottom left is amenable for static scheduling, while
the other two islands are ignored. Table 3 shows the number of
static islands found over a set of benchmarks.

Table 3: Static islands found over a set of benchmarks.

Benchmarks # Islands Benchmarks # Islands
vecNormTrans 2 getTanh 1
doitgenTriple 2 covariance 3
correlation 5 syr2k 1
levmargq 2 gemver 3
gramSchmidt 7 gesummv 2

4.3 Optimising Static Islands using Offsets

Once a static islands is determined, it is synthesised and placed in
a wrapper to communicate with its DS surroundings. The wrapper
monitors and controls the computation of the static island based
on its input and output states.

An offset of an input means the number of cycles between the
start time of the computation and the time when this input is firstly
used. An offset of an output means the number of cycles between
the end time of the computation and the time when this output
starts to be valid. This section introduces how to use the offsets to
optimise the wrapper to improve the overall throughput. We first
compare the throughput of the original wrapper in DASS and our
proposed wrapper. Then we show how the proposed wrapper is
implemented and its additional constraints.

4.3.1 Throughput of Original DASS Wrapper Design. The offset can
be used to determine when an input/output is required, which can
affect the overall performance. The original wrapper assumes zero
offsets for all the inputs, which requires all the inputs to be valid
to start the computation [12]. When a static island is in a loop and
has carried dependence, the latency of the static island affects the
overall throughput. For a static island, let M be the set of its inputs
and N be the set of its outputs. The carried dependence set among

FPGA 22, February 27-March 1, 2022, Virtual Event, CA, USA

valid
data
read;

mem_ce

(a) Original wrapper

(b) Proposed wrapper

Figure 5: An example of a wrapper with offset constraints.
a is consumed immediately when the component starts to
compute (offset = 0), and b is only required 13 cycles after a
is consumed (offset = 13). The original wrapper uses a join to
synchronise all the inputs. A shift register is implemented
in (b) for b to count the offset and control its handshake in-
terface. The red dashed line illustrates the state where b is
required by the component. The implementation of the pro-
posed wrapper contains three parts: 1) Interface for ports
with zero offsets, the same as (a); 2) Interface for ports with
positive offsets; 3) Interface for backpressure. ce represents
the clock enable signal.

these inputs and outputs over all the iterations is D, where:
DCMXNXNXN: (mnky, k) €D

k1 and ky are the iteration indices, where k1 > kj. For instance,
(m, n, k1, ky) means the input m in iteration k; depends on the
output n in iteration k.

Now we formalise the time constraints, and all the times are in
clock cycles. Let t,, ;. be the time when input m in iteration k is
consumed and t, ;. be the time when output n in iteration k becomes
valid 3. The dependence constraint can be formulated as follows:

Y(m,n, ki,kz) € D, Ik, 2 tnk, (2)

The DS surroundings use handshake interface to ensure that Equa-
tion 2 always holds. Here we use Equation 2 as a pre-condition for
the following analysis in the static island.

Assume that a static island is pipelined with a constant II and
always have the same latency. Let o, be the offset of input m and
Ly, be the latency of output n. In an original wrapper design, all the
inputs in the same iteration are synchronised:

Vme M, anm =0 (3)
Vm,m’ € M,k > 0, b,k = by k (4)

3The output value may become valid before the whole computation finishes, where
the output offset is the time difference.

FPGA 22, February 27-March 1, 2022, Virtual Event, CA, USA

The time constraint for the output n is then:
Ink Z tmk +Ln (5)

Substituting Equation 5 into Equation 2:

tm,kl - tm,kz > Lp (6)

The upper bound of II at m only depends on the latency of the static
island and dependence distance in iterations.

4.3.2 Throughput of Our Proposed Wrapper Design. We propose a
new wrapper that does not require all the input to be valid before the
computation. The component can start earlier with some missing
inputs as long as these inputs are not required in the next clock
cycle, that is, these inputs have non-zero offsets. If an input is
required but not valid, the wrapper stalls the whole component
until the input becomes valid.

For the new wrapper with positive offsets, Equation 4 no longer
holds. The output constraint in Equation 5 now becomes:

tn,k b tm,k +Lp—am (7)
Substituting it into Equation 2:
tmky ~ tmky 2 Ln—am

The upper bound of II at m now also depends on its offset and is
lower than Equation 6 when the offset is non-zero. Our proposed
wrapper can avoid significant throughput loss when the offset and
latency are both large.

4.3.3 Implementation of Proposed Wrapper. An example of static
island with two inputs and one output is illustrated in Figure 5.
The component takes two inputs a and b and returns a result x
as (((0.9+a)*0.7)+0.3)*b. When the static island starts to com-
pute, only a is required to compute (((@.9+a)*0.7)+0.3) before
multiplying with b. Assuming each adder has a latency of 4 cycles
and each multiplier has a latency of 5 cycles, a has an offset of 0
and b has an offset of 13.

Figure 5a is the original wrapper and Figure 5b is our proposed
wrapper. Our proposed wrapper is implemented mainly in three
parts. First, the interface of an input with zero offset, such as a,
is implemented by the the same handshake interface as the origi-
nal wrapper. It checks the valid signal in a constant time interval
specified by the II. The component takes bubble if the valid is not
valid yet, where the data inside the component is still being pro-
cessed [12]. Second, the interface of of an input with positive offset,
such as b, is controlled by an additional shift register. The shift
register is synchronised with the pipeline state of the component.
The time when b is required is indicated by a certain bit of the shift
register being set, i.e. the 13th bit for this example. When the bit is
set but b is not valid, the whole component is stalled waiting for b,
where the data inside the component is all stalled.

Finally, the clock enable signal of the component is used to stall
the component. Similar to the original wrapper, it is controlled
by the back pressure and memory arbiter. The major difference
from the original wrapper is that the absence of b can also stall the
component.

Jianyi Cheng, John Wickerson, and George A. Constantinides

4.3.4 1l Constraints of Proposed Wrapper. The component now can
be stalled by both the inputs and the outputs (back pressure). An
inappropriate II for this wrapper could cause deadlock. Here we
show how to formalise the deadlock problem. Since the inputs may
not be synchronised, the condition that always holds for the new
wrapper design is:

Vm,m' € M, am > by k — Q' < b — Om 8)

This means that an input with a larger offset a;;, is always consumed
later than another input with a smaller offset a,, by at least o, —
any cycles. Then deadlock happens when an executing output is
being required by an input:

E(ms n, ki, kZ) €D, m' e M, tm’,kl tam — oy < tn,kz (9)

For instance, when the input m’ in iteration k; has propagated
to the point where the input m is required. The output n in the
iteration ky is still in the component, and the input m is not valid
because of Equation 2. The component is forever stalled, waiting
for the output being stalled.

This never happens in the original wrapper because Equation 9
never holds under Equation 3. In order to avoid the deadlock in
the new wrapper, an additional constraint is required to avoid
Equation 9:

V(m,n, ki, kz) € D,m’ € M, tyy g, + tm — Oy > by g, (10)

This always holds when a;, < auy. For am > auy, substituting
Equation 7 into the equation above:

b ey + @m — Q' 2 by g, + Ln — ot
bt dey 2t ke, T Ln — Om

Assume that a static island is synthesised and pipelined with a
constant II of P. Since the input m’ is not synchronised with the
input m, the actual Il of m’ is still restricted by P:

tmt ke 2 by ke, + P(k1 — k2)
Then constraint then becomes:
P(ki —k2) =2 +Ly — am
The following must hold for a wrapper design without deadlock:

L, —am
ki1 — k2
(11)

In summary, the original wrapper assumes no offsets and may
have suboptimal performance. We propose a new wrapper design
that has a improved throughput upper bound with II constraints.
Our tool checks if the condition holds. If it does not hold and D is
data-dependent, the static island is split into multiple static islands
with zero offsets. For instance, the static island in Figure 5b can be
split into two island annotated by the red dotted line. If it does not
hold and D is known, the tool relaxes the II of the component until
Equation 11 holds to avoid deadlock. Even P is restricted, the lower
bound of P is still no greater than the optimal II, so the optimal
throughput is still reachable. Table 4 evaluates the performance
improvement by replacing original wrappers with our wrappers.
The area change of a wrapper is negligible compared to the total
area of the designs.

V(m,n, ki, ko) € D,{m’ € Mlay, > apy} =0V P >

Finding and Finessing Static Islands in Dynamically Scheduled Circuits

Table 4: Comparison of total cycles between the designs us-
ing the original wrapper and our new wrapper. When there
is a dependence between the input and output of a static is-
land, the throughput of hardware using original wrapper is
significantly worse, otherwise only the latency is affected.

Benchmarks Original wrapper Our wrapper
vecNormTrans 17439 6703
doitgenTriple 329016 263435
levmargq 54315 54296

4.4 Tool Flow

DASS internally relies on Vitis HLS and Dynamatic: 1) Vitis HLS
generates the static components, 2) Dynamatic generates the dy-
namically scheduled circuits, and 3) DASS itself generates the wrap-
pers around static components so that they can communicate with
their dynamically scheduled surroundings. DASS then puts the
three design files together as the final design in RTL. Our work is a
new extension in the DASS flow.

Figure 1 illustrates the complete tool flow with our work inte-
grated. The input code is analysed by our static island analyser
in two steps to determine static islands in loops and instructions.
These static islands are then synthesised by Vitis HLS through its
LLVM front end [48]. The offset constraints are extracted from the
scheduling reports of static islands. The DS code region is trans-
formed into a dot graph buffered with offset constraints, and then
translated into a hardware netlist of DS components. Finally, the
wrappers with offset optimisation are generated as part of design.

5 EXPERIMENTS

We evaluate our work on a set of realistic benchmarks, comparing
with the corresponding SS and DS designs in total circuit area and
wall clock time. The IIs of static islands are automatically chosen by
the II analyser in DASS [13]. We obtain the total clock cycles from
Vivado XSIM simulator and the area results from Post Synthesis
report in Vivado. The FPGA family we used for result measurements
is xc72020clg484 and the version of Xilinx software is 2020.2.

5.1 Benchmarks

The benchmarks are chosen based on whether they lack the features
mentioned in Section 4.1, that is, fully static scheduling is subopti-
mal. Finding suitable benchmarks is a perennial problem for papers
that push the limits of HLS, in part because existing benchmark
sets such as Polybench [38] and CHStone [24] tend to be tailored to
what HLS tools can already comfortably handle. Therefore, we list
ten realistic benchmarks, where most of them are modified from
Polybench. 4 In the first six benchmarks, regular computations are
translated into sparse computations to improve the performance.
The last four benchmarks have complex loop nests.

vecNormTrans is the motivating example in Figure 2a.

doitgenTriple is a weighted version of Multi-resolution analysis
kernel (MADNESS).

correlation computes the correlation matrix.

4Open-sourced at [25].

FPGA 22, February 27-March 1, 2022, Virtual Event, CA, USA

5
;
,:_‘j
L
>
5 21 E N
o
I sparseMatrixPower, LFK7,
=]
— getTanh(float),
g histogram,
s gl |
% [
[bubbleSort @ filterSum
'5 @ filterSumlIf
<
g 05) .
s}
Z
Improved performance
—
0.2 | | |
0.2 0.5 1 2 5

Normalised performance in Wall clock time

Figure 6: Comparison with the manual DASS designs in [12].
The manual DASS designs are at (1, 1) and the points rep-
resent the designs by our approach. For most benchmarks,
our tool achieves the same hardware as the hardware man-
ually designed by experts. For certain benchmarks, our tool
even finds better static islands than those in the manual de-
signs, resulting in smaller area or better performance. The
small difference in performance is mainly caused by differ-
ent maximum frequencies of the designs. We expect higher
performance in getTanh(int) but the result is restricted by
the pipelining capabilities of Dynamatic for complex loops.

<%
o

S

& &

S) & S
S X O &

X A2 N o &
& R X0
I — e —
0.8 1 1.1 1.25 1.5

Figure 7: Comparison with the designs with the best per-
formance. The best performant design is normalised at 1,
and the points represent the relative performance of our de-
signs for evaluated benchmarks.

levmarq is an implementation of the Levenberg-Marquardt algo-
rithm to solve least-squares problems [35].

gramSchmidt is an optimised version Gram-Schmidt decomposi-
tion, which conditionally computes matrix based on the 2-norm
of the rows in a matrix [22].

getTanh transforms a vector using a tanh function, where the tanh
function has different latencies for inputs in different regions.

covariance computes the covariance matrix.

syr2k is a symmetric rank-2k update for two matrices.

gemver is vector multiplication and matrix addition.

gesummv is scalar, vector and matrix multiplication.

FPGA 22, February 27-March 1, 2022, Virtual Event, CA, USA

Jianyi Cheng, John Wickerson, and George A. Constantinides

Table 5: Evaluation of our approach on a set of benchmarks. The first part of table evaluates the benchmarks that are amenable
to our approach; and the second part of the table evaluates the benchmarks that do not have data-dependent operations.
SS = the designs directly synthesised by Vitis HLS. DS = the designs directly synthesised by Dynamatic. DASS = the designs
synthesised by DASS using our proposed approach. ADP = area-delay product.

LUTs DSPs Cycles Fmax (MHz) Wall clock time (s) Norm. ADP

Benchmarks IIs

SS DS DASS SS DS DASS SS DS DASS SS DS DASS SS DS DASS SS DS DASS
vecNormTrans 9, 2 1.61k 213k 2.86k 5 20 7 123k 6.08k 6.70k 121 89.7 106 102y 63.1u 678y 1 2.7 0.87
doitgenTriple 5,5 768 21.8k 20.4k 10 20 10 399k 198k 263k 121 87.6 87.6 3.3m 2.26m 3.0lm 1 1.4 091
correlation 4,4,10,1,4 2.13k 143k 6.72k 5 36 22 799k 66.6k 70.0k 121 80.5 103 661y 827y 680y 1 9 4.5
levmarq 59,6 2.42k 224k 6.74k 15 153 22 204k 51.2k 54.3k 121 120 120 1.69m 427p 452p 1 2.6 0.39
gramSchmidt 1,34,1,1,1,15,2 3.27k 15.1k 159k 5 49 31 375k 99.0k 61.0k 121 117 117 3.11m 844p 519y 1 2.7 1
getTanh 4 892 3.79k 1.32k 16 16 5 1.03k 1.04k 1.03k 121 120 120 85y 87y 86p 1 1 031
Norm. median 1X 7.99% 2.97X 1X 5.6X 1.43X 1Xx 0.50X 0.60Xx 1x 0.86X 0.93x 1X 0.68X 0.76Xx 1X 2.6Xx 0.89X
covariance 4,6,4 233k 791k 4.24k 5 9 9 923k 729k 84.0k 121 86.1 99.8 764y 847y 841y 1 2 2
syr2k 4 829 4.04k 3.52k 5 19 8 81.4k 66.5k 78.7k 121 98.1 118 673y 678u 6654 1 3.8 1.6
gemver 6,4,4 144k 8.32k 3.24k 10 28 17 599k 611k 532k 115 106 106 5.23m 5.76m 5.0lm 1 3.1 1.6
gesummv 1, 10 2.11k 3.37k 2.75k 8 18 14 71.2k 262k 68.8k 121 113 102 589y 2.31m 673y 1 8.8 2
Norm. median 1X 4.14X 2.03x 1X 2.53X 1.73x 1X 0.92X 0.94Xx 1X 0.87x 0.89x 1X 1.10X 1.04x 1x 3.5X 1.8X

5.2 Results

Compared with the manual designs by experts over the benchmarks
in the original DASS paper [12], most of the designs generated by
our tool have comparable performance and area as shown in Fig-
ure 6. Compared with the fastest designs discovered via exhaustive
search over the selected ten benchmarks, our approach generates
designs that are within 2% of the performance as shown in Fig. 7.
Details are shown in Table 5. The first part of the table shows the
detailed results of the six benchmarks where dynamic scheduling
should significantly improve the throughput. First, as shown in
Section 2, vecNormTrans has high throughput because the input
dependent computation remains in DS part, and our tool enables re-
source sharing and LSQ removing. doitgenTriple has two loops in
sequence that have memory dependence scheduled by a LSQ. Since
static islands cannot share LSQs, these loops remain dynamically
scheduled. The loop bodies of two loops can still be synthesised
as static islands, resulting in significantly reduced DSPs. A big dif-
ference between the DASS hardware and DS hardware is because
the difference of the latencies of floating-point adders in two tools,
which affects the throughput. This also occurs in levmarg.

correlation has complex loop nests and conditional compu-
tation on the standard deviation to avoid zero-divide. Dynamatic
pipelines the top-level loop, while Vitis HLS only pipelines inner-
most loops. This is more significant for large benchmarks levmarq
and gramSchmidt. The DASS hardware and DS hardware avoid that
and achieve higher throughput. There is a significant performance
improvement in gramSchmidt when switch DS to DASS, because
Vitis HLS uses advanced facc ops for floating-point accumulation
which has a latency of 1 cycle, while Dynamatic uses normal fadd
ops which has a latency of 4 cycles.

getTanh is a special case, where DASS hardware has close per-
formance as SS hardware but smaller area. In static scheduling, the
scheduler assumes all the elements in the input vector are in the
linear region, resulting in an II of 1 for the high-precision com-
putation. In DASS, the code region that performs high-precision

computation is synthesised as a static island. Knowing the proba-
bility of the input that is in the saturation region by profiling, the II
of the static island can be relaxed. Overall, the average area-delay
product of our designs is better than both SS and DS designs.

The second part of Table 5 shows area advantages over naive
dynamic scheduling which is separated from those benchmarks
where dynamic scheduling provides an advantage. They are more
classic benchmarks where static scheduling would be an obvious
approach. Overall, the latencies of designs by three approaches is
close but the areas are significantly different. The reduced cycles
from DS to DASS is caused by the use of facc ops. Our approach is
able to reduce the overhead of using dynamic scheduling. However,
DASS cannot share resource between two static islands as explained
in Section 4. This results in larger area-delay product compared to
SS designs.

6 CONCLUSIONS

Existing HLS tools require user to manually specify their sched-
uling constraints to achieve high performance and area efficient
hardware designs. In this work, we present a rule-based technique
to automatically select the scheduling strategies for the input pro-
grams. Our tool also optimises the interface between code regions
using different scheduling strategies to achieve high performance.

We show how to use our approach to automatically determine
the static islands in a DS circuit. Across a range of benchmarks that
are amenable to our approach, our approach on average achieves a
3.8-fold reduction in area combined with a 13% performance boost
through automatic identification and synthesis of static islands
from fully dynamically scheduled circuits. The performance of the
resulting hardware is close to optimum. Our future work will ex-
plore the fundamental limits of this approach, both theoretically and
practically, such as optimizing static islands in implementation [23].

ACKNOWLEDGEMENTS
This work is supported by the EPSRC (EP/P010040/1, EP/R006865/1).

Finding and Finessing Static Islands in Dynamically Scheduled Circuits

REFERENCES

[1] L Ahmad, M. K. Dhodhi, and C. Y. R. Chen. 1995. Integrated scheduling, allocation

and module selection for design-space exploration in high-level synthesis. IEE
Proceedings - Computers and Digital Techniques 142, 1 (1995), 65-71. https:
//doi.org/10.1049/ip-cdt:19951516

Mythri Alle, Antoine Morvan, and Steven Derrien. 2013. Runtime dependency
analysis for loop pipelining in High-Level Synthesis. In 2013 50th ACM/EDAC/IEEE
Design Automation Conference (DAC). IEEE, Austin, TX, 51:1-51:10.

Mihai Budiu and Seth Copen Goldstein. 2002. Pegasus: An Efficient Intermediate
Representation. Technical Report CMU-CS-02-107. Carnegie Mellon University.
20 pages.

A. Canis, S. D. Brown, and J. H. Anderson. 2014. Modulo SDC scheduling
with recurrence minimization in high-level synthesis. In 2014 24th Interna-
tional Conference on Field Programmable Logic and Applications (FPL). 1-8.
https://doi.org/10.1109/FPL.2014.6927490

Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona,
Tomasz Czajkowski, Stephen D. Brown, and Jason H. Anderson. 2013. LegUp: An
Open-source High-level Synthesis Tool for FPGA-based Processor/Accelerator
Systems. ACM Trans. Embed. Comput. Syst. 13, 2, Article 24 (Sept. 2013), 27 pages.

Luca P. Carloni. 2015. From Latency-Insensitive Design to Communication-
Based System-Level Design. Proc. IEEE 103, 11 (Nov 2015), 2133-2151. https:
//doi.org/10.1109/JPROC.2015.2480849

Luca P. Carloni, Kenneth L. McMillan, and Alberto L. Sangiovanni-Vincentelli.
2001. Theory of latency-insensitive design. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 20, 9 (Sep. 2001), 1059-1076.
https://doi.org/10.1109/43.945302

Luca P. Carloni and Alberto L. Sangiovanni-Vincentelli. 2000. Performance
Analysis and Optimization of Latency Insensitive Systems. In Proceedings of
the 37th Annual Design Automation Conference (Los Angeles, California, USA)
(DAC °00). Association for Computing Machinery, New York, NY, USA, 361-367.
https://doi.org/10.1145/337292.337441

Mario R. Casu and Luca Macchiarulo. 2004. A New Approach to Latency Insensi-
tive Design. In Proceedings of the 41st Annual Design Automation Conference (San
Diego, CA, USA) (DAC ’04). Association for Computing Machinery, New York,
NY, USA, 576-581. https://doi.org/10.1145/996566.996725

Catapult High-Level Synthesis. 2020. https://www.mentor.com/hls-Ip/catapult-
high-level-synthesis/

Celoxica. 2005. Handel-C. http://www.celoxica.com

[12] J. Cheng, L. Josipovi¢, G. A. Constantinides, P. Ienne, and J. Wickerson. 2021.

DASS: Combining Dynamic and Static Scheduling in High-level Synthesis. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems (2021),
1-1. https://doi.org/10.1109/TCAD.2021.3065902

[13] Jianyi Cheng, John Wickerson, and George A. Constantinides. 2021. Probabilistic

Scheduling in High-Level Synthesis. In 2021 IEEE 29th Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM). 195-203.
https://doi.org/10.1109/FCCM51124.2021.00031

R. L. Collins and L. P. Carloni. 2008. Topology-Based Performance Analysis and
Optimization of Latency-Insensitive Systems. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 27, 12 (2008), 2277-2290.

[15] Jason Cong, Muhuan Huang, Bin Liu, Peng Zhang, and Yi Zou. 2012. Combining

module selection and replication for throughput-driven streaming programs. In
2012 Design, Automation Test in Europe Conference Exhibition (DATE). 1018-1023.
https://doi.org/10.1109/DATE.2012.6176645

[16] Jason Cong and Zhiru Zhang. 2006. An efficient and versatile scheduling al-

gorithm based on SDC formulation. In 2006 43rd ACM/IEEE Design Automation
Conference. IEEE, San Francisco, CA, 433-438.

CIRCT contributors. 2021. CIRCT: Circuit IR Compilers and Tools. https://github.
com/llvm/circt/tree/main/.

Philippe Coussy, Daniel D. Gajski, Michael Meredith, and Andres Takach. 2009.
An Introduction to High-Level Synthesis. IEEE Design Test of Computers 26, 4
(July 2009), 8-17.

Steve Dai, Mingxing Tan, Kecheng Hao, and Zhiru Zhang. 2014. Flushing-enabled
loop pipelining for high-level synthesis. In 2014 51st ACM/EDAC/IEEE Design
Automation Conference (DAC). IEEE, San Francisco, CA, 1-6.

Steve Dai, Ritchie Zhao, Gai Liu, Shreesha Srinath, Udit Gupta, Christopher
Batten, and Zhiru Zhang. 2017. Dynamic Hazard Resolution for Pipelining
Irregular Loops in High-Level Synthesis. In Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (FPGA °17). ACM,
Monterey, CA, 189-194.

[21] Johannes de Fine Licht, Grzegorz Kwasniewski, and Torsten Hoefler. 2020.

Flexible Communication Avoiding Matrix Multiplication on FPGA with High-
Level Synthesis. In Proceedings of the 2020 ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays (Seaside, CA, USA) (FPGA °20). As-
sociation for Computing Machinery, New York, NY, USA, 244-254. https:
//doi.org/10.1145/3373087.3375296

[22] gram-schmidt. 2021. https://github.com/chrundle/gram-schmidt

[23

[24]

[28

[29]

[30]

w
=

[32

(33]

(34]

&
2

[36

[37

[38

[39

[40

[41

[42

[44

[45

FPGA 22, February 27-March 1, 2022, Virtual Event, CA, USA

Licheng Guo, Yuze Chi, Jie Wang, Jason Lau, Weikang Qiao, Ecenur Ustun, Zhiru
Zhang, and Jason Cong. 2021. AutoBridge: Coupling Coarse-Grained Floorplan-
ning and Pipelining for High-Frequency HLS Design on Multi-Die FPGAs. In The
2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
(Virtual Event, USA) (FPGA °21). Association for Computing Machinery, New
York, NY, USA, 81-92. https://doi.org/10.1145/3431920.3439289

Yuko Hara, Hiroyuki Tomiyama, Shinya Honda, Hiroaki Takada, and Katsuya
Ishii. 2008. CHStone: A benchmark program suite for practical C-based high-
level synthesis. In 2008 IEEE International Symposium on Circuits and Systems.
1192-1195. https://doi.org/10.1109/ISCAS.2008.4541637

HLS Benchmarks. 2021. https://github.com/JianyiCheng/HLS-benchmarks/tree/
master/StaticIslands

Ian Page and Wayne Luk. 1991. Compiling occam into Field-Programmable Gate
Arrays. In FPGAs, W. Moore and W. Luk, Eds., Abingdon EE&CS Books.

Vincent John Mooney III and Giovanni De Micheli. 2000. Hardware/Software
Co-Design of Run-Time Schedulers for Real-Time Systems. Design Automation
for Embedded Systems 6, 1 (01 Sep 2000), 89-144.

Intel HLS Compiler. 2021. https://www.intel.co.uk/content/www/uk/en/
software/programmable/quartus-prime/hls- compiler.html

M. Ishikawa and G. De Micheli. 1991. A module selection algorithm for high-
level synthesis. In 1991., IEEE International Sympoisum on Circuits and Systems.
1777-1780 vol.3. https://doi.org/10.1109/ISCAS.1991.176748

K. Ito, L. E. Lucke, and K. K. Parhi. 1998. ILP-based cost-optimal DSP synthesis
with module selection and data format conversion. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 6, 4 (1998), 582—-594. https://doi.org/10.
1109/92.736132

Lana Josipovi¢, Philip Brisk, and Paolo Ienne. 2017. An Out-of-Order Load-Store
Queue for Spatial Computing. ACM Trans. Embed. Comput. Syst. 16, 5s, Article
125 (Sept. 2017), 19 pages.

Lana Josipovi¢, Radhika Ghosal, and Paolo Ienne. 2018. Dynamically Sched-
uled High-level Synthesis. In Proceedings of the 2018 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA ’18). ACM, Monterey, CA,
127-136.

L. Josipovi¢, A. Bhattacharyya, A. Guerrieri, and P. Ienne. 2019. Shrink It or
Shed It! Minimize the Use of LSQs in Dataflow Designs. In 2019 International
Conference on Field-Programmable Technology (ICFPT). 197-205.

M. Kulkarni, M. Burtscher, C. Cascaval, and K. Pingali. 2009. Lonestar: A suite of
parallel irregular programs. In 2009 IEEE International Symposium on Performance
Analysis of Systems and Software. 65-76. https://doi.org/10.1109/ISPASS.2009.
4919639

levenberg-maquardt-example. 2021. https://github.com/leechwort/levenberg-
maquardt-example

Junyi Liu, Samuel Bayliss, and George A. Constantinides. 2015. Offline Synthesis
of Online Dependence Testing: Parametric Loop Pipelining for HLS. In 2015 IEEE
23rd Annual International Symposium on Field-Programmable Custom Computing
Machines. IEEE, Vancouver, BC, 159-162.

Optimization Techniques in Vitis HLS. 2021. https://www.xilinx.com/html_
docs/xilinx2021_1/vitis_doc/vitis_hls_optimization_techniques.html
Louis-Noél Pouchet et al. 2012. Polybench: The polyhedral benchmark suite.
URL: http://www. cs. ucla. edu/pouchet/software/polybench 437 (2012).

Zhigiang Que, Erwei Wang, Umar Marikar, Eric Moreno, Jennifer Ngadiuba,
Hamza Javed, Bartlomiej Borzyszkowski, Thea Aarrestad, Vladimir Loncar, Sioni
Summers, Maurizio Pierini, Peter Y Cheung, and Wayne Luk. 2021. Accelerating
Recurrent Neural Networks for Gravitational Wave Experiments. In 32th Inter-
national Conference on Application-specific Systems, Architectures and Processors
(ASAP). IEEE.

M. Singh and M. Theobald. 2004. Generalized latency-insensitive systems for
single-clock and multi-clock architectures. In Proceedings Design, Automation
and Test in Europe Conference and Exhibition, Vol. 2. 1008-1013 Vol.2.

Stratus High-Level Synthesis. 2021. https://www.cadence.com/en_US/home/
tools/digital- design-and- signoff/synthesis/stratus-high-level- synthesis.html
Qiuyue Sun, Amir Taherin, Yawo Siatitse, and Yuhao Zhu. 2020. Energy-
Efficient 360-Degree Video Rendering on FPGA via Algorithm-Architecture
Co-Design. In Proceedings of the 2020 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (Seaside, CA, USA) (FPGA °20). Association for
Computing Machinery, New York, NY, USA, 97-103. https://doi.org/10.1145/
3373087.3375317

W. Sun, M. J. Wirthlin, and S. Neuendorffer. 2007. FPGA Pipeline Synthesis Design
Exploration Using Module Selection and Resource Sharing. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 26, 2 (2007), 254-265.
https://doi.org/10.1109/TCAD.2006.887923

Mingxing Tan, Gai Liu, Ritchie Zhao, Steve Dai, and Zhiru Zhang. 2015. Elas-
ticFlow: A complexity-effective approach for pipelining irregular loop nests.
In 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
IEEE, Austin, TX, 78-85.

Girish Venkataramani, Mihai Budiu, Tiberiu Chelcea, and Seth Copen Goldstein.
2004. C to Asynchronous Dataflow Circuits: An End-to-End Toolflow. In IEEE
13th International Workshop on Logic Synthesis (IWLS). IEEE, Temecula, CA.

https://doi.org/10.1049/ip-cdt:19951516
https://doi.org/10.1049/ip-cdt:19951516
https://doi.org/10.1109/FPL.2014.6927490
https://doi.org/10.1109/JPROC.2015.2480849
https://doi.org/10.1109/JPROC.2015.2480849
https://doi.org/10.1109/43.945302
https://doi.org/10.1145/337292.337441
https://doi.org/10.1145/996566.996725
https://www.mentor.com/hls-lp/catapult-high-level-synthesis/
https://www.mentor.com/hls-lp/catapult-high-level-synthesis/
http://www.celoxica.com
https://doi.org/10.1109/TCAD.2021.3065902
https://doi.org/10.1109/FCCM51124.2021.00031
https://doi.org/10.1109/DATE.2012.6176645
https://github.com/llvm/circt/tree/main/
https://github.com/llvm/circt/tree/main/
https://doi.org/10.1145/3373087.3375296
https://doi.org/10.1145/3373087.3375296
https://github.com/chrundle/gram-schmidt
https://doi.org/10.1145/3431920.3439289
https://doi.org/10.1109/ISCAS.2008.4541637
https://github.com/JianyiCheng/HLS-benchmarks/tree/master/StaticIslands
https://github.com/JianyiCheng/HLS-benchmarks/tree/master/StaticIslands
https://www.intel.co.uk/content/www/uk/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.co.uk/content/www/uk/en/software/programmable/quartus-prime/hls-compiler.html
https://doi.org/10.1109/ISCAS.1991.176748
https://doi.org/10.1109/92.736132
https://doi.org/10.1109/92.736132
https://doi.org/10.1109/ISPASS.2009.4919639
https://doi.org/10.1109/ISPASS.2009.4919639
https://github.com/leechwort/levenberg-maquardt-example
https://github.com/leechwort/levenberg-maquardt-example
https://www.xilinx.com/html_docs/xilinx2021_1/vitis_doc/vitis_hls_optimization_techniques.html
https://www.xilinx.com/html_docs/xilinx2021_1/vitis_doc/vitis_hls_optimization_techniques.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://doi.org/10.1145/3373087.3375317
https://doi.org/10.1145/3373087.3375317
https://doi.org/10.1109/TCAD.2006.887923

FPGA 22, February 27-March 1, 2022, Virtual Event, CA, USA

[46

[47

[48

[49

[50

[51

]

]
]

Vitis HLS Coding Styles. 2021. https://www.xilinx.com/html_docs/xilinx2020_
2/vitis_doc/vitis_hls_coding_styles.html

Erwei Wang, James J. Davis, Peter Y. K. Cheung, and George A. Constantinides.
2019. LUTNet: Rethinking Inference in FPGA Soft Logic. In 2019 IEEE 27th Annual
International Symposium on Field-Programmable Custom Computing Machines
(FCCM). 26-34. https://doi.org/10.1109/FCCM.2019.00014

Xilinx Vitis HLS. 2021. https://www.xilinx.com/html_docs/xilinx2020_2/vitis_
doc/index.html

Tanner Young-Schultz, Lothar Lilge, Stephen Brown, and Vaughn Betz. 2020.
Using OpenCL to Enable Software-like Development of an FPGA-Accelerated
Biophotonic Cancer Treatment Simulator. In Proceedings of the 2020 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (Seaside, CA, USA)
(FPGA °20). Association for Computing Machinery, New York, NY, USA, 86-96.
https://doi.org/10.1145/3373087.3375300

Z. Zhang and B. Liu. 2013. SDC-based modulo scheduling for pipeline synthesis.
In 2013 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
211-218. https://doi.org/10.1109/ICCAD.2013.6691121

Ruizhe Zhao, Ho-Cheung Ng, Wayne Luk, and Xinyu Niu. 2018. Towards Efficient
Convolutional Neural Network for Domain-Specific Applications on FPGA. In
2018 28th International Conference on Field Programmable Logic and Applications
(FPL). 147-1477. https://doi.org/10.1109/FPL.2018.00033

Jianyi Cheng, John Wickerson, and George A. Constantinides

https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/vitis_hls_coding_styles.html
https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/vitis_hls_coding_styles.html
https://doi.org/10.1109/FCCM.2019.00014
https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/index.html
https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/index.html
https://doi.org/10.1145/3373087.3375300
https://doi.org/10.1109/ICCAD.2013.6691121
https://doi.org/10.1109/FPL.2018.00033

	Abstract
	1 Introduction
	2 Motivating Example
	3 Background
	3.1 Static Scheduling
	3.2 Dynamic Scheduling
	3.3 Combining Dynamic & Static Scheduling
	3.4 Module Selection & Optimisation in HLS

	4 Methodology
	4.1 Features Amenable for Static Scheduling
	4.2 Constructing Static Islands
	4.3 Optimising Static Islands using Offsets
	4.4 Tool Flow

	5 Experiments
	5.1 Benchmarks
	5.2 Results

	6 Conclusions
	References

