Modulo Scheduling with Rational Initiation Intervals in Custom Hardware Design

Patrick Sittel* ¥ @, John Wickerson *

, Martin Kumm?' (9, and Peter Zipf i

*Imperial College London, TUniversity of Applied Sciences Fulda, *University of Kassel

Abstract— In modulo scheduling, the number of clock cycles
between successive inputs (the initiation interval, II) is tradi-
tionally an integer, but in this paper, we explore the benefits
of allowing it to be a rational number. This rational II can
be interpreted as the average number of clock cycles between
successive inputs. As the minimum rational II can be less than
the minimum integer II, this translates to higher throughput.
We formulate rational-II modulo scheduling as an integer linear
programming (ILP) problem that is able to find latency-optimal
schedules for a fixed rational II. We have applied our scheduler
to a standard benchmark of hardware designs, and our results
demonstrate a significant speedup compared to state-of-the-art
integer-II and rational-II formulations.

I. INTRODUCTION

Scheduling, the task of mapping operations to clock cycles
while respecting resource constraints and maximising through-
put, is an important stage in hardware synthesis. Particularly
high throughput can be achieved by interleaving schedules of
successive samples, as obtained using modulo scheduling [1],
[2], [3]. In modulo scheduling, the computation’s latency can
exceed the initiation interval (I1), which is the number of clock
cycles between successive inputs.

In traditional modulo scheduling, the II is always an inte-
ger [2]. In this work, we explore the consequences of allowing
rational 1Is, such as % The idea of a rational II is not new
— it has been proposed by Fimmel and Miiller in the domain
of VLIW architectures [4]. Our work lifts several restrictions
that limit the applicability of the Fimmel-Miiller approach
(Section and is also the first to explore rational IIs in
the context of hardware design. The rough idea is to allow
the number of clock cycles between successive inputs to vary,
then to reinterpret the II as the average of these numbers. For
example, in a situation where the minimum integer Il is 2 (i.e.,
a new sample can be inserted every two clock cycles) there
might be another solution where the II alternates between 1
and 2. This means that two samples can begin processing every
three cycles, which can be interpreted as a rational 11 of %

A hardware implementation using this smaller, rational
II would show significant speedup, since throughput is the
reciprocal of the II. Additionally, recent work has shown
that only a very small and sparsely distributed number of
hardware/throughput trade offs are possible using integer-II
modulo scheduling [S)]. Adding implementations that can only
be found using rational-II modulo scheduling provides more
fine-grained control over the design space.

In this paper, we present a novel integer linear programming
(ILP) formulation of rational-II modulo scheduling, signifi-
cantly improving on the state-of-the-art (Section[[V]). We show
that existing approaches fail to find any rational II in most
cases, whereas our algorithm can identify schedules with the

978-1-7281-4123-7/20/$31.00 © 2020 IEEE

Fig. 1. Example data-flow graph.

minimal rational II, leading to a functional unit utilisation of
close to 100%.

We evaluate the performance of our approach compared
to state-of-the-art modulo schedulers (Section [V). Across a
standard benchmark set, we found that 35% of the scheduling
problems stand to benefit from a rational II, and of these,
the average speedup is 1.26x. Post-routing synthesis results
suggest that the additional control logic to support rational IIs
is negligible.

II. MOTIVATING EXAMPLE

Consider the example data-flow graph (DFG) shown in
Figure [I] It consists of five vertices of the same resource type
r, which has a latency of one cycle. The edge from o3 to ogy
is labelled with a dependence distance of two, to indicate a
recurrence: operation og on sample n depends on the result
of operation o3 on sample n — 2. The other edges implicitly
have a dependence distance of zero.

The maximum throughput achieved using modulo schedul-
ing depends both on recurrences and on resource constraints.
This example has one recurrence where the dependence dis-
tance is two and the latency is three cycles, so the II must

3

not be less than 5. This is called the recurrence-constrained

minimum II [2], written Hrlec. In general, we have

=

rec — max

1€ recurrences

ey

(latency, /distance;)

where latency, and distance; give the latency and distance of
the 7*" recurrence.

Moreover, because there are five r-operations, the II must
also not be less than 5/FUs(r), where FUs(r) is the number
of functional units that can execute operations of type r. This
is called the resource-constrained minimum II, written II: .
In general, we have

I, =

res max

T € resources (#T/FUS (T))

where #r is the number of type r operations in the DFG.

The ideal performance of our proposed approach on Fig-
ure compared to optimal integer-II solutions, over all
possible resource allocations, is shown in Figure 2] In all
cases except FUs(r) = 1, our proposed approach leads
to a significantly improved throughput, reaching 33% when
FUs(r) € {4,5}.

@)

https://orcid.org/0000-0003-2896-3709
https://orcid.org/0000-0001-6735-5533
https://orcid.org/0000-0002-8593-3138
https://orcid.org/0000-0003-4725-4246

T \ \ \
5| - BEJ- Rational II (proposed)
[—— Integer 1I
o)
g 3 | :
w1 E ______
an
S 2
= Boooo- ,
1.5+ m----- El- -
1 | | | | |
0 1 2 3 4 5

Functional units in hardware, FUs(r)
Fig. 2. Performance comparison for the DFG of Fig. [T]

To be more concrete, Table E] shows one possible outcome of
scheduling our example graph when FUs(r) = 3, using both
integer and rational IIs. In the integer-1I case, one sample is
inserted every two clock cycles. In the rational-II case, three
samples are inserted every five clock cycles. This results in
the integer-1I schedule requiring 20 clock cycles to process 9
samples, but the rational-II schedule requiring only 18. Note
that in the integer-II schedule, FU3 is idle half of the time,
whereas the rational-II schedule keeps all functional units
100% utilised. It is also interesting that in the rational-II
schedule, all operations on one sample can be performed by
the same FU (see the thick borders in Table [_H), but note that
this is only one of many possible resource bindings.

III. RELATED WORK

Modulo scheduling is a multi-objective optimization prob-
lem, e.g., minimizing both II and latency, that has been formu-
lated as an ILP problem [1]], [3]. Optimal modulo scheduling
can be very time-consuming, so heuristic algorithms have
also been proposed, often based on systems of difference
constraints [2], [6].

Fimmel and Miiller have investigated the benefits of using
rational IIs in modulo scheduling for VLIW architectures [4]].
However, their formulation has some drawbacks that we
address in this paper. First, their formulation only applies
when Il < II_, an assumption that actually rarely holds
in our benchmarks, thus restricting the applicability of their
approach. Second, their formulation determines a dynamic
schedule, where each operation’s start time is not determined
until runtime, and thus incurs a significant hardware overhead.

Rational-II scheduling somewhat resembles partially un-
rolling the DFG then applying ordinary integer-II scheduling.
However, that approach is less effective than ours because it is
not always applicable when I, < IT;_, it requires the user to
determine the unrolling factor manually, and the ILP problem
tends to be harder to solve, which means fewer solutions are
found. See Section |V| for an experimental comparison.

IV. RATIONAL-II SCHEDULING

We now describe our approach for rational-II modulo
scheduling under resource constraints using ILP. All constants
and variables used are listed in Table

TABLE 1

INTEGER-II AND RATIONAL-II SCHEDULES FOR THE EXAMPLE GRAPH

WHEN FUS(r) = 3. THE TABLES ASSIGN EACH OPERATION (FOR THE
FIRST 9 SAMPLES) TO A CLOCK CYCLE AND A FUNCTIONAL UNIT (FU).
WE WRITE n:0; FOR OPERATION 0; ON SAMPLE n. THE THICK BORDERS

SHOW THE SCHEDULE FOR THE FOURTH SAMPLE. THE > SYMBOL

INDICATES A CLOCK CYCLE THAT ACCEPTS A NEW SAMPLE; NOTE THE

NON-UNIFORM SAMPLE-INSERTION RATE IN THE RATIONAL-II CASE.

clock (a) Integer II =2 (b) Rational 1T = 2
cycle
FUl | FU2 | FU3 FUl | FU2 | FU3

0 >| O:00 0:01 > | 0:01

1 0:02 0:00

2 > liog 1:01 > | 0:09 1:01

3 l:02 | 0O:03 0:03 1:00

4 | 200 2:01 0:04 > | 0:04 1:09 2:01

5 2:02 1:03 >1 3:01 l:03 2:00

6 | 3:00 3:01 1:04 3:00 1:04 2:02

7 3:09 2:03 >l 3:09 4:0q 2:03

8 | 409 4:0q 2:04 3:03 4:09 2:04

9 4:00 3:03 >N 3:04 | 4:02 5:01
10 >| 5S:09 5:01 3:04 > | 6:01 4:03 | S:09
11 5:02 | 4:03 6:00 | 404 | S:09
12 >| 6:09 6:01 4:04 >| 6:09 | 7:01 5:03
13 6:02 5:03 6:03 | 7:00 | S:04
14 >| T:o9 | T:01 5:04 >| 6:04 | T:02 8:01
15 T:02 6:03 T:03 8:00
16 | 8:09 8:01 6:04 T:04 | 8:02
17 8:09 T:03 8:03
18 7:04 8:04
19 8:03
20 8:04

A. Integer and Rational Minimum II

In state-of-the-art modulo scheduling, the recurrence-
constrained minimum II and the resource-constrained mini-
mum II, as defined in (I) and @), provide a lower bound for
the II. The integer minimum II is defined as

1l = max([T,], MM]) - 3)
The rational minimum II, on the other hand, avoids the ceiling
functions and can be determined as
g = max(Il;,, ;) 4)
It follows that IIi; = [Héﬂ, and hence that rational-II sched-
ules will always attain a throughput that is at least as good as
integer-1I schedules.

When Hé is already an integer, we have Hé = H§, SO
switching to rational-II scheduling cannot improve throughput
(speedup = 1). This situation can be identified quickly before
scheduling, and standard integer-1I algorithms can be applied.
On the other hand, the maximum speedup is obtained when

I[Iér T 1 + € for small, positive e. In this case, the speedup is
14+€ °

which tends towards 2. In summary, we have
1 < speedup < 2 . 5)

In our experiments (Section [V), we observe that potential
speedups are widely spread from 1 up to 1.98.

TABLE II

CONSTANTS (TOP) AND VARIABLES (BOTTOM) FOR
RESOURCE-CONSTRAINED RATIONAL-II MODULO SCHEDULING

Constant / Variable

Meaning

O Set of operations in the DFG
E Set of edges in the DFG
dij € N>g Dependence distance on edge o; — 0;
Set of resource-constrained operation types (e.g.,
R
add, mult)
0oco Set of resource-constrained operations
Or c Io) Set of resource-cons}ramedv operations of type

r € R,ie., UTEROT' =0
No. of allowed hardware instances of resource
typer € R

D; € N>g Latency of operation o; € O

M € N3, i\ic})l.e g£ lzy:elgzalz:fore the rational II modulo

S €Ny No. of samples inserted every M cycles

0<s<S—-1 Range of sample indices

g = % Rational initiation interval

L e Nxg Maximal latency constraint

ti,s € N>g Start time of operation o; on sample s

to Virtual node

bis True iff 7 is the start time of operation o; € o
on sample s

(o ... Mg_1) Latency sequence

Is € N >0 Insertion time of sample s

B. Prerequisites

We consider the input to be a DFG (O, E) where operations
0; € O are connected by directed edges (0;,0;) € E that
have a latency D;. We write O,. for the set of operations that
require resource type r (adder, multiplier, etc.). The number of
available functional units of type r is FUs(r). As in state-of-
the-art integer-II modulo scheduling formulations, we consider
the II to be a constant input to the ILP problem, as calculated
using @]) We write II in the form II = J\—; where M is the
number of cycles before the insertion sequence repeats, and
S is the number of samples inserted every M cycles.

Each operation o; gets assigned S different clock cycles,
ti0,---,ti,5—1, where ¢; ¢ holds the clock cycle in which
operation o; is operating on sample s. Similar to Eichenberger
et al. [1]], the binary variable b; ; - models whether operation
o0; of sample s is scheduled in clock cycle 7. We assume that
the maximum allowed latency L is provided by the user. It
follows that it is sufficient to build a schedule based only on
the first P clock cycles, where P = M + L. This is because we
can assume, without loss of generality, that the sample with
index 0 will arrive at clock cycle 0, hence that the sample
with index S — 1 will arrive before clock cycle M, and hence
that the sample with index .S — 1 will complete before clock
cycle M + L.

C. Sequential Sample Insertion

We assign every sample s an insertion time Iy modulo M.

For our motivating example in Table |[| where II = %, we
would have Iy = 0, I; = 2, and I = 4. This means that for

all n > 0, we have sample 3n inserted at cycle 5n, sample
3n + 1 inserted at cycle 5n + 2, and sample 3n + 2 inserted
at cycle 5n + 4. We fix the first insertion time to 0.

The repeating sequence of insertions lets us calculate the
latency in clock cycles between successive samples. For this,
we adopt the concept of latency sequences [7]], which take the
form

(Mo 10y ... Tg_y) ©)
where
Toor—1I, ifs<S—1
I, = { ot hes .)
M—1I, ifs=8-1

The sample insertion times from the motivating example
lead to a latency sequence of (2 2 1). This yields a modulo-
5 schedule where new samples will be inserted in cycles
{0,2,4,5,7,...}. Note that integer IIs correspond to latency
sequences of length 1, such as (3).

D. Causality

The introduction of latency sequences requires us to revisit
the causality constraint used in integer-II scheduling. A typical
causality constraint [1], [3] is

tz+szdz7JH§tj V(Oi—)O]‘) ekl (8)

which expresses that the start time of operation o; (which is
given by ;) must not precede the end time of operation o;
from d; ; samples ago (which is given by ¢; + D; — d; ; -
II). Here, the dependence distance (algorithmic delay) d; ; is
multiplied by II because this is the number of cycles between
successive samples.

As an example, consider the integer-II schedule from Ta-
ble [[(a), and the edge from o3 to oy in Figure [l We have
t3=3,1t=0,D3=1,d3o =2, and Il = 2, so (8) holds in
this instance.

However, the introduction of latency sequences means that
the number of cycles between successive samples can vary, de-
pending on the sample index, s. Assuming a latency sequence
(o 11y ... Ig_1), the number of cycles between sample s and
sample s — d can be calculated as

d
As(d) =D (e mod s -)
n=1

Starting at sample s, the calculation steps backwards through
the latency sequence, adding up the last d latencies. Thus, the
causality constraint becomes

tis+Di—Ag(dij) <tjs Y(0i,0;) € E,Vs < S . (10)

As an example, consider the rational-II schedule from
Table [I(b), and the edge from o3 to 0op. When s = 0, we
have tg’s = 3, to’s = 1, D3 = 1, d3’0 = 2, and AS(2) = 3,
SO holds in this instance. It also holds for s = 1 and
s = 2. However, with an alternative latency sequence (1 1 3),
obtained by shifting the FU2 column in Table [[(b) up by one
cycle and the FU3 column up by two cycles, we would get
A4(2) = 2, and hence (I0) would be violated — the third
sample is being inserted too soon.

E. ILP Formulation

Since the II is an input to the ILP, the objective of the ILP is
to minimize the latency of each sample. Following Cong and
Zhang [8], we add a ‘virtual’ node t,. By adding constraints
to the ILP, we ensure that ¢, is scheduled in a cycle after
all nodes are finished (¢; s + D);) processing. Minimising the
start time of the virtual node is then the same as minimising
latency for all samples.

The overall problem of rational-II modulo scheduling is now
formulated as follows:

min(¢,)
subject to

D1: ti’s—l—Di—As(di’j) < tjs V(04,05) € E,Vs < S

D2: tio+D; <ty Yo; € O
D3: t, < L

M1: Iy =0

M2: I < I Vs<S—1
Ma3: tisg1 —dsy1 =tis—1s V¥s<S—1

R1: Z T- bi,s,r = ti,s Yr :Vo; € Or,Vs < S

0<T<P

R2: Z bisr =1

0<T<P

R3: Z Z b; s - < FUs(r)

0<s<S 0<7<P
7 mod M =m

Vr:VYo; € Or,Vs < S

Vr :Vo; € OT,Vm <M

D1 enforces the causality constraint introduced in (9). The
latency of each sample is constrained by the user-specified
value L, which can be seen in D2 and D3.

The modulo constraints M1-M3 enable sequential IIs. M1
ensures that the schedule starts in the first clock cycle. M2
prevents any samples being inserted after their successor. M3
expresses that each of the S samples follows the same schedule
(and hence that every sample is fully processed within L cycles
of its insertion), except that each schedule is offset by that
sample’s insertion time. This constraint is one that would not
be enforced if we used partial unrolling and integer-II schedul-
ing (see discussion in Section [I). It is a useful constraint
because it reduces the search space yet remains satisfiable by
all the solvable scheduling problems we have encountered. In
future work, we plan to investigate relaxing this constraint,
so different samples can follow different schedules. This may
enable better schedules to be found, at the cost of further
complicating the ILP.

To enforce that the number of FUs used does not exceed
FUs(r) we use binary variables. The Boolean value bi s, in
R1 is true if and only if ¢; ¢ = 7. This is ensured by R2, which
allows one (and only one) b; . to be true for each ¢; ;. This
information is then used in R3 to make sure that the upper
limit FUs(r) for each resource type r is respected. The inner
sum in R3 adds all occupations of resource 7 in clock cycle
m mod M. This is done for all samples, thus preventing the
scheduling of more than FUs(r) operations of resource 7 in
any clock cycle.

V. EXPERIMENTS

We evaluated the proposed rational-II modulo scheduling
approach on a set of fourteen test instances from digital signal
processing and embedded computing, as listed in the first
column of Table The vanDongen benchmark was used
by Fimmel and Miiller [4]; we include it because it is the only
example we could find where their assumption of 1T > Hf‘es
can actually be met. Ten of the remaining benchmarks are the
same test instances used by Sittel et al. [18]]; the remaining
three (gen, srg [10] and cholesky [[17]) are new. The source
code of all our benchmarks is available at [19].

Our proposed formulation was implemented in the open-
source Hat ScheT library [20]. ScaLP was used to generate
the ILP and Gurobi 8.1 (single thread mode) was used as
solver [21]. All problems were solved on a server system with
an Intel Xeon E5-2650v3 2.3 GHz CPU with 128 GB RAM.
The hardware description after scheduling was generated using
[19] which uses FloPoCo [22]] for VHDL generation. The
examined hardware implementations were synthesized, placed
and routed for a Xilinx Virtex7 xc7v2000t g1925-2G targeting
250 MHz using Vivado v2018.1.

First, we analyse the potential speedup for rational-II
scheduling by evaluating I and I for all possible re-
source allocations (#FUs) for each problem. Every operation
of the same type is implemented in hardware using homoge-
neous FUs. The results of this experiment are displayed in
Table To provide a complexity overview, the number of
operations (#ops) and the Hrlec of the DFGs are given. For each
benchmark, we enumerate all possible resource allocations
(#allocs). The ‘avg. II;-.’ column reports the average value of
II;, over all of these allocations. We then report how many
of the possible resource allocations lead to IIILes > Hrlec. For
example, in test instances biquad and Ims, we find that erc
always dominates II-_, and since II_ is an integer in both
cases, no speedup can be obtained using rational-II scheduling.

We then report how many of the remaining resource al-
locations have a minimum II that is not an integer (column
‘rational IT"). For example, test instance dims has 1., > II5
in three out of its 15 possible resource allocations, but still the
minimum II in each case is an integer. This can be explained
by the fact that the resource type with the largest number of
operations is mult, with five instances. No allocation can lead
to a rational II between 4 and 5 and, thus, no speedup can
be obtained using rational-II scheduling. Note that this can
always be determined quickly before attempting scheduling
and an integer-II scheduler can be used instead. In all other
cases, there exist resource allocations where the minimum II
is not an integer. On average, 35% of all resource allocations
show speedup potential for rational-II scheduling (see bottom
row of Table [IT). Of those, the average potential speedup is
1.26x. In the larger models (sam, cholesky), the maximum
speedup possible was 1.98x. In larger benchmarks, potential
speedups are tightly distributed within the possible range we
derived in Section

We solved the scheduling problems using three approaches
besides our own: (1) Fimmel and Miiller’s rational-II formu-
lation [4], (2) the Moovac integer-II formulation [3]], and (3)
Moovac after partially unrolling the problem having identified

TABLE III
RATIONAL-II MODULO SCHEDULING: SPEEDUP THAT CAN BE POTENTIALLY OBTAINED (IF SCHEDULES CAN BE FOUND)

DFG properties

Allocation info (sweep over all possible resource allocations)

Potential speedup

instance #ops L. #allocs avg. ;e #IIL, > IIL, rational II avg. max.
vanDongen [9] 10 5.33 10 2.93 1 9 (90%) 1.13x 1.13%
dims [10] 16 4 15 2.71 3 0 (0%) - -
gen [10] 15 1 15 2.71 14 T (47%) 1.3x 1.6x
gm [11] 16 1 24 3.04 23 5 21%) 1.47x 1.67x
hilbert [12] 14 1 18 2.42 17 3 (17%) 1.33x 1.33x
Ims [10] 15 18 15 2.71 0 0 (0%) - -
linear phase [13] 29 1 91 4.11 90 71 (78%) 1.25% 1.87x
srg [10] 17 1 8 2.29 7 1 (13%) 1.5% 1.5x%
sam [14] 121 1 1770 6.77 1769 1403 (79%) 1.21x 1.97x
biquad [15] 14 10 16 2.69 0 0 (0%) - -
rgb [16] 24 1 64 3.07 63 7 (11%) 1.5% 1.5%
spline [16] 26 1 64 3.78 63 26 (41%) 1.3x 1.75x
ycber [16] 22 1 32 2.78 31 3 (9%) 1.5x 1.5%
cholesky [17] 266 1 113386 9.31 113385 100235 (88%) 1.15%x 1.98 x
average 432 34 - 3.66 - - (35%) 1.26 % 1.49 %
TABLE IV
RATIONAL II SCHEDULER COMPARISON LIMITING SOLVING TIME TO 60 SECONDS FOR EACH PROBLEM
F-M. [4] Moovac [3] unroll+Moovac prop. ILP speedup w.r.t.
@ — — — —]
A S 3 3. =
=] o0 s = [=0) - - o0 = - o0 = - o
instance £ Z g & z 2 5 Z 2 & Z g & LTL b=
vanDongen 9 54 9 9 6 9 9 5.3 9 9 5.3 9 9 1.02x 1.13x
gen 7 23 7 7 23 7 7 1.8 7 7 1.8 7 7 1.3x 1.3x
gm 5 2 5 5 2 5 5 1.4 5 5 1.4 5 5 1.5% 1.5%
hilbert 3 2 3 3 2 3 3 1.5 3 3 1.5 3 3 1.3x 1.3x
linear phase 71 3.7 71 10 33 71 68 32** 24 22 3.0 43 3 1.2x 1.1x
srg 1 2 1 1 2 1 1 1.3 1 1 1.3 1 1 1.5x 1.5x
sam 100* - 0 0 29 20 19 - 0 0 29 1 1 - 1.0x
rgb 7 2 7 7 2 7 7 1.3 7 5 1.3 7 7 1.5x 1.5x
spline 26 24 26 7 24 26 26 2.2** 15 8 2.1 20 11 1.2x 1.2x
ycbcer 3 2 3 3 2 3 3 1.3 3 3 1.3 3 3 1.5x 1.5x
cholesky 100" - 0 0 - 0 0 - 0 0 - 0 0 - -
total 332 - 132 52 - 152 148 - 74 65 - 98 49 - -

* For the larger benchmarks, a random subset of all possible resource allocations was chosen.
** To provide a fair average speedup comparison, IIi; was used as a fallback whenever no result was found.

S and M. For each experiment, a solver timeout of 60 seconds
was used. These results are shown in Table Benchmarks
dims, Ims and biquad do not appear in this table because
there were no allocations with a non-integer minimum II.

Compared to the existing approaches, we could identify
rational-II schedules with a speedup between 1.1x and 1.5x
on average across all benchmarks except vanDongen, sam
and cholesky. In all cases where a solution was obtained, the
optimal II could be identified. The vanDongen benchmark
was chosen by Fimmel and Miiller to motivate their approach.
For one resource allocation, our formulation was able to find
a better II than theirs. The benchmarks spline and linear
phase could be solved completely by Fimmel-Miiller and
Moovac. But, the II found by Fimmel-Miiller is worse on
average. We observed that the proposed approach tends to
timeout whenever S becomes larger than four, blowing up the
number of variables in the ILP problem significantly. This can
be detected before scheduling and a heuristic approach could

identify smaller values for S such that the problem is more
likely to be solvable. Moovac was able to identify 20 modulo
schedules for sam, the proposed ILP found one solution and
the other approaches timed out in all cases. All examined
schedulers failed to find a modulo schedule for cholesky.
Regarding II, the unrolling approach performs the same as the
ILP formulation, but far fewer solutions were found (only 74
compared to 98), especially for the larger models. However, a
larger proportion of schedules (65/74 instead of 49/98) were
proven to be optimal with regard to latency.

To understand the possible hardware overhead (after place
and route), we studied all 71 resource allocations of the linear
phase benchmark model. We define the resource usage, RU,
of an implementation as RU = slicesUsed + N - DSPsUsed,
where N denotes the slice-to-DSP ratio of the given FPGA
device; in our experiments, N = 142. The Pareto frontier
for II and resource usage is shown in Figure [3] The Pareto-
optimal implementations that were found using integer-IIs are

4,000 [w — T
] - El- Rational II (proposed)
| —— Integer 11 [3] /
A-O-- Fimmel-Miiller [4]
3,000 |- i |
o 1
2 B -
E
3 |
2 2,000 | C &-- |
% 1
2 D -
1,000 |- o i
! ! ! [! ! !
1 2 3 4 5 7 10 13

II (log scale)

Fig. 3. Pareto-optimal implementations of the linear phase benchmark after
synthesizing all possible allocations.

displayed as crosses. New Pareto-optimal designs that are
revealed using our proposed rational-II formulation (labelled A
to D) could only be found using our formulation. Note that all
implementations are able to support the demanded 250 MHz,
and implementing rational-II scheduling does not affect the
operating frequency of the final hardware. Note also that,
at least on this benchmark, rational-II scheduling does not
change the fact that the best possible II is still 1 (top-left
point), and the best possible resource usage is still provided
by the bottom-right point; the value here is the finer-grained
control over the design-space exploration. This ‘fine-grained
control’ can be quantified by taking the area (highlighted in
grey) between the two Pareto frontiers.

VI. CONCLUSION AND OUTLOOK

We present a novel ILP formulation that is able to determine
optimal rational IIs whenever the number of operations in
the DFG is less than about 100. Compared to state-of-the-
art methods, we achieve throughput improvements of up to
1.5x. We show that in 35% of the encountered scheduling
problems, speedups of 1.26x on average and up to 1.98x are
possible.

To solve larger problems, heuristics for adapting S will
be required. One solution could be the adaptation of iter-
ative modulo scheduling from integer-Il modulo scheduling
to the rational-II case. Gradually increasing the II, such an
algorithm could make repeated attempts as a fallback strategy
for complex scheduling problems. The idea is that when the
II is larger, the scheduling constraints are easier to satisfy.

Finally, Pareto frontiers can be improved using our ap-
proach, thus enabling a more fine-grained control over the
design-space. In addition, the theoretical analysis of the mini-
mum II in combination with synthesis results from Section
indicate that it is possible to identify resource allocations that
lead to the Pareto frontier before scheduling and synthesis.
We envision to reduce overall design time for multi-objective

optimisation in custom hardware design by our approach
significantly.

Acknowledgements

This work was carried out while the first author vis-
ited Imperial College, supported by the UK EPSRC (grant
EP/P010040/1). We also acknowledge the financial support
of grant ZI 762/5-1 from the German Research Foundation
(DFG) and grant EP/R006865/1 from the EPSRC.

REFERENCES

[11 A. E. Eichenberger and E. S. Davidson, “Efficient Formulation for
Optimal Modulo Schedulers,” ACM SIGPLAN, 1997.

[2] A. Canis, S. D. Brown, and J. H. Anderson, “Modulo SDC Scheduling
with Recurrence Minimization in High-level Synthesis,” in 24th Int.
Conf. on Field Programmable Logic and Applications, IEEE, 2014.

[3] J. Oppermann, A. Koch, M. Reuter-Oppermann, and O. Sinnen, “ILP-
based Modulo Scheduling for High-level Synthesis,” in Int. Conf. on
Compliers, Architectures, and Sythesis of Embedded Systems, 1EEE,
2016.

[4] D. Fimmel and J. Miiller, “Optimal Software Pipelining under Resource
Constraints,” Int. Journal of Foundations of Computer Science, 2001.

[5] J. Oppermann, P. Sittel, M. Kumm, M. Reuter-Oppermann, A. Koch, and
O. Sinnen, “Design-Space Exploration with Multi-Objective Resource-
Aware Modulo Scheduling,” in 25th European Conference on Parallel
Processing, 2019.

[6] Z. Zhang and B. Liu, “SDC-based Modulo Scheduling for Pipeline
Synthesis,” in Int. Conf. on Comp.-Aided Design, 2013.

[7] J. H. Patel and E. S. Davidson, “Improving the Throughput of a Pipeline
by Insertion of Delays,” in ACM SIGARCH Computer Architecture
News, 1976.

[8] J. Cong and Z. Zhang, “An Efficient and Versatile Scheduling Algorithm
Based on SDC Formulation,” in 43rd ACM/IEEE Design Automation
Conf., IEEE, 2006.

[9] V. H. Van Dongen, G. R. Gao, and Q. Ning, “A Polynomial Time

Method for Optimal Software Pipelining,” in Parallel Processing: CON-

PAR 92VAPP V, Springer, 1992.

U. Meyer-Baese, A. Vera, A. Meyer-Baese, M. Pattichis, and R. Perry,

“Discrete Wavelet Transform FPGA Design using MatLab/Simulink,”

in Ind. Comp. Analyses, Wavelets, Unsupervised Smart Sensors, and

Neural Networks, 2006.

D. Goodman and M. Carey, “Nine Digital Filters for Decimation and In-

terpolation,” IEEE Trans. on Acoustics, Speech, and Signal Processing,

19717.

M. Kumm and M. S. Sanjari, “Digital Hilbert Transformers for FPGA-

based Phase-locked Loops,” in Int. Conf. on Field Programmable Logic

and Applications, IEEE, 2008.

D. Shi and Y. J. Yu, “Design of Linear Phase FIR Filters with High

Probability of Achieving Minimum Number of Adders,” Trans. on

Circuits and Systems I: Regular Papers, 2011.

H. Samueli, “An Improved Search Algorithm for the Design of Multipli-

erless FIR Filters with Powers-of-two Coefficients,” Trans. on Circuits

and Systems, 1989.

K. K. Parhi, VLSI Digital Signal Processing Systems: Design and

Implementation. John Wiley & Sons, 2007.

D. G. Bailey, Design for Embedded Image Processing on FPGAs. John

Wiley & Sons, 2011.

“Cholesky Decomposition,” 2011. http://www.alterawiki.com/wiki/

Floating-point_Matrix_Inversion_Example.

P. Sittel, M. Kumm, J. Oppermann, K. Mdller, P. Zipf, and A. Koch,

“ILP-based Modulo Scheduling and Binding for Register Minimization,”

in 28th Int. Conf. on Field Programmable Logic and Applications, IEEE,

2018.

“Origami HLS.” http://www.uni-kassel.de/go/origami.

P. Sittel, J. Oppermann, M. Kumm, A. Koch, and P. Zipf, “HatScheT: A

Contribution to Agile HLS,” in Int. Workshop on FPGAs for Software

Programmers, VDE, 2018.

P. Sittel, T. Schonwilder, M. Kumm, and P. Zipf, “ScalLP: A Light-

Weighted (MI)LP Library,” in Methoden und Beschreibungssprachen

zur Modellierung und Verifikation von Schaltungen und Systemen, 2018.

F. de Dinechin and B. Pasca, “Designing custom arithmetic data paths

with FloPoCo,” IEEE Design & Test of Computers, vol. 28, July 2011.

[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]

[18]

[19]
[20]

[21]

[22]

http://www.alterawiki.com/wiki/Floating-point_Matrix_Inversion_Example
http://www.alterawiki.com/wiki/Floating-point_Matrix_Inversion_Example
http://www.uni-kassel.de/go/origami

