
Ribbon Proofs for Separation Logic

John Wickerson1, Mike Dodds2, and Matthew Parkinson3

1 Technische Universität Berlin, Germany
2 University of York, United Kingdom

3 Microsoft Research Cambridge, United Kingdom

Abstract. We present ribbon proofs, a diagrammatic system for proving program
correctness based on separation logic. Ribbon proofs emphasise the structure of a
proof, so are intelligible and pedagogical. Because they contain less redundancy
than proof outlines, and allow each proof step to be checked locally, they may be
more scalable. Where proof outlines are cumbersome to modify, ribbon proofs
can be visually manoeuvred to yield proofs of variant programs. This paper in-
troduces the ribbon proof system, proves its soundness and completeness, and
outlines a prototype tool for validating the diagrams in Isabelle.

1 Introduction

A program proof should not merely certify that a program is correct; it should explain
why it is correct. A proof should be more than ‘true’: it should be informative, and it
should be intelligible. This paper does not contribute new methods for proving more
properties of more programs, but rather, a new way to present such proofs. Building on
work by Bean [2], we present a system that produces program proofs in separation logic
that are readable, scalable, and easily modified.

A program proof in Hoare logic [15] is usually presented as a proof outline, in
which the program’s instructions are interspersed with ‘enough’ assertions to allow the
reader to reconstruct the derivation tree. Since emerging circa 1971, the proof outline
has become the de facto standard in the literature on both Hoare logic (e.g. [1, 16, 25,
28]) and its recent descendant, separation logic (e.g. [3, 8–11, 14, 17, 18, 20, 27, 31]).
Its great triumph is what might be called instruction locality: that one can verify each
instruction in isolation (by confirming that the assertions immediately above and below
it form a valid Hoare triple) and immediately deduce that the entire proof is correct.

Yet proof outlines also suffer several shortcomings, some of which are manifested
in Fig. 1a. This proof outline concerns a program that writes to three memory cells,
which separation logic’s ∗-operator deems distinct. First, it is highly repetitive: ‘x 7→ 1’
appears three times. Second, it is difficult to interpret the effect of each instruction,
there being no distinction between those parts of an assertion that are actively involved
and those that are merely in what separation logic calls the frame. For instance, line 4
affects only the second conjunct of its preceding assertion, but it is difficult to deduce
the assignment’s effect because two unchanged conjuncts are also present. Of course,
these are only minor problems in our toy example, but they quickly become devastating
when scaled to serious programs.

2 John Wickerson, Mike Dodds, and Matthew Parkinson

1
{
x 7→ 0 ∗ y 7→ 0 ∗ z 7→ 0

}
2 [x]:=1;
3
{
x 7→ 1 ∗ y 7→ 0 ∗ z 7→ 0

}
4 [y]:=1;
5
{
x 7→ 1 ∗ y 7→ 1 ∗ z 7→ 0

}
6 [z]:=1;
7
{
x 7→ 1 ∗ y 7→ 1 ∗ z 7→ 1

}
(a) A proof outline

x 7→ 0 y 7→ 0 z 7→ 0

[x]:=1
x 7→ 1

[y]:=1
y 7→ 1

[z]:=1
z 7→ 1

(b) A ribbon proof

Fig. 1. A simple example

The crux of the problem is what might be called resource locality. Separation
logic [18, 27] specialises in this second dimension of locality. One can use separation
logic’s small axioms to reason about each instruction as if it were executing in a state
containing only the resources (i.e. memory cells) that it needs, and immediately deduce
its effect on the entire state using the frame rule. The proof outline below depicts this
mechanism for line 4 of Fig. 1a.

frame
x 7→ 1 ∗ z 7→ 0

-


{
x 7→ 1 ∗ y 7→ 0 ∗ z 7→ 0

}{
y 7→ 0

}
[y]:=1;{
y 7→ 1

}
- small axiom

for heap update{
x 7→ 1 ∗ y 7→ 1 ∗ z 7→ 0

}
Showing such detail throughout a proof outline would clarify the effect of each instruc-
tion, but escalate the repetition. Cleverer use of the frame rule can help, but only a
little – see Sect. 6. Essentially, we need a new proof representation to harness the new
technology separation logic provides, and we propose the ribbon proof.

Figure 1b gives an example. The repetition has disappeared, and each instruction’s
effect is now clear: it affects exactly those assertions directly above and below it, while
framed assertions (which must not mention variables written by the instruction) pass
unobtrusively to the left or right. Technically, we are still invoking the frame rule at
each instruction, but crucially in a ribbon proof, such invocations are implicit and do
not complicate the diagram.

A bonus of this particular ribbon proof is that it emphasises that the three assign-
ments update different memory cells. They are thus independent, and amenable to re-
ordering or parallelisation. One can imagine obtaining a proof of the transformed pro-
gram by simply sliding the left-hand column downward and the right-hand column up-
ward. The corresponding proof outline neither suggests nor supports such manoeuvres.

Where a proof outline essentially flattens a proof to a list of assertions and instruc-
tions, our system produces geometric objects that can be navigated and modified by
leveraging human visual intuition, and whose basic steps correspond exactly to sepa-
ration logic’s small axioms. A ribbon proof de-emphasises the program’s shallow syn-
tax, such as the order of independent instructions, and illuminates instead the deeper
structure, such as the flow of resources through the code. Proof outlines focus on Hoare

Ribbon Proofs for Separation Logic 3

triples {p} c {q}, and often neglect the details of entailments between assertions, p⇒ q,
even though such entailments often encode important insights about the program being
verified. Ribbon proofs treat both types of judgement equally, within the same system.

There are many recent extensions of separation logic (e.g. [7–11, 14, 17, 20, 23, 31])
to which our ribbon proof technology can usefully be applied; indeed, ribbons have
already aided the development of a separation logic for relaxed memory [5]. All of
these program logics are based on increasingly complex reasoning principles, of which
clear explanations are increasingly vital. We propose ribbon proofs as the ideal device
for providing them.

Comparison with Bean’s system Bean [2] introduced ribbon proofs as an extension
of Fitch’s box proofs [12] to handle the propositional fragment of bunched implications
logic (BI) [24]. BI being the basis of separation logic’s assertion language [18], his sys-
tem can be used to prove entailments between propositional separation logic assertions.
Our system expands Bean’s into a full-blown program logic by adding support for com-
mands and existentially-quantified variables. It is further distinguished by its treatment
of ribbon proofs as graphs, which gives our diagrams an appealing degree of flexibility.

Contributions and paper outline We describe a diagrammatic proof system that en-
ables a natural presentation of separation logic proofs. We prove it sound and complete
with respect to separation logic (Sect. 3). We also give an alternative, graphical formal-
isation (Sect. 4), which is sound in the absence of the frame rule’s side-condition.

We describe a prototype tool (Sect. 5) for mechanically checking ribbon proofs
with the Isabelle proof assistant. Given a small proof script for each basic step, our tool
assembles a script that verifies the entire diagram. Such tediums as the associativity and
commutativity of ∗ are handled in the graphical structure, leaving the user to focus on
the interesting parts of the proof.

We discuss (Sect. 6) extensions to handle concurrent separation logic, possible ap-
plications to parallelisation, and connections to proof nets, bigraphs and string dia-
grams.

We begin by introducing our ribbon proof system with the aid of an example. Fur-
ther examples can be found in Wickerson’s PhD dissertation [33]. Of those, our ribbon
proof of the Version 7 Unix memory manager demonstrates that our system can present
readable proofs of more complex programs than those considered in this paper.

2 An example

Let us consider a simple program for in-place reversal of a linked list.
Figure 3a presents a proof of this program as a proof outline (adapted from [27]).

For a binary relation r, we write x ṙ y for x r y ∧ emp, where emp describes an empty
heap. We write ε for the empty sequence, (−)† for sequence reversal, and · for cons
and concatenation. We define the list αx predicate by induction on the length of the
sequence α:

list ε x
def
= (x

.
= nil) list (i · α′)x def

= (∃x′. x 7→ i, x′ ∗ list α′ x′),

4 John Wickerson, Mike Dodds, and Matthew Parkinson

(a)
while (...) {

}

A

B

C

≈

A

B

C

(b)

if (...) {

} else {

}

A

B

C

D

≈

A

B
C

D

Fig. 2. While-loops and if-statements, pictorially

where x 7→ y, z abbreviates (x 7→ y) ∗ (x+ 1 7→ z).
The invariant (line 5) states that x and y are linked lists representing two sequences

α and β such that the initial sequence α0 is obtained by concatenating the reverse of
β onto α. Our proof outline seeks to clarify the proof by making minimal changes
between successive assertions, despite this making the proof large and highly redundant.
Alternatively, intermediate assertions can be elided, but this can make the proof hard to
follow. Either way, proof outlines do not make the structure of the proof clear.

Figure 3b presents a ribbon proof for the same program. It comprises

– steps, each labelled with an instruction (black) or a justification of an entailment
(dark grey),

– ribbons (light grey), each labelled with an assertion, and
– existential boxes, which delimit the scope of logical variables.

The ribbon proof advances vertically, and the resources (memory cells) being operated
upon are distributed horizontally across the ribbons. Instructions are positioned accord-
ing to the resources they access, not merely according to the syntax of the program, as in
the proof outline. Horizontal separation between ribbons corresponds to the separating
conjunction of the assertions on those ribbons; that is, parallel ribbons refer to disjoint
sets of memory cells. Because ∗ is commutative, we can ‘twist’ one ribbon over another.
The resource distribution is not only unordered, but also non-uniform, so the width of
a ribbon is not proportional to the amount of resource it describes. In particular, the
assertion ‘x ˙6= nil’ obtained upon entering the while-loop describes no memory cells
at all; it merely states that the program variable x is not the null pointer. A gap in the
diagram (e.g. above the ‘y:=nil’ step) corresponds to the ‘emp’ assertion.

While-loops are special steps that contain further nested steps. The loop invariant
is the collection of ribbons and existential boxes entering the top of the loop. This
collection must be recreated at the end of the loop body, so that one could roll the
proof into the shape drawn in Fig. 2a. If-statements are not depicted in our example, but
appear in Wickerson’s PhD dissertation [33]. They are treated straightforwardly: the
ribbons and boxes entering the then-branch must match those entering the else-branch,
and likewise at the two exit points, so that the proof could be cut and folded into the
three-dimensional shape suggested in Fig. 2b.

After the ‘z:=[x+1]’ step, the assertion ‘list α z’ is not needed for a while. In a
proof outline, this assertion would either be temporarily removed via an explicit ap-

Ribbon Proofs for Separation Logic 5

1
{
list α0 x

}
2 y:=nil;
3
{
list α0 x ∗ list ε y

}
4 // Choose α := α0 and β := ε
5 while

{
∃α, β. list α x ∗ list β y ∗ α0

.
= β† · α

}
(x!=nil) {

6

{
∃α, β. x ˙6= nil ∗ list α x ∗ list β y
∗ α0

.
= β† · α

}
7 // Unfold list def

8

{
∃α, β. (∃α′, i, Z. x 7→ i, Z ∗ list α′ z
∗ α .

= i · α′) ∗ list β y ∗ α0
.
= β† · α

}
9 // Choose α := α′

10

{
∃α, β, i, Z. x 7→ i, Z ∗ list αZ
∗ α0

.
= β† · (i · α) ∗ list β y

}
11 z:=[x+1];

12

{
∃α, β, i. list α z ∗ x 7→ i, z
∗ α0

.
= β† · (i · α) ∗ list β y

}
13 // Reassociate i

14

{
∃α, β, i. list α z ∗ x 7→ i, z
∗ α0

.
= (i · β)† · α ∗ list β y

}
15 [x+1]:=y;

16

{
∃α, β, i. list α z ∗ x 7→ i, y
∗ α0

.
= (i · β)† · α ∗ list β y

}
17 // Fold list def

18

{
∃α, β, i. list α z ∗ list (i · β) x
∗ α0

.
= (i · β)† · α

}
19 // Choose β := (i · β)
20
{
∃α, β. list α z ∗ list β x ∗ α0

.
= β† · α

}
21 y:=x;
22
{
∃α, β. list α z ∗ list β y ∗ α0

.
= β† · α

}
23 x:=z;
24
{
∃α, β. list α x ∗ list β y ∗ α0

.
= β† · α

}
25 }

26

{
∃α, β. x .

= nil ∗ list α x ∗ list β y
∗ α0

.
= β† · α

}
27 // Unfold list def
28
{
∃α, β. α .

= ε ∗ list β y ∗ α0
.
= β† · α

}
29 // Concatenate empty sequence
30
{
∃β. list β y ∗ α0

.
= β†

}
31 // Fold list def
32
{
list α†0 y

}
(a) A proof outline

while (x!=nil) {

}

list α0 x
y:=nil

list ε y
Choose α := α0 and β := ε

∃α
∃β

list α x list β y α0
.
=

β† · α

x ˙6= nil

Unfold list def
∃α′, i, Z. x 7→ i, Z
∗ list α′ Z
∗ α .

= i · α′
Choose α := α′

∃α
∃i

∃Z. x 7→ i, Z
∗ list αZ

α0
.
= β†

· (i · α)
z:=[x+1]

Reassoc-
iate i

list α z x 7→ i, z

[x+1]:=y α0
.
=

(i·β)† ·αx 7→ i, y
Fold list def
list (i · β) x

Choose β := (i · β)
list β x α0

.
=

β† · α∃β

y:=x
x:=z list β y
list α x

x .
= nil

Unfold list def
α
.
= ε

Concatenate empty sequence
α0

.
= β†

Fold list def
list α†0 y

(b) A ribbon proof

Fig. 3. Two proofs of list reverse

6 John Wickerson, Mike Dodds, and Matthew Parkinson

plication of the frame rule or, as is done in Fig. 3a, redundantly repeated at every in-
termediate point. In the ribbon proof, it slides discreetly down the left-hand side. This
indicates that the assertion is inactive without suggesting that it has been removed.

The proof outline obscures the usage of the logical variables α and β. The witness
for α changes after line 8, then stays the same until line 24; meanwhile, β’s witness is
constant through lines 5 to 18 before becoming the previous witness prepended with
i. This structure can only be spotted through careful examination of the proof outline
(aided by the textual hints on lines 9 and 19). The scoping of logical variables in the
ribbon proof, through the use of existential boxes, is far more satisfactory. Boxes extend
horizontally across several ribbons, but also vertically to indicate the range of steps over
which the same witness is used. Horizontally, existential boxes must be well-nested;

while (...) {

}

∃α
∃β

∃α
∃β

Fig. 4. Existential boxes,
vertically overlapping

this corresponds to the static scoping of existential quan-
tifiers in assertions. Vertically, however, boxes may over-
lap. Figure 4 depicts how the boxes for α and β overlap in
Fig. 3b. As explained in Sect. 3.1, such ‘overlaps’ are for-
mally treated as entailment steps of the form ∃x.∃y. p ⇒
∃y.∃x. p. Similarly, boxes may be stretched horizontally
(see, for instance, immediately below the loop in Fig. 3b)
in accordance with the entailment p ∗ (∃x. q) ⇒ ∃x. p ∗ q
(for x not in p). We thus obtain an intriguing proof struc-
ture – present in neither the proof outline nor the underlying
derivation tree – in which the scopes of logical variables do
not follow the program’s syntactic structure, but are instead
dynamically scoped. Section 6 contains further discussion.

We close this section by explaining a shortcoming in the proof system as currently
presented. One nicety of Fig. 3b is that the ‘Reassociate i’ entailment, being horizon-
tally separated from its neighbouring proof steps, can clearly be moved a little earlier
or later. (Close inspection is necessary to discover this from the proof outline.) But
similar reasoning allows the assignments ‘y:=x’ and ‘x:=z’ to be swapped, unsoundly.
We ensure our proof system is sound either by forbidding such manoeuvres altogether
(Sect. 3) or by encoding variable dependencies into the ribbons themselves (Sect. 4).

3 Formalisation

Let us now formalise the concepts introduced in the previous section. We introduce in
Sect. 3.1 a two-dimensional syntax for diagrams, and explain how it can generate the
pictures we have already seen. We present the rules of our diagrammatic proof system
in Sect. 3.2. We relate ribbon proofs to separation logic in Sect. 3.3.

Proofs performed by hand are annotated with ut, while those mechanically verified
using the Isabelle proof assistant are annotated with , and can be viewed online at:
http://www.cl.cam.ac.uk/~jpw48/ribbons.html

Definition 1 (Assertions). Let p range over a set of ordinary separation logic asser-
tions, containing at least the following constructions:

Assertion
def
= {p ::= emp | p ∗ p | ∃x. p | . . .}.

Ribbon Proofs for Separation Logic 7

`SL{p} c {q} wr(c) ∩ rd(r) = ∅
`SL{p ∗ r} c {q ∗ r}

(p, c, q) ∈ Axioms

`SL{p} c {q}
`SL{p} c {q}

`SL{∃x. p} c {∃x. q}

`SL{p1} c {q1}
`SL{p2} c {q2}

`SL{p1 ∨ p2} c {q1 ∨ q2}

`SL{p′} c {q′}
p⇒ p′ q′ ⇒ q

`SL{p} c {q}

`SL{p} c1 {q}
`SL{p} c2 {q}

`SL{p} c1 or c2 {q}

`SL{p} c1 {q} `SL{q} c2 {r}
`SL{p} c1;c2 {r} `SL{p} skip {p}

`SL{p} c {p}
`SL{p} loop c {p}

Fig. 5. Proof rules for commands

Definition 2 (Commands). Let c range over the commands of a sequential program-
ming language, containing at least sequential composition (which is associative), skip
(the unit of sequential composition), and non-deterministic choice and looping:

Command
def
= {c ::= c ; c | skip | c or c | loop c | . . .}.

If a primitive ‘assume b’ command is available (where b is a pure assertion; that is,
independent of the heap) then standard if-statements and while-loops can be derived:

if b then c1 else c2
def
= (assume b ; c1) or (assume¬b ; c2)

while b do c def
= loop(assume b ; c) ; assume¬b.

We assume a separation logic comprising the rules given in Fig. 5 plus a set of Axioms.
In the first rule, the frame rule, the rd and wr functions respectively extract the sets of
program variables read and written.

Remark 1. We do not consider Hoare logic’s conjunction rule in this paper. Conjunc-
tion and universal quantification can still appear inside individual ribbon assertions. We
could design graphical analogues (which would resemble our treatment of disjunction
and existential quantification) but this would complicate our graphical language with
constructs that are seldom used in separation logic proofs.

3.1 Syntax of diagrams

We present a syntax that can generate the pictures seen in the preceding section. Each
diagram is built up as a sequence of rows, each containing a single proof step. We thus
refer to such diagrams as ‘stratified’. (Section 4 will present an alternative formalisa-
tion that does not impose such strict sequentiality.) We begin by introducing interfaces,
which are the top and bottom boundaries through which diagrams can be composed.

Definition 3 (Interfaces). An interface is either a single ribbon labelled with an asser-
tion, an empty interface (shown as whitespace in pictures), two interfaces side by side,
or an existential box wrapped around an interface:

Interface
def
= {P ::= p | ε | P P | ∃xP }.

8 John Wickerson, Mike Dodds, and Matthew Parkinson


list
(i · β) x

α0
.
=

(i · β)† · α
Choose β := (i · β)

list β x α0
.
= β† · α∃β

∃i∃β

, list α z




list α z list β x α0
.
= β† · α

Extend scope of β

list α z list β x α0
.
= β† · α

∃β

∃β

, ε




∃β

 list β x
y:=x
list β y

, list α z α0
.
= β† · α


 list α z

x:=z
list α x

, list β y α0
.
= β† · α


, ε


(a) Stratified

Choose � := (i · �)

x:=z
y:=x

list � xlist ↵ z

list (i · �) x ↵0
.
= (i · �)

† · ↵

↵0
.
= �† · ↵

↵0
.
= �† · ↵list � xlist ↵ z

list ↵x list � y

9i

Extend scope of �

9�

9�

9�

(b) Graphical (see Sect. 4)

Fig. 6. Two ways to parse a fragment of Fig. 3b

The asn function maps an interface to the assertion it represents:

asn p = p

asn ε = emp

asn (P Q) = asn P ∗ asn Q
asn ∃xP = ∃x. asn P.

When clarity demands it, we shall write P ⊗ Q instead of P Q, and hence ⊗i∈IPi for
iterated composition. We equate interfaces up to (P Q)R = P (QR), P ε = ε P =
P and P Q = QP . Since ⊗ commutes, ribbon ‘twisting’ is merely a presentational
artefact.

A diagram can be thought of as a mapping between two interfaces.

Definition 4 (Diagrams). A diagram D ∈ Diagram is a non-empty list of rows ρ ∈
Row. When space permits, we align the list elements in a single column without punc-
tuation. A row is a pair (γ, F) comprising a cell γ ∈ Cell and a frame F ∈ Interface.
The syntax of cells is as follows:

Cell
def
= {γ ::= P | c

P

P
| ∃xD |

P

D

or
D

P

|

P
loop
D

P

}.

To illustrate how this syntax is used, Fig. 6a shows a term of Diagram that corresponds
to a fragment of the picture in Fig. 3b. Note that the cell in each row is always pushed
to the left-hand side. In the concrete pictures, it can be moved to allow corresponding
ribbons in different rows to be aligned, and hence for redundant labels to be removed.
Each entailment p ⇒ q is handled as the basic step

{
p
}
skip

{
q
}

. Rather than write
‘skip’, we label such a step with a justification of the entailment, and colour it dark
grey to emphasise those steps that actually contain program instructions. Concerning

Ribbon Proofs for Separation Logic 9

RIBBON

`cel P : P → P

BASIC
`SL{asn P} c {asn Q}

`cel c
P

Q
: P → Q

EXISTS
`dia D : P → Q

`cel ∃xD : ∃xP → ∃xQ

CHOICE
`dia D : P → Q

`dia E : P → Q

`cel

P

D

or
E

Q

: P → Q

LOOP
`dia D : P → P

`cel

P
loop
D

P

: P → P

ROW
`cel γ : P → Q

wr(γ) ∩ rd(F) = ∅
`row(γ, F) : P ⊗ F → Q⊗ F

MAIN
∀i ≤ k.`row ρi : Pi → Pi+1

`dia[ρ0, . . . , ρk] : P0 → Pk+1

Fig. 7. Proof rules for stratified ribbon diagrams

existential boxes: the operations of extending, contracting and commuting are really
the entailments depicted informally below. Having to show these entailments explicitly
would make Fig. 3b much more repetitive. (We are working on an improved formalisa-
tion that supports these operations directly – see Sect. 6 for further discussion.)

p q∃x
def
=

p q

Extend x’s scope
p q∃x

∃x if x is
not free
in p

p∃y∃x
def
=

p

Swap x and y
p∃x∃y

∃y∃x

3.2 Proof rules for diagrams

There are two pertinent questions to be asked of a given ribbon diagram. The first ques-
tion is: is it a valid proof? This subsection develops a provability judgement to answer
this. The second question – if this ribbon diagram is deemed valid, what does it prove?
– is addressed in the next subsection.

The rules given in Fig. 7 define provability judgements for cells (`cel), for rows
(`row) and for diagrams (`dia). Each judgement ascribes a type, which comprises the
top and bottom interfaces of that object.

The ROW and MAIN rules recall Hoare logic’s sequencing rule and separation
logic’s frame rule. They embody the ‘locally checkable’ nature of ribbon proofs: that
the entire diagram is valid if each row is valid in isolation, and that a row is valid if its
active cell is valid and writes no program variable that is read elsewhere in the row.

The BASIC rule corresponds to an ordinary separation logic judgement `SL{p} c {q}.
This judgement may be arbitrarily complex, so a ribbon diagram may be no easier to
check than a traditional proof outline. This is intentional. Our formalisation allows p
and q to be minimised, by framing common fragments away, but does not demand this.
The command c can be reduced to skip or some primitive command, but this may not
be desirable if one requires only a high-level overview proof. A ribbon diagram can

10 John Wickerson, Mike Dodds, and Matthew Parkinson

com[(γ0, F0), . . . , (γk, Fk)]
= com γ0 ; · · · ; com γk

com P = skip com ∃xD = comD

com c
P

Q
= c com

P
loop
D

Q

= loop(comD)
com

P

D

or
E

Q

= (comD)
or(com E)

Fig. 8. Extracting a command from a stratified diagram

thus be viewed as a flexible combination of diagrammatic and traditional proofs, with
the BASIC rule as the interface between these two levels.

We remark that these proof rules provide only limited mechanisms for building new
diagrams from old. Diagrams can be wrapped in existential boxes, or put inside choice
or loop diagrams, but not stacked vertically or placed side by side. One can define
operations for composing elements of Diagram in sequence or in parallel, and hence
additional proof rules for diagrams so composed. The process is straightforward, and
described in Wickerson’s PhD dissertation [33].

3.3 Semantics of diagrams

A stratified ribbon diagram denotes a Hoare triple. The pre- and postconditions of this
triple are the assertions represented by the diagram’s top and bottom interfaces. The
command being proved is extracted by composing the labels on all of the proof steps
in top-to-bottom order. Figure 8 defines the function responsible for this extraction. We
hence obtain the following soundness result for ribbon proofs.

Theorem 1 (Soundness – stratified diagrams). Separation logic can encode any prov-
able ribbon diagram.

`diaD : P → Q =⇒ `SL{asn P} comD {asn Q}.
Proof. By mutual rule induction on `cel, `row, and `dia.

Ribbon diagrams are trivially complete, because the BASIC rule can be invoked right
at the root of the proof tree. In fact, ribbon diagrams remain complete even when the
BASIC rule can occur only immediately beneath an axiom or the rule of consequence.

Theorem 2 (Completeness – stratified diagrams). A strengthened ribbon proof sys-
tem in which the BASIC rule is replaced by

(asn P, c, asn Q) ∈ Axioms

`cel c
P

Q
: P → Q

and
asn P ⇒ asn Q

`cel skip
P

Q

: P → Q

can encode any separation logic proof.

`SL{p} c {q} =⇒ ∃D,P,Q. c∈comD ∧ p=asn P ∧ q=asn Q ∧ `diaD : P→Q

Ribbon Proofs for Separation Logic 11

Proof. By rule induction on `SL. ut

The main problem with the formalisation given in this section is that it sacrifices much
of the flexibility we expect in our ribbon diagrams. It is often sound to tweak the layout
of a diagram by sliding steps up or down or reordering ribbons, but by thinking of our
diagrams as sliced into a sequence of rows, we rule out all such manoeuvres.

4 Graphical formalisation

We now give an alternative formalisation, in which diagrams are represented not as a
sequence of rows, but as graphs.

Our ‘graphical’ diagrams are more flexible than their ‘stratified’ cousins, but extra
precautions must be taken to ensure soundness. The core difficulty is the side-condition
on the frame rule: that the command writes no program variable in the frame. With strat-
ification, the frame is clearly delimited, so this condition is easily checked. Without it,
this check would become more global: a command may affect a ribbon that appears far
above or below itself in a laid-out diagram. Our simple solution is to require henceforth
that the frame rule has no side-condition. This requirement could be met by abolishing
program variables altogether, leaving only the heap and numerical constants. A more
practical alternative, explored later in this section, is to use the variables-as-resource
paradigm [4].

Our graphs are nested, directed, acyclic hypergraphs. Ribbons correspond to nodes,
and basic steps to hyperedges. Existential boxes are represented as single nodes that
contain a nested graph. Likewise, choice diagrams and loop diagrams are represented
by single hyperedges that contain, respectively, one or two nested graphs.

Definition 5 (Graphical diagrams, assertion-gadgets and command-gadgets). Let
V be an infinite set of node-identifiers. We define a language of assertion-gadgets,
command-gadgets and graphical diagrams as follows.

AsnGadget = {A ::= p | G∃x } ComGadget = {C ::= c |
G

or
G

|
loop
G

}

GDiagram = {G | ΛG ∈ VG → AsnGadget, EG ⊆fin P(VG)× ComGadget× P(VG),
VG ⊆fin V , acyclic(G) and linear(G), where G = (VG, ΛG, EG)}

The definitions are mutually recursive, and are well-formed because the definienda (left-
hand sides) appear only positively in the definientia (right-hand sides).1 The first of
these equations defines an assertion-gadgetA ∈ AsnGadget to be either a ribbon or an
existential box. The second defines a command-gadget C ∈ ComGadget to be either a
basic step, a choice diagram, or a loop diagram. The third equation defines a graphical
diagram G ∈ GDiagram to be a triple (VG, ΛG, EG) that comprises:

– a finite set VG ⊆fin V of node identifiers;
– a labelling ΛG : VG → AsnGadget that associates each node identifier with an

assertion-gadget; and
1 This is true even for the occurrence of ComGadget in the definiens of GDiagram, because the

set in which it appears is finite.

12 John Wickerson, Mike Dodds, and Matthew Parkinson

– a finite set EG ⊆fin P(VG)×ComGadget×P(VG) of hyperedges (v, C,w), each
comprising a set v of tail identifiers, a command-gadget C, and a set w of head
identifiers,

and which satisfies the following two properties.

ACYCLICITY: Let us write v −I w if v ∈ v and w ∈ w for some (v, C,w) ∈ EG.
Then define acyclic(G) to hold iff the transitive closure of −I is irreflexive.

LINEARITY: Define linear(G) to hold iff the hyperedges inEG have no common heads
and no common tails. (This forbids the duplication or merging of ribbons, in ac-
cordance with p⇒ p ∗ p and p ∗ p⇒ p being invalid in separation logic.)

Remark 2. We could represent our diagrams by a single graph, with dedicated ‘parent’
edges to simulate the nesting hierarchy. However, mindful of our Isabelle formalisa-
tion, and that “reasoning about graphs [. . .] can be a real hassle in HOL-based theorem
provers” [34], we prefer to use an algebraic datatype to depict the hierarchy.

Figure 6b presents a term of GDiagram that corresponds to a fragment of the picture in
Fig. 3b. Unlike Fig. 6a, this representation does not impose a strict ordering between the
‘y:=x’ and ‘x:=z’ instructions. As such, this proof is invalid; the figure serves merely
to demonstrate how the graphical syntax is used.

The problem is that the graph does not take into account dependencies on program
variables. To address this, let us remove the side-condition on the frame rule in our
axiomatisation `SL of separation logic (Fig. 5). The new proof system thus obtained
shall be written as `∗SL. We shall now develop proof rules for graphical diagrams, and
show them to be sound and complete with respect to `∗SL. Section 4.3 describes the
application of ribbon proofs to variables-as-resource, which is one instance of `∗SL.

4.1 Proof rules for graphical diagrams

Proof rules for graphical diagrams, command-gadgets and assertion-gadgets are de-
fined in Fig. 9, which refers to the top and bot functions defined below. The judgement
`graG : P → Q means that the diagram G, precondition P , and postcondition Q
form a valid proof. The interfaces P and Q are always equal to top(G) and bot(G)
respectively, so we sometimes omit them. The judgements for command-gadgets and
assertion-gadgets are similar, the latter without interfaces.

Definition 6 (Top and bottom interfaces). These functions extract interfaces from
assertion-gadgets and from diagrams. For assertion-gadgets:

top p = p bot p = p top G∃x = ∃xtopG bot G∃x = ∃xbot G .

For diagrams:

top(G) = ⊗v∈initials G top(ΛG v) bot(G) = ⊗v∈terminals G bot(ΛG v)

where initials(G) = VG \
⋃

(_,_,v)∈EG
v and terminals(G) = VG \

⋃
(v,_,_)∈EG

v.

As was the case for stratified diagrams, one can define operations for composing ele-
ments of GDiagram in sequence or parallel, and hence additional proof rules for graph-
ical diagrams so composed [33].

Ribbon Proofs for Separation Logic 13

GRIBBON

`asn p

GBASIC
`∗SL{asn P} c {asn Q}
`com c : P → Q

GEXISTS
`gra G

`asn G∃x

GCHOICE
`gra G1 : P → Q
`gra G2 : P → Q

`com
G1

or
G2

: P → Q

GLOOP
`gra G : P → P

`com loop
G

: P → P

GMAIN
∀v ∈ VG.`asn ΛG v

∀(v, C,w) ∈ EG.`com C : ⊗v∈v bot(ΛG v)→ ⊗w∈w top(ΛG w)

`gra G : top(G)→ bot(G)

Fig. 9. Proof rules for graphical diagrams

coms(G) = {c0 ; · · · ; ck−1 ; skip | ∃[x0, . . . , xk−1] ∈ lin G.∀i < k. ci ∈ coms xi}

coms p = {skip} coms G∃x = coms G coms c = {c}

coms

G1

or
G2

=
{c1 or c2 |
c1 ∈ coms G1,
c2 ∈ coms G2}

coms
loop
G

= {loop c | c ∈ coms G}

Fig. 10. Extracting commands from a diagram

4.2 Semantics of graphical diagrams

Since graphical diagrams have a parallel nature, but our language is only sequential, it
follows that each graphical diagram proves not a single command, but a set of com-
mands, each one a linear extension of the partial order imposed by the diagram. The
coms function defined in Fig. 10 is responsible for extracting this set from a given di-
agram. Each command is obtained by picking an ordering of command- and assertion-
gadgets that is compatible with the partial order defined by the edges (this is the purpose
of the lin function defined below), then recursively extracting a command from each
gadget and sequentially composing the results.

Definition 7 (Linear extensions). For a diagram G, we define lin G as the set of all
lists [x0, . . . , xk−1] of AsnGadgets and ComGadgets, for which there exists a bijection
π : k → VG ∪ EG that satisfies, for all (v, C,w) ∈ EG:

∀v ∈ v. π−1(v) < π−1(v, C,w) ∀w ∈ w. π−1(v, C,w) < π−1(w)

and where, for all i < k: xi = ΛG(v) if π(i) = v, and xi = C if π(i) = (v, C,w).

By ACYCLICITY, every diagram admits at least one linear extension.

14 John Wickerson, Mike Dodds, and Matthew Parkinson

Theorem 3 (Soundness – graphical diagrams). Separation logic without the side-
condition on the frame rule can encode any provable ribbon diagram:

`graG : P → Q =⇒ ∀c ∈ coms G.`∗SL{asn P} c {asn Q}.
Proof. By mutual induction on `gra, `com and `dia. See [33] for details.

Theorem 4 (Completeness – graphical diagrams). A strengthened ribbon proof sys-
tem in which the GBASIC rule is replaced by

(asn P, c, asn Q) ∈ Axioms

`com c : P → Q
and

asn P ⇒ asn Q

`com skip : P → Q

can encode any proof in separation logic without the side-condition on the frame rule.

`∗SL{p} c {q} =⇒ ∃G,P,Q. c∈coms G ∧ p=asn P ∧ q=asn Q ∧ `graG : P→Q

Proof. By rule induction on `∗SL. ut

4.3 Using variables-as-resource

The variables-as-resource paradigm [4] treats program variables a little like separa-
tion logic treats heap cells. Each program variable x is associated with a piece of re-
source, all of which (written Own1(x)) must be held to write to x, and some of which
(Ownπ(x) for some 0 < π ≤ 1) must be held to read it. This treatment replaces the
use of rd and wr sets in Fig. 5. The variables-as-resource proof system is an instance of
separation logic without the side-condition on the frame rule, and can be obtained from
`∗SL simply by selecting an appropriate Axioms set.

Figure 11 exhibits a ribbon proof, conducted using variables-as-resource, of the
list-reversal program from Sect. 2. Variables-as-resource dictates that every assertion
in the proof is accompanied by one Own predicate per program variable it mentions.
For instance, the precondition list α0 x is paired with some of x’s resource. The extra
shading is merely syntactic sugar; for instance:

x, 1
2y x 7→ i, y def

= Own1(x) ∗Own .5(y) ∗ x 7→ i, y .

The other preconditions – the resources associated with y and z – entitle the program
to write to these program variables in due course. Note that at the entry to the while
loop, part of x’s resource is required in order to carry out the test of whether x is zero.
At various points in the proof, variable resources are split or combined, but their total is
always conserved.

Figure 11 introduces a couple of novel visual features: ribbons may pass ‘under-
neath’ basic steps to reduce the need for twisting (see the three ‘Choose . . . ’ steps), and
horizontal space is conserved by writing some assertions sideways. The diagram can be
laid out in several ways, unconstrained by the stratification strategy of the previous sec-
tion, so there exists the potential to use the same diagram to justify several variations of
a program. Recall the shortcoming of Fig. 3b: that it misleadingly suggested that ‘y:=x’
and ‘x:=z’ could be safely permuted. Figure 11 forbids this by inserting a ribbon be-
tween them labelled ‘x’. On the other hand, both figures agree that the ‘Reassociate i’
step can be safely manoeuvred up or down a little.

Ribbon Proofs for Separation Logic 15

while (x!=nil) {

}

list α0 xx yz
Split x y:=nil

1
2
x list α0 x1

2
x list ε yy

Choose α := α0 and β := ε

∃α ∃β list α x1
2
x list β yy α0

.
= β† · α

x ˙6=nil1
2
x

Unfold list def
∃α′, i, Z. x 7→ i, Z ∗
list α′ Z ∗ α .

= i · α′
x

Choose α := α′

∃Z. x 7→ i, Z ∗ list αZx α0
.
=

β† · (i · α)
∃α

∃i
z:=[x+1] Split y

list α z1
2
z x 7→ i, zx, 1

2
z 1

2
y

list
β
y

1
2
y

[x+1]:=y Reassoc. i
x 7→ i, yx, 1

2
y1

2
z α0

.
=

(i · β)† · α
Combine z Fold list def

list α zz list (i · β) xx y
Choose β := (i · β)

list β xx α0
.
= β† · α∃β

y:=x

list β yyx
x:=z

list α x1
2
x z1

2
x

x .=nil1
2
x

Unfold list def

x α
.
= ε

Concatenate empty seq.

α0
.
= β†

Fold list def
list α†0 yy

Fig. 11. A ribbon proof of list reverse using variables-as-resource

16 John Wickerson, Mike Dodds, and Matthew Parkinson

4.4 Stratified or graphical?

We have presented two alternative formalisations of ribbon diagrams.
The stratified version supports traditional separation logic (with its side-condition

on the frame rule), and the formalisation is simpler, but its proof objects are less ma-
noeuvrable. Concrete pictures should be drawn carefully so they can be successfully
parsed into a sequence of rows.

The graphical version works with any separation logic whose frame rule has no side-
conditions, variables-as-resource being one example. Another example is Views [7],
which can encode a wide variety of program logics. The use of variables-as-resource
requires much splitting, distributing and re-combining of the resources associated with
each program variable, and this is perhaps an unnecessary burden if one seeks merely
to present a proof of a particular program. (Figure 11 is significantly larger and fid-
dlier than Fig. 3b, which does not use variables-as-resource.) However, one seeking to
explore potential optimisations, or to analyse the dependencies between various com-
ponents of a program, should consider investing in variables-as-resource.

5 Tool support

Several properties of ribbon proofs make them a potentially appealing partner for auto-
matic verification tools based on separation logic, such as Bedrock [6] and VeriFast [19].
Because ribbon proofs can be decomposed both horizontally and vertically, into inde-
pendent proof blocks, they may suggest more opportunities for modular verification.
One problem with automation is that users can lose track of their position in the proof:
ribbons could provide an interface to the proof as it develops. Moreover, when automa-
tion fails, partial ribbon proofs could be used to view and guide the process manually.
Ribbon proofs also shift the bureaucracy of rearranging assertions (in accordance with
the associativity and commutativity of ∗) from the individual proof steps into the sur-
rounding graphical structure, where it is more naturally handled.

To demonstrate the potential of ribbon proofs to complement automation, we have
developed a prototype tool whose inputs are a ribbon diagram and a collection of small
Isabelle proof scripts, one for each basic step. Our tool uses our Isabelle formalisation
of Thm. 1 and the proof rules of Fig. 7 to assemble the proof scripts for the individual
commands into a single script that verifies the entire diagram.

Supplied with appropriate proof rules for primitive commands and a collection of
axioms about lists, our tool has successfully verified a number of small ribbon proofs,
among them Fig. 3b. All of the proof scripts for the individual basic steps are small, and
they can often be discharged without manual assistance. Individual proof scripts can be
checked in any order – even concurrently. This feature recalls recent developments in
theorem proving that allow proofs to be processed in a non-serial manner [32].

The input to the tool is a graphical ribbon diagram, following Defn. 5. Our tool
begins by converting this graphical diagram into a stratified diagram, resolving any
ambiguity about the node order by reference to the order of their input. (By taking
this approach, we avoid having to invest in variables-as-resource.) It outputs a pictorial
representation of the graph it has verified, laid out using the dot tool in the Graphviz

Ribbon Proofs for Separation Logic 17{
x 7→ 0 ∗ y 7→ 0 ∗ z 7→ 0

}
[x]:=1;{
x 7→ 1 ∗ y 7→ 0 ∗ z 7→ 0

}{
y 7→ 0 ∗ z 7→ 0

}
[y]:=1;{
y 7→ 1 ∗ z 7→ 0

}
[z]:=1;{
y 7→ 1 ∗ z 7→ 1

}

- frame
x 7→ 1

{
x 7→ 1 ∗ y 7→ 1 ∗ z 7→ 1

}
(a)

{
x 7→ 0 ∗ y 7→ 0 ∗ z 7→ 0

}{
x 7→ 0 ∗ y 7→ 0

}
[x]:=1;{
x 7→ 1 ∗ y 7→ 0

}
[y]:=1;{
x 7→ 1 ∗ y 7→ 1

}

- frame
z 7→ 0

{
x 7→ 1 ∗ y 7→ 1 ∗ z 7→ 0

}
[z]:=1;{
x 7→ 1 ∗ y 7→ 1 ∗ z 7→ 1

}
(b)

Fig. 12. Two alternatives to the proof outline in Fig. 1a

library. Clicking on any basic step loads the corresponding proof script, which can then
be edited. When a step’s proof is admitted by Isabelle, the corresponding node in the
pictorial representation is marked with a tick; a failed or incomplete proof is marked
with a cross. The picture below illustrates this on a snippet of Fig. 6b, and also shows
the proof script for one of the steps.

x:=z
y:=x

list � xlist ↵ z

list ↵ x list � y

lemma listrev_lem13:

"` {list (lvar “↵”) (pvar “z”)}
“x” := (pvar “z”)
{list (lvar “↵”) (pvar “x”)}"

by (auto simp add: assign_axiom)

✗✓

In the current prototype, the user must supply the input in textual form, but in the fu-
ture, we intend to enable direct interaction with the graphical representation, perhaps
through a framework for diagrammatic reasoning such as Diabelli [30]. We envisage an
interactive graphical interface for exploring and modifying proofs, that allows steps to
be collapsed or expanded to the desired granularity – whether that is the fine details of
every rule and axiom, or a coarse bird’s-eye view of the overall structure of the proof.

The ribbon proofs in this paper have all been laid out manually (and we are prepar-
ing a public release of the LATEX macros we use to do this) but there is scope for addi-
tional tool support for discovering pleasing layouts automatically.

6 Related and further work

Ribbon proofs are more than just a pretty syntax; they are a sound and complete proof
system. Proof outlines have previously been promoted from a notational device to a for-
mal system by Schneider [28], and by Ashcroft, who remarks that “the essential prop-
erty of [proof outlines] is that each piece of program appears once” [1]. Very roughly
speaking, ribbon proofs extend this property to each piece of assertion.

When constructing a proof outline, one can reduce the repetition by ‘framing off’
state that is unused for several instructions. For instance, Fig. 12a depicts one variation
of Fig. 1a obtained by framing off x during the latter two instructions; another option is
to frame off z during the first two (Fig. 12b). It is unsatisfactory that there are several

18 John Wickerson, Mike Dodds, and Matthew Parkinson

while true {
x:=new();
with buff when !full {
full:=true;
c:=x;

}
}

(a) Code for ‘producer’ thread

while true {
with buff when full {
full:=false;
y:=c;

}
dispose(y);

}

(b) Code for ‘consumer’ thread

while true {

with buff when full {

}

}

(full ∧ c 7→ _) ∨ (¬full ∧ emp)

full

full ∧ c 7→ _

c 7→ _ full ∧ emp

full := false

¬full ∧ empy := c

y 7→ _ (full ∧ c 7→ _) ∨ (¬full ∧ emp)

dispose(y)

(c) Ribbon proof for ‘consumer’ thread (mock-up)

Fig. 13. Concurrency example: a single-cell buffer

different proof outlines for what is essentially the same proof. More pragmatically, de-
ciding among these options can be difficult with large proof outlines. Happily, each of
these options yields the same ribbon proof (Fig. 1b). We note a parallel here with proof
nets [13], which are a graphical mechanism for unifying proofs in linear logic that differ
only in uninteresting ways, such as the order of rule applications.

The graphical structures in Defn. 5 resemble Milner’s bigraphs [22]. Assertions and
commands are nodes, the deductions of the proof form the link graph, and existential
boxes, choices and loops form the place graph. In fact, our diagrams correspond to
binding bigraphs, in which links may not cross place boundaries. Relaxing this restric-
tion may enable a model of the ‘dynamic’ scoping of existential boxes exhibited in
Fig. 4, which our current formalisation dismisses as a purely syntactic artefact.

Ribbon proofs can be understood as objects of a symmetric monoidal category,
and our pictures as string diagrams, which are widely used as graphical languages for
such categories [29]. In future work we intend to investigate this categorical semantics
of ribbon proofs; in particular, the use of traces [21] to model the loop construction
depicted in Fig. 2a, and coproducts to model if-statements and existential boxes.

Another avenue for future work is the connection between ribbon proofs and Raza et
al.’s labelled separation logic [26]. Labelled separation logic seeks to justify compiler
reorderings by analysing the dependencies between program statements, and checking
that these are not violated. The dependencies are detected by first labelling each com-
ponent of each assertion with the commands that access it, and then propagating these
labels through program proofs. Raza’s labels recall the columns in our ribbon diagrams:
each ribbon and each command occupies one or more columns of a diagram, and com-
mands that occupy common columns (modulo twisting) may share a dependency.

We have so far considered only sequential programs, but our proofs have a dis-
tinctly concurrent flavour. It may be possible to extend ribbon proofs to concurrent

Ribbon Proofs for Separation Logic 19

separation logic [23] as follows. Figure 13 gives a program (adapted from [23]) in
which two threads communicate through a shared buffer at location c. The resource
invariant (full ∧ c 7→ _) ∨ (¬full ∧ emp) protected by the lock buff signifies that
c is shared exactly when full is set. Figure 13c imagines a ribbon proof of the ‘con-
sumer’ thread. The resource invariant is initially in a protected ribbon, inaccessible to
the thread (as suggested by the hatching). Upon entering the critical region, the ribbon
becomes available, and upon leaving it, the resource invariant is re-established and the
ribbon is inaccessible once again.

Beyond concurrent separation logic, we intend to apply our system to more ad-
vanced separation logics. It has already aided the development of a logic for relaxed
memory [5]; other candidates handle fine-grained concurrency [8, 10, 11, 31], dynamic
threads [9], storable locks [14], loadable modules [20] and garbage collection [17]. In-
creasingly complicated logics for increasingly complicated programming features make
techniques for intuitive construction and clear presentation ever more crucial.

7 Conclusion

Ribbon proofs are an attractive and practical approach for constructing and presenting
proofs in separation logic or any derivative thereof. They contain less redundancy than
a proof outline, and express the intent of the proof more clearly. Each step of the proof
can be checked locally, by focusing only on the relevant resources. They are useful
pedagogically for explaining how a simple proof is constructed, but also scale to more
complex programs (as demonstrated in [33]), and have aided the development of a sepa-
ration logic for relaxed memory [5]. They show graphically the distribution of resource
in a program, and in particular, which parts of a program operate on disjoint resources,
and this may prove useful for exploring parallelisation opportunities.

Acknowledgements Wickerson was supported by a DAAD postdoctoral scholarship
and EPSRC grant F019394/1. Dodds was supported by EPSRC grants EP/H005633/1
and EP/F036345. Figure 2 was drawn by Rasmus Petersen. We thank him, Nick Ben-
ton, Richard Bornat, Matko Botinčan, Daiva Naudžiūnienė, Peter O’Hearn, Andy Pitts,
Noam Rinetzky and the anonymous reviewers for suggestions and encouragement.

References

1. E. A. Ashcroft. Program verification tableaus. Technical Report CS-76-01, University of
Waterloo, 1976.

2. J. Bean. Ribbon Proofs - A Proof System for the Logic of Bunched Implications. PhD thesis,
Queen Mary University of London, 2006.

3. R. Bornat, C. Calcagno, P. W. O’Hearn, and M. J. Parkinson. Permission accounting in
separation logic. In POPL ’05. ACM Press, 2005.

4. R. Bornat, C. Calcagno, and H. Yang. Variables as resource in separation logic. In MFPS
XXI, volume 155 of ENTCS, 2006.

5. R. Bornat and M. Dodds. Abducing barriers for Power and ARM. Draft, 2012.
6. A. Chlipala. Mostly-automated verification of low-level programs in computational separa-

tion logic. In PLDI ’11. ACM Press, 2011.

20 John Wickerson, Mike Dodds, and Matthew Parkinson

7. T. Dinsdale-Young, L. Birkedal, P. Gardner, M. J. Parkinson, and H. Yang. Views: Compo-
sitional reasoning for concurrent programs. In POPL ’13. ACM Press, 2013.

8. T. Dinsdale-Young, M. Dodds, P. Gardner, M. J. Parkinson, and V. Vafeiadis. Concurrent
abstract predicates. In ECOOP ’10, volume 6183 of LNCS. Springer, 2010.

9. M. Dodds, X. Feng, M. J. Parkinson, and V. Vafeiadis. Deny-guarantee reasoning. In
ESOP ’09, volume 5502 of LNCS. Springer, 2009.

10. X. Feng. Local rely-guarantee reasoning. In POPL ’09. ACM Press, 2009.
11. X. Feng, R. Ferreira, and Z. Shao. On the relationship between concurrent separation logic

and assume-guarantee reasoning. In ESOP ’07, volume 4421 of LNCS. Springer, 2007.
12. F. B. Fitch. Symbolic Logic: An Introduction. Ronald Press Co., 1952.
13. J.-Y. Girard. Linear logic. Theor. Comput. Sci., 50, 1987.
14. A. Gotsman, J. Berdine, B. Cook, N. Rinetzky, and M. Sagiv. Local reasoning for storable

locks and threads. In APLAS ’07, volume 4807 of LNCS. Springer, 2007.
15. C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the

ACM, 12(10), 1969.
16. C. A. R. Hoare. Proof of a program: Find. Communications of the ACM, 14(1), 1971.
17. C.-K. Hur, D. Dreyer, and V. Vafeiadis. Separation logic in the presence of garbage collec-

tion. In LICS ’11. IEEE Computer Society, 2011.
18. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for mutable data structures. In

POPL ’01. ACM Press, 2001.
19. B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and F. Piessens. VeriFast:

A powerful, sound, predictable, fast verifier for C and Java. In NFM ’11, volume 6617 of
LNCS. Springer, 2011.

20. B. Jacobs, J. Smans, and F. Piessens. Verification of unloadable modules. In FM ’11, volume
6664 of LNCS. Springer, 2011.

21. A. Joyal, R. Street, and D. Verity. Traced monoidal categories. Math. Proc. of the Cambridge
Philosophical Society, 119(3), 1996.

22. R. Milner. The Space and Motion of Communicating Agents. Cambridge University Press,
2009.

23. P. W. O’Hearn. Resources, concurrency and local reasoning. Theor. Comput. Sci., 375(1-3),
2007.

24. P. W. O’Hearn and D. J. Pym. The logic of bunched implications. B. Symb. Log., 5(2), 1999.
25. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs I. Acta Infor-

matica, 6, 1976.
26. M. Raza, C. Calcagno, and P. Gardner. Automatic parallelization with separation logic. In

ESOP ’09, volume 5502 of LNCS. Springer, 2009.
27. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In LICS ’02.

IEEE Computer Society, 2002.
28. F. B. Schneider. On Concurrent Programming, chapter 4. Springer, 1997.
29. P. Selinger. A survey of graphical languages for monoidal categories. In New Structures for

Physics, volume 813, chapter 4. Springer, 2011.
30. M. Urbas and M. Jamnik. Diabelli: A heterogeneous proof system. In IJCAR ’12, volume

7364 of LNCS. Springer, 2012.
31. V. Vafeiadis and M. J. Parkinson. A marriage of rely/guarantee and separation logic. In

CONCUR ’07, volume 4703 of LNCS. Springer, 2007.
32. M. Wenzel. Asynchronous proof processing with Isabelle/Scala and Isabelle/jEdit. In

UITP ’10, volume 285 of ENTCS, 2012.
33. J. Wickerson. Concurrent Verification for Sequential Programs. PhD thesis, University of

Cambridge, 2013.
34. C. Wu, X. Zhang, and C. Urban. A formalisation of the Myhill-Nerode theorem based on

regular expressions. In ITP ’11, volume 6898 of LNCS. Springer, 2011.

