
Run Fast When You Can: Loop Pipelining with
Uncertain and Non-uniform Memory Dependencies

Junyi Liu∗, John Wickerson∗, Samuel Bayliss∗†, and George A. Constantinides∗
∗Department of Electrical and Electronic Engineering, Imperial College London, SW7 2AZ, United Kingdom

{junyi.liu13, j.wickerson, g.constantinides}@imperial.ac.uk
†Research Labs, Xilinx, San Jose, CA 95124, USA

samuel.bayliss@xilinx.com

Abstract—As a key optimisation method in high-level synthesis
(HLS), high-performance loop pipelining is enabled by the static
scheduling algorithm. When there are non-trivial memory depen-
dencies in the loop, current HLS tools have to apply conservative
pipeline schedule that also leads to nearly sequential execution.
In this paper, we demonstrate using parametric polyhedral
model to mathematically capture uncertain (i.e., parameterised
by an undetermined variable) and/or non-uniform (i.e., varying
between loop iterations) memory dependence patterns. According
to this static analysis, if we always execute the loop with an
aggressive (fast) pipeline schedule, we can generate the parameter
conditions in which this execution is safe and the parametric
break points when the execution encounters memory conflicts.
Then, we apply these information into an automated source-to-
source code transformation, which implements parametric loop
pipelining and loop splitting. The transformed loop is synthesised
by Vivado HLS and its execution speed can be adjusted at
runtime to avoid memory conflicts. The experiments over a set
of benchmark loops show that our optimisation can improve
the runtime pipeline performance significantly with a reasonable
overhead of hardware resources.

I. INTRODUCTION

High-level synthesis (HLS) enables high hardware design
productivity especially for specialised computing on on field-
programmable gate arrays (FPGAs). State-of-the-art HLS tools
like Xilinx Vivado HLS [1], Intel FPGA SDK for OpenCL [2]
and LegUp [3] are able to synthesise programs written in high-
level languages like C/C++/OpenCL into hardware designs
described in VHDL/Verilog. Unfortunately, high-performance
hardware design still needs sufficient manual effort on source
code refactoring and optimisation tuning. Hardware design
knowledge is essential to realising high-quality HLS designs.

Computational bottlenecks are typically located in some
critical loops of high-level programs, and hence loop pipelin-
ing has emerged as one of the preeminent optimisation tech-
niques in HLS. Loop-pipelining techniques work by automat-
ically overlapping the execution of loop iterations without
violating any memory dependency. Nevertheless, it relies on
comprehensive static analysis and can only perform well
when loop bounds and memory accesses are all determined.
Optimising loops with uncertainty is still poorly supported in
HLS tools. To preserve correct loop behaviours, the generated
hardware architecture can be too conservative, so that loop
iterations have to be executed sequentially.

The motivational loop shown in Listing 1 contains a pa-
rameterised affine recurrence equation [4]. In this loop, there

for (i=0; i<N; i++)
A[i+m] = A[i] + 0.5f;

Listing 1: Motivational loop with uncertain dependency.

for (i=0; i<N; i++)
A[2*i] = A[i] + 0.5f;

Listing 2: Motivational loop with non-uniform dependency.

is an undetermined variable m in the write access pattern
of array A. The loop iterator i ranges from zero to N − 1,
where N is constant. The value of m is not known at compile
time. Therefore, the sequence of write accesses to elements
of array A cannot be completely determined. Indeed, whether
the loop can be pipelined actually depends on the value of the
parameter m. This uncertain data dependency prevents existing
HLS tools from exploiting loop pipelining by default, because
they only support a fixed initiation interval. As a result, a
sequential pipeline schedule will be synthesised for this loop.

In this paper, it is demonstrated that efficient dynamic
pipeline execution can be realised with static optimisations.
We implement the pipeline scheduled for the smallest initiation
interval and throttle the execution of loop iterations according
to a compile-time dependency analysis. To understand when
the pipeline needs to slow down, we use parametric polyhedral
analysis to firstly synthesise a lightweight runtime check.
The demonstration of this analysis is preliminarily presented
in [5] as parametric loop pipelining. When there exist memory
conflicts that have to be resolved, the polyhedral analysis
is further used to synthesise the pipeline break points. To
keep the pipeline of Listing 1 as busy as possible, we need
to halt pipeline execution at appropriate iterations to avoid
the memory conflicts. The strategy of breaking the pipeline
execution can also optimise loops with non-uniform memory
dependencies, which can appear in many applications such as
matrix decomposition and triangular matrix computation. In
these applications, the critical loops have memory dependen-
cies that are statically analysable but vary with the value of
the induction variable.

An example of such a loop is shown in Listing 2. These
loops can be optimised by loop splitting, first proposed in [6].
The proposed optimisations have been implemented into a
source-to-source code transformation applied before invoking
a commercial HLS tool. The lightweight runtime throttle

check and the pipeline breaks can be introduced, alongside
appropriate loop-pipelining directives, to guide HLS to imple-
ment high-performance pipeline architecture. Therefore, our
transformation is also flexible enough to be applied to different
HLS tools.

II. RELATED WORK

In the recent work of loop pipelining in [7] and [8], the
authors rely on knowing, at compile time, all the dependencies
that exist between operations to exploit pipeline schedule.
Where parameters are uncertain and there is the possibility of
loop-carried dependencies, their approaches must adopt a con-
servative schedule that assumes iterations contain recurrences.
Among other recent efforts to optimise loop pipelining for
HLS, polyhedral analysis has frequently been used. Morvan
et al. [9] propose a method using polyhedral analysis to
improve nested loop pipelining. Li et al. [10] introduced
an index-set splitting technique with classical affine loop
transformations [11] to improve inner loop parallelism.

Besides regular loop structures, there are active HLS re-
search efforts as in investigating pipelining for loops with
irregular structures. Tan et al. [12] describe an approach called
ElasticFlow synthesise parallel pipeline instances of dynamic-
bound inner loop. Alle et al. [13] implement a compilation
method that synthesize disambiguation logic in the hardware
pipelines that can fully analyse the inter-iteration dependency
at runtime. Dai et al. [14] propose the integration of a template
hazard resolution unit in HLS to resolve runtime conflicts
on memory ports and data dependencies caused by indirect
or conditional memory accesses. Although the techniques in
both [13], [14] are able to optimize our target loops, we apply
more comprehensive static analysis to generate efficient and
lightweight logic to control the pipeline execution at runtime.

III. OPTIMIZATION METHOD

A. Loop Pipelining

Loop pipelining is implemented by overlapping the execu-
tion of loop iterations. The logical operations within succes-
sive loops are mapped to hardware resources. The mapping
must ensure that each hardware resource only executes one
operation in each clock cycle. Where read-after-write loop-
dependencies exist in the original code (a value is written
in one iteration and read in a subsequent iteration), a static
pipeline schedule must be constrained to preserve these depen-
dencies. The constant interval between the start of successive
iterations is called the initiation interval (II), and reflects the
degree of parallelism, in the sense that for the same latency, a
pipeline with smaller II has more iterations running in parallel
at any given clock cycle.

If we denote the latencies of the operations executed before
loop body and of a single loop iteration by Lpre and Liter

respectively, and the loop trip count is N , then the latency of
the entire loop is equal to

Lpre + Liter + (N − 1)× II. (1)

Read
A[i+...]

i

t

iteration

cycle
Read
A[i]

Write
A[i+m]. . .

t+L-1

i+d(m,i)

Read
A[i+2]

II Read
A[i+1]

L Read
A[i+d(m,i)]

Fig. 1: The conflict region of d(m, i) in Listing 1.

When N is large enough, this latency is approximately
equal to N × II . Therefore, the performance of a loop is
mainly determined by its II . To achieve a small II for
loop pipelining, HLS tools need to solve complex scheduling
problems [7], [8]. Unlike resource constraints that may vary
with the requirements of different hardware implementations,
iteration-dependency constraints are quite intrinsic. A complex
dependency constraint could significantly constrain our ability
to reduce the II of a loop pipeline.

B. Memory Dependence Analysis

Here, we present an intuitive illustration of our parametric
polyhedral analysis with the one-dimensional loop shown
in Listing 1. To analyse the memory dependencies of a loop,
we need to formally model the memory access sequence.
These patterns are described by array indexing functions and
loop bounds, in which parameter (uncertain) variables may
participate. We denote the vector of parameter variables by p.
The loop bounds determine an iteration space for all memory
accesses inside the loop. The dimension of the iteration space
is equal to the number of loop iterators. Affine indexing
functions map the iteration vectors v from the iteration space
to the elements of each array in the loop. For example, p = [m]
and v = [i] in Listing 1.

For each separate array from the source code, we can form
two sets of indexing functions, one containing all the read
accesses and the other all the write accesses. The Cartesian
product of these two sets is a set of paired indexing functions.
Two paired accesses are dependent if and only if the address
written in the current iteration will be read in a future iteration.
The dependence iteration distance d(p, v) is the smallest num-
ber of iterations between the execution of two such dependent
data accesses, which can be derived from their affine indexing
functions. Since the dependence iteration distance may vary in
our target loops, we can evaluate the conflict region of d(p, v),
which will lead a read access to run before the completion of
its dependent write access during the pipeline execution.

As shown in Fig. 1, we have d(m, i) as the dependence
iteration distance for the loop shown in Listing 1. The red
arrow indicates that the write access A[i+m] from iteration
i has its first dependent read access A[i+d(m, i)] running
at iteration i+ d(m, i). To analyse this memory dependency,
we can obtain d(m, i) = m. According to the given loop
scheduling, the latency L is the period when the execution
of the dependent read access will violate the inter-iteration

// Conflict region detection
if (m >= 1 && m <= 2)
// Split execution
for (k=0; k<N; k=k+m)

// inner loop: force pipelining with II=1
for (i=k; i<=min(N-1,k+m-1); i++)

A[i+m] = A[i] + 0.5f;
else
// Fast execution
// force pipelining with II=1
for (i=0; i<N; i++)

A[i+m] = A[i] + 0.5f;

Listing 3: Source-to-source code transformation of the moti-
vational loop shown in Listing 1.

memory dependency. In other words, A[i+d(m, i)] cannot be
any grey read access shown in Fig. 1(c). If the target initiation
interval is equal to II , there will be d L

II e iterations being
processed in the pipeline during the latency L. Thus, we could
derive the cases in which the dependent read access will be
executed in this period under the current pipeline schedule. In
these cases, d(m, i) will satisfy the conditions in (2), which
denotes its conflict region.

1 ≤ d(m, i) ≤ dL/IIe − 1 (2)

Intuitively, when d(m, i) does not satisfy these conditions, no
memory conflicts will happen in the given pipeline schedule.
There will be either no memory dependency between a write
and a future read or enough iterations between them. Accord-
ing to Fig. 1(c), we obtain the conflict region as 1 ≤ m ≤ 2
based on (2), where L = 3 and II = 1.

C. Proposed Loop Transformation

In current HLS tools, only the worst case of uncertain
and non-uniform memory dependencies is considered for loop
pipelining. This leads a static pipeline schedule to have a large
and conservative II . As illustrated in Listing 3, we propose a
source-to-source code transformation, which will guide HLS
tools to implement the pipeline as shown in Fig. 2. The related
HLS directives (pragmas in Vivado HLS) are inserted in the
real code. Their associated address generators (Addr Gen) are
in charge of calculating array indices.

Before the loop starts, the conflict region is firstly evaluated
by the if-condition derived from (2). These conditions will
be synthesised into lightweight detection logic by HLS. The
output of this detector will enable different pipeline execution
modes. When the conflict region is not satisfied, the loop
will be executed in the else-branch which is realised as a
pipeline with II = 1. Otherwise, the loop will be executed
with pipeline breaks in the then-branch. The pipeline breaks
are realised by inserting a loop dimension outside the original
loop. The step size of the new outer loop is determined by the
dependence iteration distance d(m, i) = m. The inner loop,
which is the original loop, is also forced to be scheduled with
II = 1. The split controller will still run the loop in a fast
speed but pause the pipeline input after every m iterations are
issued. Our analysis can prove that there will be no memory

Conflict Region
Detector

Fast Controller

Split Controller

FSM

Memory

Data Path

Pipeline Body

Data Path

Addr Gen

Addr Gen

Fig. 2: Conceptual pipeline architecture.

Clang
Front-end Parser

Loop Analysis Loop
Transformation

PoThoLeS

Code
Generation

HLS Tool

Integer Set
Library

Clang AST

static control part

RTL code

HLS Tool

C Input Code

Scheduling
InformationPolyhedral

Extraction Tool

Fig. 3: Tool flow for code transformation framework.

conflict because the data written within the inner loop will be
read only after the pipeline break.

D. Source-to-source Code Transformation Framework

To prototype our new loop optimization and make it com-
patible with an HLS tool, we integrated our analysis algo-
rithm into a source-to-source code transformation framework
shown in Fig. 3. In this work, we select Xilinx Vivado
HLS, which generates hardware architectures from original
and transformed C code, as the RTL generation back-end in
our flow. The HLS tool is firstly used to synthesise the original
loop without considering inter-iteration memory dependencies.
The scheduling information for this pipeline is used for further
analysis. Since Vivado HLS is a commercial tool, we can only
use the tool as a black box without internal detailed scheduling
information. This also means that our approach can be applied
to other RTL generation back-ends. Currently, the achieved II
is extracted from the first synthesis as the target II . We also
extract the pipeline latency achieved from the first synthesis
as the latency between all dependent memory accesses, which
leads it to be an upper bound value. If our transformation
is applied inside an HLS tool, we can derive more accurate
scheduling information, so that the conflict region has the
potential to be further tighten.

As shown in Fig. 3, the loop information is captured by two
open-source tools. The Clang front-end parser [15] generates
an abstract syntax tree (AST) from the input C code. The
Polyhedral Extraction Tool (pet) [16] extracts the loops as the
static control parts (SCoPs) from the Clang AST. Finally, the
transformed C code is generated by PoTHoLeS. PoTHoLeS

is a polyhedral compilation tool developed by us, which
conducts user-specified loop analysis and transformation based
on isl [17]. The tool implementing our optimisation is
available in a public Github repository. 1

IV. EXPERIMENTAL RESULTS

In this paper, our code transformation framework is named
as polyhedral-based dynamic loop pipelining, denoted Poly-
DLP. It uses Xilinx Vivado HLS 2017.2 as the RTL generation
backend. The target FPGA device is a Virtex 7 XC7VX485T.
In all experiments, the target clock period is set to 3ns, which
is expected to produce a balanced trade-off between clock
speed and resource usage. We export generated RTL codes
to Xilinx Vivado Design Suite 2017.2 to collect clock and
resource usage results after RTL synthesis, place and route.
Furthermore, all generated pipelines are tested by C/RTL co-
simulation with dedicated testbenches to confirm functional
equivalence with the original code.

A. Benchmarks

We choose seven benchmark loops used in our previous
works [5], [6] for our experimental study. All memory arrays
contain single precision floating point numbers. All uncertain
variables are int values, i.e. lie between INT_MIN and
INT_MAX as defined in <limits.h>. The source code of
benchmarks, testbenches, and their transformation used in the
experiments are available in a public Github repository.2

Our target loops can alternatively be optimised by runtime
dependence analysis (RT-Dep) proposed by et al.Alle [13]
for loop pipelining. RT-Dep is available online as a plug-in
of a source-to-source compiler framework called Gecos [18].
In this experimental section, we also evaluate RT-Dep with
our benchmarks for a comparative study. To make RT-Dep
compatible with Vivado HLS, we have to manually insert
loop pipelining and unroll pragmas in the transformed codes,
which can be found in another public repository.3 It is note-
worthy that RT-Dep is developed for loops with more general
inter-iteration dependencies, such as those having iteration-
dependent indirect array accesses (e.g. A[B[i]] where i is
a loop iterator). This results in RT-Dep implementing logic for
detecting and resolving runtime memory conflicts.

B. Impact on pipeline scheduling

Table I indicates the change of pipeline scheduling caused
by PolyDLP. In this table, columns with the title “Orig”
indicate characteristics of the original pipeline and columns
with the title “Tran” indicate characteristics of the pipeline
transformed by PolyDLP. The numbers under the title “ratio”
are calculated against the metrics of the original pipeline
implementation. Columns with the title “Fast” indicate the
pipeline performance achieved when the lightweight checks
of the conflict region determine lower initiation intervals are
safe. Columns with the title “Split” indicate the performance

1https://github.com/Junyi-Liu/Potholes
2https://github.com/Junyi-Liu/benchmarks-HLS/tree/master/PolyDLP
3https://github.com/Junyi-Liu/benchmarks-HLS/tree/master/Thesis/RT-Dep

TABLE I. The impact of loop splitting on pipeline scheduling.

Orig Tran ratio Orig Split Fast Orig Split Fast ratio
dist_param 1 2 2.00 12 14 14 12 1 1 0.08

dist_itr 1 1 1.00 14 14 - 14 1 - -

dist_itr_param 1 8 8.00 15 17 17 6 1 1 0.17

typ_loop 8 10 1.25 17 15 19 12 1 1 0.08

row_col 8 9 1.13 15 15 17 12 2 2 0.17

tri_sp_slv 1 3 3.00 22 31 30 18 2 2 0.11

floyd_warshall 1 1 1.00 18 20 - 14 2 - -

Geomean 1.83 0.12

Benchmark
Initiation IntervalIteration CyclesPre-Loop Cycles

when the pipeline breaks have to be inserted to avoid mem-
ory conflict. Furthermore, “Pre-Loop Cycles” represents the
number of cycles executed before the start of loop body and
“Iteration Cycles” represents the number of cycles for one loop
iteration.

As shown in Fig. 2, the conflict region detector is syn-
thesised to execute before the start of the loop body. These
additional operations are observed to cost a few cycles,
which indicates that the complexity of the detector logic
is lightweight. Liter in the both splitting and fast modes
is slightly increased because the loops are all aggressive
pipelined. However, according to (1), these increases cannot
signify the impact of Lpre and Liter, especially when there is
a large number of iterations to be executed. After our proposed
transformation, almost all the nested loops or sub-loops can be
safely pipelined by the HLS backend tool without considering
any inter-iteration dependency. Across our benchmarks, II
ranging from just 1 to 2 cycles is achieved, which leads to
8.3× higher peak performance in the fast mode.

C. Timing Overhead and Performance Improvement

In Table II, columns with the title “RT” indicate char-
acteristics of the pipeline transformed by RT-Dep. For all
benchmarks, our transformation has minimal impact on the
achievable clock period. However, RT-Dep makes the timing
much worse by 33% on average. This difference is mainly
caused by more complex runtime detection of memory con-
flicts in the pipeline controller generated by RT-Dep. Although
there is also increased control logic in the FSM generated by
PolyDLP, its timing overhead can be amortised by the HLS
scheduling effort.

In this paper, the runtime performance evaluation is focused
on the benchmark loops running in their conflict regions. We
measured the latency of loop execution with additional exper-
iments in RTL co-simulation. For each loop with uncertain
memory accesses, we generated 100 test cases with random
values of parameters that were ensured to be within the conflict
region. These random tests already cover all combinations
of the parameters in the conflict region. For each test with
each benchmark, we also collected the corresponding loop trip
count and execution latency in clock cycles. With PolyDLP,
the average cycles per iteration in Table II shows a 4.2× speed-
up of the pipeline throughput in the conflict region. After
including the timing effect, PolyDLP can sustain 3.7× average
speed-up, while RT-Dep can only achieve 2.17× average
speed-up.

TABLE II. The experimental results of timing, pipeline performance and resource usages.

Orig RT ratio Tran ratio Orig RT ratio Tran ratio Orig RT ratio Tran ratio Orig HP RT ratio Tran ratio Orig HP RT ratio Tran ratio Orig HP RT ratio Tran ratio Orig RT ratio Tran ratio
dist_param 2.02 3.66 1.81 2.32 1.15 12.0 3.9 0.32 5.7 0.48 24.3 14.2 0.59 13.3 0.55 239 268 400 1.67 487 2.04 340 425 575 1.69 595 1.75 2 2 2 1.00 2 1.00 5.8 5.7 0.98 6.5 1.11

dist_itr 2.02 3.66 1.81 2.33 1.15 14.0 1.6 0.11 1.8 0.13 28.3 5.7 0.20 4.2 0.15 230 242 391 1.70 400 1.74 405 417 572 1.41 623 1.54 2 2 2 1.00 2 1.00 6.5 2.2 0.34 1.7 0.26

dist_itr_param 2.72 3.63 1.34 2.72 1.00 6.1 10.0 1.65 1.7 0.29 16.4 36.3 2.21 4.7 0.29 401 382 462 1.15 1214 3.03 454 538 650 1.43 1209 2.66 3 3 3 1.00 4 1.33 6.6 16.8 2.55 5.8 0.87

typ_loop 3.16 4.08 1.29 3.66 1.16 12.0 3.1 0.26 1.7 0.14 37.9 12.7 0.33 6.1 0.16 784 712 838 1.07 957 1.22 756 819 752 0.99 1045 1.38 4 4 2 0.50 4 1.00 29.7 10.6 0.36 5.9 0.20

row_col 2.39 3.03 1.27 2.59 1.09 12.2 5.7 0.47 5.5 0.45 29.2 17.4 0.60 14.4 0.49 809 827 739 0.91 988 1.22 1108 1255 1016 0.92 1392 1.26 8 8 4 0.50 8 1.00 23.6 12.8 0.54 14.2 0.60

tri_sp_slv 3.02 2.51 0.83 3.04 1.01 18.4 6.3 0.34 5.2 0.28 55.7 15.7 0.28 15.7 0.28 479 501 610 1.27 892 1.86 705 803 939 1.33 1106 1.57 6 6 6 1.00 6 1.00 26.7 9.6 0.36 14.0 0.53

floyd_warshall 2.28 2.77 1.22 2.90 1.28 14.0 3.3 0.23 2.3 0.16 31.9 9.1 0.29 6.7 0.21 477 542 568 1.19 787 1.65 713 862 954 1.34 1092 1.53 2 2 2 1.00 2 1.00 15.2 5.2 0.34 5.3 0.35

Geomean 1.33 1.12 0.34 0.24 0.46 0.27 1.25 1.74 1.28 1.62 0.82 1.04 0.57 0.47
* Area-Time Product = LUT number × Clock (us) × Avg. Cycles/Iter

Clock (ns) Avg. Cycles/Iter Avg. Time/Iter (ns) Area-Time Product*
Benchmark

LUT FF DSP48E1

D. Resource Overhead

We also evaluate the design choice of the highest pipeline
parallelism, which is obtained by synthesising the original loop
without considering any inter-iteration dependency. As shown
in Table II, its results are shown under the columns with the
title “HP”, which helps us to better understand the effect
of resource sharing. After our transformation, the average
increase of Look-up Tables (LUTs), Flip-Flops (FFs) and
DSP blocks is 74%, 62% and 4% respectively. Due to much
higher parallelism achieved with PolyDLP, more operations
are required to work at the same time in the pipeline bodies
compared to the pipeline schedule with PLP. The increase of
LUTs and FFs is found to be also caused by the unshared
address generators shown in Fig. 2. The resource sharing
between the floating-point data paths is well supported by the
HLS backend.

Since RT-Dep does not duplicate the loop body, it has
less resource overhead than PolyDLP. In addition, after the
transformation of RT-Dep, only the innermost dimension of the
nested loop can be pipelined by Vivado HLS. This limitation
also simplifies the pipeline scheduling problem, which will
generally lead to less resource usage. However, resource
overhead is still less significant than performance improvement
in the conflict region. For PolyDLP, it is witnessed by a 53%
average reduction of the area-time product in Table II. In
comparison, there is 10% less average reduction with RT-Dep.

V. CONCLUSION

In this paper, we proposed a new optimization method for
a class of loops with uncertain and non-uniform memory
dependencies. The method uses compiler-based analysis to
generate high-performance runtime optimizations. The opti-
mized pipelines can execute the loop iterations as fast as
possible, when specific conditions are detected, or pipeline
breaks are inserted at runtime. Compared to the approach of
detecting and resolving memory conflicts at runtime (RT-Dep),
our proposed optimisation is shown to be a better choice for
those loops that can be analysed by the parametric polyhedral
model. In the future, with the integration of both static and
runtime optimisations, we aim to enable high-level synthesis to
generate highly efficient and dynamically scheduled pipelines.

ACKNOWLEDGMENTS

We thank Alle et al. [13] for their help on making the
detailed comparison to their work. The support of the EPSRC
grants EP/I020357/1 and EP/K034448/1, the Royal Academy

of Engineering, and Imagination Technologies is gratefully
acknowledged.

REFERENCES

[1] Xilinx, Vivado Design Suite User Guide: High-Level Synthesis.
[2] Intel, Intel FPGA SDK for OpenCL Programming Guide.
[3] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Ander-

son, S. Brown, and T. Czajkowski, “LegUp: High-level synthesis for
FPGA-based processor/accelerator systems,” in Proceedings of the 19th
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, ser. FPGA ’11. New York, NY, USA: ACM, 2011, pp. 33–36.

[4] P. Quinton and V. Dongen, “The mapping of linear recurrence equations
on regular arrays,” Journal of VLSI signal processing systems for signal,
image and video technology, vol. 1, no. 2, pp. 95–113, 1989.

[5] J. Liu, S. Bayliss, and G. A. Constantinides, “Offline synthesis of online
dependence testing: Parametric loop pipelining for HLS,” in 2015 IEEE
23rd Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), May 2015, pp. 159–162.

[6] J. Liu, J. Wickerson, and G. A. Constantinides, “Loop splitting for
efficient pipelining in high-level synthesis,” in 2016 IEEE 24th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), May 2016, pp. 72–79.

[7] Z. Zhang and B. Liu, “SDC-based modulo scheduling for pipeline
synthesis,” in Proceedings of the International Conference on Computer-
Aided Design, ser. ICCAD ’13. Piscataway, NJ, USA: IEEE Press,
2013, pp. 211–218.

[8] A. Canis, S. D. Brown, and J. H. Anderson, “Modulo SDC schedul-
ing with recurrence minimization in high-level synthesis,” in Field
Programmable Logic and Applications (FPL), 2014 24th International
Conference on, Sept 2014, pp. 1–8.

[9] A. Morvan, S. Derrien, and P. Quinton, “Polyhedral bubble insertion:
A method to improve nested loop pipelining for high-level synthesis,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-
actions on, vol. 32, no. 3, 2013.

[10] P. Li and L.-N. Pouchet, “Throughput optimization for high-level
synthesis using resource constraints,” in Int. Workshop on Polyhedral
Compilation Techniques (IMPACT ’14), 2014.

[11] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A prac-
tical automatic polyhedral parallelizer and locality optimizer,” SIGPLAN
Not., vol. 43, no. 6, pp. 101–113, Jun. 2008.

[12] M. Tan, G. Liu, R. Zhao, S. Dai, and Z. Zhang, “Elasticflow: A
complexity-effective approach for pipelining irregular loop nests,” in
Proceedings of the IEEE/ACM International Conference on Computer-
Aided Design, ser. ICCAD ’15. Piscataway, NJ, USA: IEEE Press,
2015, pp. 78–85.

[13] M. Alle, A. Morvan, and S. Derrien, “Runtime dependency analysis
for loop pipelining in high-level synthesis,” in Proceedings of the 50th
Annual Design Automation Conference, ser. DAC ’13. New York, NY,
USA: ACM, 2013, pp. 51:1–51:10.

[14] S. Dai, R. Zhao, G. Liu, S. Srinath, U. Gupta, C. Batten, and Z. Zhang,
“Dynamic hazard resolution for pipelining irregular loops in high-
level synthesis,” in Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA ’17. New
York, NY, USA: ACM, 2017, pp. 189–194.

[15] Clang. [Online]. Available: http://clang.llvm.org
[16] S. Verdoolaege and T. Grosser, “Polyhedral extraction tool,” in Int.

Workshop on Polyhedral Compilation Techniques (IMPACT ’12), 2012.
[17] S. Verdoolaege, “isl: An integer set library for the polyhedral model,”

in Proc. Int. Conf. on Mathematical Software (ICMS ’10), 2010.
[18] The GeCoS (Generic Compiler Suite) Project. [Online]. Available:

http://gecos.gforge.inria.fr/doku.php

