AUTOMATED REASONING
SLIDES 10:
CLAUSAL TABLEAUX

Model Elimination
Short-cuts: Lemmas and Merging

Clausal Tableaux and Linear Strategies 10ai

» Clausal Tableaux use only clausal sentences
» Clause Extension rule is derived from free variable y-rule and [Fsplitting.

eg using Q(y) OP(x,y) O-R(x)

Closure rule is the free
variable closure rule Q(y1) P(x1,y1) -R(x1)

* Development follows a Linear strategy :
» Select an initial clause called top in set of support
(i.e top is a clause that is necessary for closure to occur).

» Select a branch B (usually work from left to right) and a clause C with a
literal that is complementary to current leaf L of B.
(Re)order literals in C to close L in selected branch with leftmost literal of C.

* May also be able to close other branches below L with other literals in C.
» Propagate bindings as they are made

« Strategy is called a connection tableau, or Model Elimination (ME) tableau.

KB - AR - 13
Model Elimination Tableau - example 1 10bi

-Ha

~Gx O-Fb Fx1 Hx1 O Hb

-Fx O-Hb

Gx 0 -Fx /\ /\

Fx LHx SF(xd) G(x4) .
_|Hb - FXZ

NOTE: Each internal node x4==x1 UGx1
matches leftmost leaf /\
literal immediately below.

Reorder used clause if = Fx2 Hx2
necessary. eg at ([1) the -Gx1 _'1—__b |
instance of -Fx O -Hb X1==

puts —=Hb on the left ~Ha

X2==a

In Model Elimination tableaux

« Do not need to use a clause that results in a literal being duplicated in a
branch. Then itis called a regular tableau.

« Note: The instances P(x1) and P(x2) are not duplicates since x1 and x2
can be bound to different values.

Model Elimination Tableau - example 2 10bii

-Pxy U-Pyx
Pf(u)u OPua
Pvf(v) OPva /\

-Pylx1 O
Note there's no —Px1yl [=Pulf(u1)0
closure at (0 ~Pf(ul)ul -Paf(a)
between Pula and
=Pf(ul)ul due to @)
occurs check. Pula

Paf(a)
Introduction of v1 at (**) Eizu:lf(ldll) (D paa
and immediate binding yl==ul /
to "a" is implicit - i.e. the
two steps in full are -Pula -Paa
(i) use instance =Paul P
P(v1,f(v1)) OPvia, ul==a orFaa

(i) bind vl==a on
closure and propagate
to Pvla giving Paa.

Model Elimination Tableaux: 10biii
The examples of Model Elimination tableaux shown on 10bi/10bii illustrate several feat
connection tableaux. On 10bi notice that in the extension below Fx1 an explicit introdu
x4 for x in the use of the clause -BXGx is made. The resulting literal =Fx4 is matched w
Fx1 to give closure with binding (x4==x1). This binding is then propagated through the
tableau (indicated by). These steps can be combined, and in subsequent steps are, tc
unnecesary introduction of new free variables.

Thus in the next step, below Gx1, a copy of 4Gb is taken, implicitly using new free
variable x3, to enable closure between -Gx3 and Gx1; x3 is immediately bound to x1 ¢
the value after closure is shown. This saves some clutter in depicting the tableau. Note
reordering of the instance —-FkP-Hb of -Fx[-Hb so the leftmost branch closes below }

In the example on 10bii the intraction of fresh variable ul in the first stisgmade explicit,
so the copy (of Pf(u)@ Pua) uses free variable ul. This is reasonable here, as it is the
variable x1 that is bound (x1==f(ul)), not the new one, ul. The bindings must be prop
in the tableau, so -Px1yl becomes -Pf(ul)ul and -Pylx1 becomes -Pulf(ul).
(Actually, since y1 is also bound to ul, it isn't necessary to introduce ul here either, si
implicit ul could be bound to y1 leading to x1==f(y1). However, it is clearer to introduct
think.)

Notice that the possible closure between -P(x1LyHPf(ul)ul and Pula fails. When ul i
later bound to a this binding is propagated through to -Pulf{uifpaf(a).

Closing a branch by unifying the leaf with a literal higher in the same branch (eg benee
=Pau) hais sometimes been calladcestor closure

Refinements of Model Elimination: 10cii

There are two simple refinements for ME-tableaux shown on slides 10c, which are here
mergingandre-use Consider the case foropositional tableau first.

Important Note 1: merging and re-useannot both be used in a single tableatherwise
soundness is not in general maintained.

Important Note 2: merging and re-use are only available for ME-tablgtney are possible

only because of the left to right development of such tableaux.

Merging is the simplest of the two refinements. If a leaf literal L can be unified with anot
leaf literal L' in an open brandb itsright (necessarily a sibling of L or a sibling of an

ancestor of L), then the branch ending at L can be closetehyewithout further steps. This
is sound because when the (necessary) closure beneath L' is made, it can be repeated
(retrospectively) beneath L. Any ancestors needed for the closure beneath L' will also b
available beneath L, due to the tableau structMegging is the tableau version of factoring

The other extension is call®e-use. If a sub-tableau beneath a literal L at node n closes,
any other occurrences of L at nodes n' that may (later) occur in open branches of the ti
can be closed also, as long as the ancestors needed to close L at n are also available ¢
subsequent occurrences of L appear at siblings of n or at descendants of siblings of n, -
will be so. Otherwise, it needs to be checked. In the simplest case, when no ancestors
needed, then any occurrence of L can be closed in the same manner as the occurrence
is closed. The (re-use) rule can be implemented in a simple way by adding the literal -
branches that are known to share the necessary ancestors. Then closure can be made
normal closure rule. Usually, implementations consider just 2 cases: when L at n' occu
sibling branch and when no ancestors are used to close L at n.

The Merge Short cut (ground case)

The refutation X (found beneath the
E }A rightmost occurrence of =B) could also

be used below the occurrence at -B*.
/\ Why?
L

-M -B This step is valid only because the
tableau is developed left to right; all
/N h ancestors of -B (indicated by (A)) are
-B* available also to -B*.

M
/\ f": On encountering =B* and noticing that
L M

=B occurs also to the right in the ME
= tableau, can close —=B* by merging.

Merging is the tableau version of factoring.

10ci
The Re-use Short cut (Ground case) 10ciii
/\ (B) In the tableau shown the second occurrence of =B
-B* - occurs in the right hand branch at -B**, but below

the sibling -M of =B*. Hence when -B* is being
-L) extended merge is not an available option.
- *k
M L B Instead, can apply Re-use: once a closure below
a literal has been found (eg closure Y below -B*),
any other occurrences of that literal can use the

same closure (as long as the necessary ancestors
dL M are available).

egl Can use closure Y below -B**.

Can simulate this by adding the negation of =B (ie B) in the branch of -B** to
represent there has been closure below =-B*, so when -B** is encountered can
use closure rule.

eg2 Similarly, can use (-L) to represent closure beneath L in the 3rd branch.
This is allowed since the ancestor of L used in the closure beneath it is =M, and
=M is also in the 4th branch.

Example showing when re-use is NOT applicable 10civ

/\(—'K) After closing occurrence of S at
S*, notice that ancestor K was

necessary. Since K is not an

/N /\ ancestor of S in the right-most

- S branch, cannot re-use here the

l\ x closure made under S*.

In general, re-use is usually used in two cases only:

(i) when no ancestors were required in closure beneath a literal (eg case of K
in first branch), or

(i) when the second closure is beneath a sibling branch of the first closure
(eg case of S* in second branch)

Cannot apply re-use to S here

Mergingin First Order Tableaux:

Assume the first occurrence (the one to be closed by merge) is L and that it
merged with a second occurrence L' (to its right in the tableau). There are 2
cases to consider.

Case 1is when bindings are required to be made to L but not to L'. This case
safe as long as the variables in L that are bound do not occur in other leaf lit
branches to the right of L or in ancestors of L. The reason for the proviso is t
bindings would be propagated to those literals and they may not be appropri
completing the tableabeneath them. This restricted case is sound because
the (necessary) closure beneath L' is made, it can be repeated beneath L, fo
unification they are identical. Any ancestors needed for the closure beneath
also be available beneath L, due to the tableau structure.

(In fact, if the bindings affeanly L and ancestors of L, then the merge is also
See Slides 11 for a short discussion of this case).

Case 2 is when bindings are required to be made to L'. This case is not usual
implemented (see Slide 10dii for an illustration).

Exercise: try toconstruct a simple exemplar for the different cases.

The Merge Short cut (first order) (1) 10dii
Merging is the tableau version of factoring.

2 } A In the first order case, analogous to safe
factoring, merging is usually restricted s.t.
variables in A and -B** (and in any other
unclosed branches to the right of -B* - eg

—B** in the branch with =M and L) are not bound
by the merge step unifier. Variables in -B*
/\ h may be bound.

—_ _|B*
& egl: if -B* is =G(a) and =-B** is =-G(x1) then

merging binds x1==a.

Now, it may be that -G(a) can be closed at -B*
(perhaps using ancestors such as =M in the
diagram) but not at -B**, whereas —-G(x1) does
close at -B** but for x1==c (say).

In this case the merge would be a diversion.

10di
The Merge Short cut (first order) (2) 10diii
Merging is the tableau version of factoring.
E }A In the first order case, analogous to safe
factoring, merging is usually restricted s.t.
/\ variables in A and -B** (and in any other
. unclosed branches to the right of -B* - eg
- in the branch with =M and L) are not bound
/\ h by the merge step unifier. Variables in -B*
may be bound.

ALY _|B*

AN

eg2: -B* is =G(x1) and -B** is =G(a) and the sibling L of -B** is H(x1).
If x1==ais no good for H(x1) it is better not to make the merge. Since this is
unknown when extending -B* a merge is not necessarily the best option .

eg3: -B* is =G(x1) and -B** is =G(a) and x1 does not occur elsewhere in
open branches of the tableau. This case is fine.

S*

S kLT

wn

literal K(x) would close.

Can simulate this property of K(x) by adding 0Ox -K(x) to right branch,
representing that K(x) can be closed for any x.

variables remain unbound by closure - will return to this on slides 11.

The Re-use Short Cut (First -order) 10div

Consider the literal K(x1):
(Ex =K(x)) suppose that closure beneath it
L pp
K(x1) does not bind the free variable
S) /\ x1.
= —|L
=K(x1) T _ S What would this imply about

1
/\ l\ K(x) (for any x)?
S - We deduce that for any x, the

Some quite sophisticated other short cuts using Re-use can take place when

10dvi
Re-Usein First Order Tableaux (continued):

(Assume the first occurrence occurs at leafnodad the second occurrence oct
atn'. Eithern' should be a descendant of a siblingwbr, if closure beneath
involved no ancestors, th@hcan also be a descendant of an ancestor Tiere
are then 2 basic cases.)

Case 2. Some ancestor isinvolved in closure beneath n: This is a more comple:
property; even if variables in the literalraéire not bound by the step, those
variables could appear in an ancestbof n. For instance, suppose there is a
closed tableau beneath n=P[x,y] which binds y==a, but does not bind X, whe
occurs in ancestor literal n". Thelx-P[x,a] is added to the branches containin
siblings ofn.

Exercise:construct a simple exemplar for this case.

10dv
Re-Usein First Order Tableaux:

Assume the first occurrence occurs at leafnodad the second occurrence occu
atn'. Eithern' should be a descendant of a siblingwbr, if closure beneath
involved no ancestors, thehcan also be a descendant of an ancestar Tiere are
then 2 basic cases.

Case 1. No ancestor involved in closure beneath n: if the literal atn has the form

P[x] for free variable x and there is a completed sub-tableau beneath it, whicl
not bind x, then this means that for any instance of P[x] a closed sub-tableau

it can be constructed. Thix-P[x] can be added to the tableau representing t|
Note that, even if x occurs in other leaf literals and is later bound, this property
holds. If variables in the literal atbecome bound by the application of Re-use
this does not affect soundness, but it may not lead to a closed tableau due to
propagation of bindings elsewhere in the tableau.

Exercise:construct a simple exemplar for this case.

C=top clause, from given clauses S C' from given clauses S, exists and
(S has k non-unit clauses))

\

L1

Completeness of ME (outline proof structure)

contains -L1 becomes new top clause

N
\ Closures X and Y use clauses in S -
{C} + {L1}. Since number of non-unit

L1 L2 e Ln clauses is reduced by 1
they exist by Induction Hypothesis (IH)

The (IH) states: if ground S is
K1 e Km unsatisfiable and has <k non-unit
clauses, then a closed Model
Elimination tableau exists.

10ei

Proof of Completeness of Model Elimination Tableau: 10eii
Let S be a set of minimally unsatisfiable ground clauses (ie removing any clause from S
satisfable set). Then a closed ME tableau exists for S starting from any top clause from !
proof is by induction on k, the number of non-unit clauses in S, whebe Tkerefore, let S be
minimally unsatisfiable set of ground clauses with k non-unit clauses. Assume as inductic
hypothesis (IH), that, for any minimally unsatisfiable set of ground clauses#kthon-unit
clauses a ME tableau can be found from any top clause. In order to show that a ME tabl
exists for S there are 2 cases.

Case 1: k=0. In this case all clauses are unit clauses. If S is unsatisfiable then it must con:
two complementary unit clauses. One of these can be selected as the top clause and the
will close by extension using the other one.

Case 2: k>0. Choose as top clause a non-unit clause C, say2(1..00.n. Then for each Li
there must exist a clause C' that has a literal complementary to Li (ie containing -Li).
Exercise 1: Show this. The proof requires to show that if for some Li such a clause did noi
then S could not be minimally unsatisfiabldint: consider pure literals.

Consider the set of clauses S1' = S - {C} +{L1}. ie remove the clause C and add the unit (
L1. Then S1'is also unsatisfiable and L1 and C' belong to some minimally unsatisfiable :
of S1'. Exercise 2: Show this) S1' has <k non-unit clauses and the IH is applicable, using
the top clause. (If this clause is a unit clause, that is not a problem.) Closures with -L1 u
unit clause L1. Repeat the argument exemplified for L1 for each literal Li, i>1, in C.

It is easy to lift a ground ME tableau to the first order case, as described in Slide 9evii.

Exercise 3: follow the proof construction to find a closed ME tableau for the ground instat
-Ha, =-Fal=Hb, FallHa, Fb[Hb, Gall=Fb, GalFa using top clause FliHb.

Exercise 4: Show how to adapt Case 2 for regular ME tableblmt: It concerns subsumptior

Summary of Slides 10 10fi

1. The tableau method can be applied to sets of clauses, whence special
development rules can be used to good effect. Since clausal form has already
eliminated Oquantifiers, only one extension rule is required, derived from the
free variable y rule and Orule. The closure rule uses unification.

2. The most usual development rules result in the Model Elimination method,
or Connection tableaux. The first step selects a top clause. Thereafter, every
extension must use a clause that has a literal which unifies with the leaf literal
at the left-most open branch. This literal is placed left-most in its clause. The

tableau is developed from Left to Right and depth-first.

3. If the development rules summarised in 2) are in force, then some short cuts
can be incorporated, of which we considered Merging and Re-use. Merging is
the tableau variant of factoring and Re-use allows whole derivations to be re-
used.

4. At ground level, there are simple restrictions on merging and re-use to
ensure soundness. In the general case the restrictions are tighter, and it is
harder to show soundness.

5. Soundness of Model elimination follows from the soundness of ordinary
free variable tableau.

6. Completeness must be proved separately, since the development
imposes restrictions, which could compromise completeness.

One proof of completeness for the simple ground case uses induction on
the number of non-unit clauses available in a branch is given. The ground
tableau can be lifted as described on Slides 9 for general free variable
tableaux.

Other proofs are possible, that construct any ground tableau using
instances of the given clauses and then transform the constructed tableau
into one that follows the refinement.

7. The (Optional) LeanCop theorem prover uses model elimination and
uses Prolog in an elegant implementation. 10fii

START of OPTIONAL MATERIAL
(SLIDES 10)

Model Elimination implementation in Prolc
ThelLeanCop Theorem Prover

Constructing M odel Elimination Tableaux in Prolog: 10gi

Slide 10gii shows an outline program for constructing model elimination tabl

The predicats howimplements the basic part of the construction (note that it
clauses include only the 3 basic steps. Initial data is a list of clauses, given
3rd argument (arg3) and the list of leaf literals, given as argl. The ancestor
available to these leaf literals are in arg2, which is initially empty.

To avoid following an infinite branclshow has a fourth argument, the maximd
depth of a tableau constructedddyow. Each timeshow recurses, the maximumn
depth is reduced by 1. If it reaches 0 then only closure is allowed, not exten
The predicatshowd controls the use of D, the Depth argument. Initially, D i
small value; it is increased if no closed tableau can be found atsi2pth

Various extensions of this basic structure are easy to implement, such as m
re-use. (Remember, onbpe of these is possible in a given tableau.)

There is a cleverly implemented version of the basic model elimination table]
called LeanCop and shown on Slide 10giii.

Implementing Model Elimination tableaux: 10gii

%show(X,Y,Z,W):Y=non-leaf literals in current branch,
%X= leaf literals of current branch, Z= given clauses,
%W=remaining depth

show([],A,C,D).

show([G|Rest],A,C,D):-D >0,complement(G,A), show(Rest,A,C,D).

show([G|Rest],A,C,D):-D>0,match(G,New, C),D1 is D-1,
show(New,[G|A],C,D1),show(Rest,A,C,D).

%match(G,New, C) succeeds if there's a clause in C with a
%literal L that unifies with, and is complementary to, G
%and has other literals New.

%complement(G,A)succeeds if the complement of GisinA.
showd(Goals,C,D):- show(Goals,[],C,D), !.
showd(Goals,C,D) :- D2 is D+1,showd(Goals,C,D2).

showd controls attempts to show the Goals at ever increasing depth.

« With this program the tableau is constructed in a depth first way.

« Initial call is showd(Top,C,D) for some small initial D (eg D=3), where Top
is the top clause represented as a list of literals and Cis list of given clauses.

Exercise . Add a clause to show that will enforce regular tableaux.

LeanCop: A ME Theorem Prover 10giii
prove(],_,_,_)-

prove([Lit|Cla],Mat,Path,PathLim) :-
(-NegLit=Lit;-Lit=NegLit) ->

(member(NegL,Path), %ranch cl osure case
unify_with_occurs_check(NegL,NegLit);
append(MatA,[Clal|MatB],Mat),
copy_term(Clal,Cla2),
append(ClaA,[NegL|ClaB],Cla2),
unify_with_occurs_check(NegL,NegLit),
append(ClaA,ClaB,Cla3),

(Clal==Cla2 -> %ground cl ause natched
append(MatA,MatB,Mat1);
length(Path,K), K<PathLim,
append(MatA,[Clal|MatB],Mat1)
, o%continue with sane branch

prove(Cla3,Matl,[Lit|Path],PathLim)
%ontinue with next branch

% i nd mat ching cl ause

%vars in clause matched

prdve(CIa,Mat,Path,PathLim).

Data: Mat is a list of clauses, each clause a list of Literals

append(MatA,[Cla|MatB],Mat),
\+member(-_,Cla), % op clause all positive
append(MatA,MatB,Mat1),
prove([!],[[-!|Cla]|Mat1],[],PathLim).
prove(Mat,PathLim) :-

PathLim1 is PathLim+1,
prove(Mat,PathLim1).

%Operator precedences (put at top of program)
- 0p(400,fy,-),0p(500,xfy,&),0p(600,xfy,v),
op(650,xfy,=>), op(700,xfy,<=>).

Examples :
prove([[-h(a)], [f(X).n(X)], [-9(2).-f(b)], [-f(Y).-h(b)L.[9(V).-f(V)]], 4)

prove([[-a,-w,p],[e],[i,a], [w,m], [-p], [-e,-i], [-e,-m]],0)
Exercises :

(1) Explain why PathLim doesn't need to increase for propositional case.
(Hint: look at test Clal==Cla2).

(2) Add a test to enforce only regular tableau to be generated and searched.

prove(Mat,PathLim) :- 10giv

\+ground(Mat), % f not propositional increase PathLim

The L eanCop Prolog Prover:

LeanCopis similar to LeanTap in that it is written in Prolog and is very compact.
However, it is designed by different people: Jens Otten and Wolfgang Bibel — s
website (more up-to-date than LeanTap's) at http://www.leancop.de/

LeanCop is a Model Elimination prover, so takes clauses as input. The four arg
of prove are: ““current list of leaf literals, list of all clauses, current branch, cur
max depth of branch for search".

In one sense using clauses makes it simpler than LeanTap. In another, it make
potentially more complicated, as there are more possibilities for clever tricks. In
particular, consider the line

(Clal==Cla2 -> % ground cl ause mat ched

In case the test is true, this means that the result of the earliercafiye t er mdid
not introduce fresh variables because there were no free variabsihto be
copied. Therefore the clau€kal is ground and there is no need to re-use it in th
current branch in the future, so it can be discarded. Moreover, there is no need
increasePat hLi m— it is only increased when extension is by a non-ground clau
instance, which potentially may have to be re-used.

As in LeanTap, if no closure is found at an initial depth, the depth is increaosed.
10gv

