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Variants and extensions to Model Elimination

In these slides we consider two extensions to Model Elimination;

1) Variation in the search mechanism: The method of removing potentially redundant 
backtracking (called non-essential back-tracking by the author) has been proposed by Jens 
Otten "Restricting Backtracking in Connection Calculii" (2010). Although the method is 
not complete, it has proved to be very effective in practice. A large proportion of problems 
can be solved with the restriction, and the average saving in search time allows for more 
complex proofs to be found that would not be found by standard model elimination in a 
reasonable time. Shown in Slides 11a.

2) Universal Literals: When discussing Re-Use we saw that in first order ME it may be 
possible to derive universal lemmas of the form ∀z.R(z), which can then be used elsewhere 
in the tableau. Such universal literals can arise in other ways and we discuss how to exploit 
this. Shown in Slides 11b/c.

3) The OPTIONAL slides 9-11 Appendix 2 also show three Case Studies for your interest: 
Case Study 1 - KE Tableaux:  This variation of tableau uses a single splitting rule;

Case Study 2 - Intermediate Lemma refinement (ILE): This is a variant of model 
elimination;

Case Study 3 - Relation between Clausal Tableau and Model Generation (MG)

11ai

11aiiBacktracking in ME (also see ppt)
Searching for a closed tableau in ME employs a limit on the size of the 
tableau (called depth-bound search) – e.g. maximum branch length.

Normally, on failure of some step, backtracking tries the next available step:
Either: 

i) if branch closure led to failure, try a different way to close branch
ii) if no different ways, try branch extension
iii) if extension led to failure try a different way to extend
iv) if no different extensions backtrack to last step in the branch on the         

               left and look for a different derivation leading to a closed tableau
v) if no branches on the left try to backtrack to parent node
vi) if no parent node try a different top clause

Else FAIL
Otten (2010) saw that in trials with the problems in the TPTP database 
(Thousands of Problems for Theorem Provers), many problems could be 
solved even if case iv) is prohibited. 

Although completeness is lost, a dramatic decrease in time to find proofs is 
gained. He coined the phrase "essential backtracking".

11aiii

Example of " non-essential backtracking " (as named by Otten):
 Given: ¬G,  G ∨ Rxy ∨¬Px,  Pc ∨..., Pd ∨...,  ¬Rab ∨ ...,   ¬Rbd ∨ ...,  G ∨ ...
top clause ¬G

Assume eventual closure below Rx1y1 using ¬Rab ∨ ... with x1==a,y1==b
 ¬Pa will fail and would normally backtrack to use ¬Rbd ∨ ...         (Case iv)
Instead, non-essential backtracking prohibits this and backtracks to try a 
different clause to use in extension step from ¬G                           (Case vi)

Essential  and non-essential backtracking (1)

Rx1y1
G

¬Px1
⇒ ¬Pa

¬Rab

¬G

eventual 
success 
in this 
branch

this 
branch 
fails

In fact, nothing is lost in this example 
as using ¬Rbd ∨ ... would lead to ¬Pb 
which would also fail.

But if a clause such as Pb ∨ ... were 
available, and if the tableau below 
¬Pb happened to close, then the 
particular fully closed tableau so 
found would be lost by non-essential 
back-tracking
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Example of " essential backtracking "  (as named by Otten):
 Given:  ¬G,  G ∨ Rxy ∨¬Px,  Pc ∨...,  ¬Rab ∨ X,   ¬Rbd ∨ Y,  ¬Rcd ,   

Assume no eventual closure below Rx1y1 using ¬Rab ∨ X then backtrack (essential 
backtracking) to use ¬Rbd ∨ Y                                                   (Case iii)
Suppose closure obtained with binding x1==b,y1==d                (Case iv)
Suppose failure beneath resulting ¬Pb (then normally would backtrack to Rx1y1
Back-tracking to use ¬Rcd is pruned, even though ¬Pc might succeed
Otten called this (pruning of) "non-essential" backtracking 

Essential  and non-essential backtracking (2)

Do not backtrack to 
try ¬Rcd because 
it's non-essential 
back-tracking –case 
(iv) and is pruned

Try to match ¬G 
with another clause;
no clause so fail

Lose solution using 
¬Rcd

Rx1y1
G

¬Px1
⇒ ¬Pa

¬Rab

¬G

failure 
in this 
branch

X

Rx1y1
G

¬Px1
⇒ ¬Pb

¬Rbd

¬G

success 
in this 
branch

Y failure 
in this 
branch

by essential back-tracking

  Case iii

11avFormalising Essential Backtracking and Non-Essential Backtracking:

Consider a Model Elimination derivation that is part completed, such that the next leaf node 
to be extended is L in branch B. 

Assume also that L could close using any of the literals at N1, N2, ..., Nk in B (above L) and 
could be extended using any of the matching clauses R1, R2, ..., Rm.

Then the method of Essential Back-tracking  allows every one of the Ni and the Ri to be tried 
(in order) to close the tree. This is the normal kind of systematic back-tracking.

The method of Non-essential Back-tracking truncates the list of choices as soon as one of 
them succeeds in closing a sub-tableau beneath L.  As a consequence, if any other branch in 
the tableau to the right of B should fail to close, then there will be no back-tracking to try a 
different choice at L.

In the Example on 11aiv, beneath Rx1y1 the matching clauses are ¬Rab ∨ X, ¬Rbd ∨ Y and 
¬Rcd. ¬Rab ∨ X fails and so ¬Rbd ∨ Y is tried. This succeeds and it's assumed Y can be 
closed, but although the branch below Px1 (now Pb) fails, non-essential backtracking has 
truncated the choices so ¬Rcd is no longer available to try as an alternative beneath Rx1y1.

11avi

Consequences of ignoring non-essential backtracking:
• Loss of completeness (See 11aiv)
• Irrelevant back-tracking is by-passed in a simple way (See 11 aiii)
• Proof search is therefore much faster, allowing harder proofs to be found

Essential  and non-essential backtracking (3)

Why does this back-tracking restriction not lose many proofs?

There are usually several different ways to make a ME derivation from a set of  
clauses, each derivation differing in the order in which the clauses are used, and/or 
the instances used. Disregarding non-essential back-tracking simply searches for 
one of the other orders, or one of the other derivations.

Example.  Given: ¬G,  G ∨ Rxy ∨¬Px,  Pa ∨...,   G ∨ Pb,    ¬Rab ∨ X,   ¬Rbd 
Assume Closure below X is ok and also Closure below ¬Pb is ok

Rx1y1
G ¬Px1

⇒ ¬Pa
¬Rab

¬G

 success 

failsX

(1)

(1) fails; if Case iv is prohibited then don't find (2); after changing matching clause for 
¬G (3) succeeds by Case vi. Check the instances in (3) are the same as those in (2)

Rx1y1
G ¬Px1

⇒ ¬Pb

¬Rbd

¬G(2)

Pb G

Pb

G
Rx1y1
⇒ 
Rby1

¬G

¬Rbd

¬Pb G

(3)

11bi

Example    Given: 1. Rx ∨¬Px,    2. Px ∨Q,     3. ¬Ra ∨¬Rb,    4. ¬Q

An Extension to ME Tableaux (see ppt motivation) 

(Non-) Standard ME Tableau Resolution Refutation
(5 = 2+1): Rx ∨Q            
(6 = 5+3): ¬Rb ∨Q
(7 = 6+5): Q ∨Q ⇒  Q
(9 = 8+4): [ ]

vs.

Q**
Px1

¬Px2 Rx2⇒Rx1⇒Ra

¬Ra
x1==a

¬Rb

Px3⇒Pb Q

¬Px4
¬Q

¬Q

Rx3

x2==x1

x4==x3 x3==b

corresponds to the resolution step 
 ¬Rb ∨Q + Rx3 ∨Q ⇒ Q ∨Q

Can merge Q
with Q**

Merge step 
corresponds 
to Q ∨Q ⇒Q 

Notice that clauses 5 and 6 
correspond to the leaf literals of 
the open branches after each of 
the first 2 steps of ME.

Compare step giving (7) with ME: 

Instead of standard ME tableau 
below ¬Rb repeat enclosed part of 
the tableau below ¬Rb but with 
new free variables x3 and x4, 
which will bind to b instead of a. 
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Example    Given: 1. Rx ∨¬Px,    2. Px ∨Q,     3. ¬Ra ∨¬Rb,    4. ¬Q

An Extension to ME Tableaux (motivation)  

(Non-) Standard ME Tableau Resolution Refutation
(5 = 2+1): Rx ∨Q            
(6 = 5+3): ¬Rb ∨Q
(7 = 6+5): Q ∨Q ⇒  Q
(9 = 8+4): [ ]

vs.

Q**
Px1

¬Px2 Rx2⇒Rx1

¬Ra
x1==a

¬Rb

¬Q

x2==x1 The idea will be to retain the ME structure 
by treating literals such as Rx1, which do 
not share variables with other open 
branches, as being universally quantified

In this way, Rx1 is effectively written as 
∀∀∀∀x. Rx, hence considering it to be used as
(Rx11 ∧∧∧∧ Rx12 ∧∧∧∧    ... ∧∧∧∧    Rx1k), setting k big 
enough to give as many instances as 
required

Features of Universal Variables:

• bindings to x1 cannot affect literals 
in other open branches;

• once a free variable becomes 
universal it cannot lose this status as 
long as the convention for bindings 
on closure given on Slide 11cvi is 
followed;

11ci

Generalised Closure Rule and Universal Variables (1)
Let T be a partially developed ME tableau and B be an open branch of T. 
If free variable x1 occurs in some literal in B and and the only  occurrences 
of x1 in an open branch are in branch B, then x1 is called a universal 
variable in T.

•    we'll see that a Universal variable is essentially universally quantified - as 
many (different) copies as may be needed are ( implicitly) available
•    simulated by not propagating bindings made to a universal variable, 
leading to the Generalised Closure Rule (GCR)

Closed

C[x1]

B[x1]

No x1 here

More Features of Universal Variables

11cii

Generalised Closure Rule and Universal Variables (2)

Closed

C[x1]

B[x1]

No x1 here

D[x1]
x1 is not
universal

Closed- no
binding to x1

x1 is now 
universal

• a free variable x1 might not be 
universal in T when first introduced 
into a tableau T, but can become so if 
x1 eventually occurs in a single open 
branch;

e.g. if branches to left of B[x1] close 
without binding x1, then x1 in B[x1] is 
not universal as D[x1] is still open to its 
right. If B[x1] closes without binding x1 
then  x1 is universal in D[x1].

•   if a variable occurs in only one literal 
in a clause it will be universal when 
used in a tableau  e.g.  y will be 
universal when using S∨P(x,y)∨Q(x) 

Let T be a partially developed ME tableau and B be an open branch of T. 
If free variable x1 occurs in some literal in B and and the only  occurrences 
of x1 in an open branch are in branch B, then x1 is called a universal 
variable in T.

11ciii
Generalised Closure Rule (GCR):

The slides 11b and 11c illustrate and explain an extension for ME-tableaux called the 
generalised closure rule, which exploits the concept of a universal variable. For the 
simplest case, let C be a clause in which variable u occurs in exactly one literal L. u is 
called a universal variable. The quantifier for this variable could (implicitly) be distributed 
across to L. When the clause is developed, one can treat L as if it were  ∀u.L, implicitly 
including in the tableau branch containing L several copies of L, each with a fresh free 
variable for u. (Any non-universal variable in L would be substituted by exactly one free 
variable, the same one in all copies.) Since there are always available enough copies for 
each different binding, an implementation can effectively ignore bindings for u, giving rise 
to the generalised closure rule. This rule states that in any closure step involving a 
universal variable u  possible bindings to u can be ignored.

e.g. if L is P(v,u), and u is universal but v is not, then  L is regarded as if it were ∀u.P(v,u) 
and can be copied in the tableau branch as P(v1,u1), P(v1,u2), etc., for example giving 
possibility of closure with  ¬P(a,b)∨¬P(a,c).  If L is part of a clause such as L∨ Q(w), the 
duplication treats the clause as if it had the more general form of (P(v,u1)∧P(v,u2))∨Q(w). 

More generally, let T be a partially developed ME tableau and B be an open branch of T. 
If free variable x1 occurs in some literal L[x1] in B and the only  occurrences of x1 in an 
open branch are in branch B, then x1 is called a universal variable in T and the literal L is 
treated as ∀x.L[x].
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Rx ∨¬Px,  Px ∨Q,  ¬Ra ∨¬Rb,  ¬Q

In Px ∨Q, x is universal. 
The clause Px1∨Q is used in the tableau as the 
equivalent ∀∀∀∀x.P(x) ∨∨∨∨Q.

At closure (1)  use instance P(x2) of ∀x.P(x). 
Rx2 becomes universal and is treated as 
equivalent to ∀x.R(x). 

At closure (2)  use instance  R(a) of ∀x.R(x). 

At closure (3)  use instance  R(b) of ∀x.R(x). 

Example Revisited (1)

Q
Px1

⇒∀x.P(x)

¬Px2 Rx2
⇒∀x.R(x)

¬Ra
 (2)

¬Rb

¬Q

(1)

(3)

None of the bindings made affects the branch beneath Q, since the universal 
variables do not appear in it. That branch only needs to be completed once. 

Implementing Universal Variables :
Either tag a universal variable and always use a fresh copy, (so here it is x2 
that is bound to the fresh copy of x1 - i.e. "fresh copy" ==x2 - not the other way 
around) or replace by the universal quantifier (easier when working by hand).

•   Exercise (Not easy!) : 
Consider whether, and how, use of the generalised closure rule could be used 
in a tableau together with either the (re-use) and/or the (merge) closure rules.

11cv

Rx ∨¬Px ∨ Sx,  Px ∨Q,  ¬Ra ∨¬Rb,  ¬Q

After closure (1) x2 in Rx2 is not   
universal (x2 occurs in sibling Sx2)

At closure (2)  use x2==a

At  (3) must use a fresh copy of clause 
Rx ∨¬Px ∨ Sx

At (4) bind x3==b

At (5) can use an instance of ∀x.P(x)  

Example Revisited (2)

QPx1
⇒∀x.P(x)

¬Px2 Rx2

¬Ra
 (2)

¬Rb

¬Q

(1)

(3)

Sx2
⇒ Sa

Rx3 ¬Px3
⇒ ¬Pb(4)

Sx3

(5)

⇓
Sb

11cviAn Important Criterion ( when implementing GCR) (1)

In making a closure that involves at least 
one universal variable always introduce a 
fresh copy of the universal variable to 
make the closure. 

Px1
(∀x.P(x))

¬Px2 Rx2
(1)

Sx2

x1 not
in 
here

Example A: 
In normal ME, to close at (1) either make binding x1==x2, or x2==x1; it doesn't 
matter which. 

In GCR it is important to introduce a fresh copy of x1 and to set "fresh copy"==x2. 
This is achieved in an implementation by tagging x1 as universal and always using a 
fresh copy.

(Otherwise, if x2 and x1 were simply bound to each other,  then x1 would in effect be 
propagated to both Rx2 and Sx2 and x1 would lose its universal status.)

11cviiAn Important Criterion ( when implementing GCR ) (2)

Example B: when closing at (2), remember to use a fresh copy of implicit ∀x.R(x) 
and set "fresh copy"==x3; then at (3) it is important to use a fresh copy of implicit 
∀x.¬P(x) and set "fresh copy"==x1. 

Otherwise,  x2 and x1 would be bound to each other via x3 and x2 would lose its 
universal status, which would affect the literal Rx2 as well and could compromise the 
proof beneath (4).

In making a closure that involves at 
least one universal variable always 
introduce a fresh copy of the 
universal variable to make the 
closure. 

P(x1)

¬Py2 Rx2  (∀x.R(x))

S(x1)

¬Rx3 ¬Px3
(∀x.¬P(x)(2)

y2==x1

x3 not
in here
(4)(3)



Generalised Closure Rule  – Criterion for Maintaining maximal Universality of Variables:

Example: Let x be a universal variable in a leaf of branch B of tableau T, say in Q(x), and some 
step use the clause instance ¬Q(z1)∨ R(z1)∨ S below it. One of the implicit instances of ∀x.Q(x) 
is Q(x1) and x1 can be bound to  z1. In the literal R(z1), z1 will now be universal, since if x was 
universal then no occurrences of x occurred in T other than in B, and the same applies to the 
extension of B ending in leaf node R(z1) (branch B', say). In effect, ∀z.R(z) has been derived in 
B'. To see this, add the negation ¬∀z.R(z) to the tableau and see that the tableau will close if S 
can close.  A variable becomes universal in this way in a Model Elimination tableau if it does 
not occur in any leaf literals in open branches to its right in the tableau.  In this example that is 
the case, as explained.

It is assumed that as construction of a tableau progresses variables are implicitly marked as 
universal whenever possible, in the manner described in the previous example. That is, a free 
variable x occurring in leaf literal L in an open branch B is marked as  universal if the only 
occurrence of x in a leaf literal in an open branch is in L. [Observe that (non-universal) 
occurrences of x could only occur in the branch above L if the occurrence of x in L was 
originally z (say) and arose because z was bound to x by a clause used in the closure of one of 
L's left (closed) siblings.  Note x would not be classified universal in L in this case.]  In the 
example on slide 11di:  the variable y2 is bound to y1 and hence y1 in R(y1) is not universal. L 
is originally R(y2), becoming R(y1) , when ¬A(x2,y2) closes with ∀x.A(x,y1), binding y2 to y1. 
All occurrences of y1 remain non-universal.

Exercise: The criterion for choosing closure bindings is: In making a closure involving ≥1 
universal variables introduce fresh copies of the universal variable(s) to make the closure.
Explain why this assures that any variable declared universal will remain so during subsequent 
tableau development. 11cviii

11diNormal Form Representation of a Partial Tableau
(or Why does the Generalised Closure Rule work?)

Consider the standard ME tableau after closure (1) 
The open branches  ≡ 
∀y1∀x1[(A(x1,y1) ∧ (P(x1) ∨   R(y1)) ∨ B(y1)] ≡ 
∀y1 [(∀x.A(x,y1) ∧ (∀x.P(x) ∨   R(y1)))∨ B(y1)]  ≡  
∀y[(∀x.A(x,y) ∧∀x.P(x))∨ (∀x.A(x,y) ∧R(y))∨ B(y)]

That is, maximally distribute ∀.

Given: (1) ¬P(a)∨ ¬A(b,z)   (2) ¬R(c)∨ ¬A(c,c)  (3) A(x,y)∨B(y)  (4) ¬A(x,y)∨P(x)∨R(y)

A(x1,y1) B(y1)

¬ A(x2,y2)
x2==x1
y2==y1

(1)

P(x2)
⇒

P(x1)

R(y2)
⇒
R(y1)

Using universal variables treats universal literals 
as quantified literals as in the above expression.

You can see that x1 in A(x1,y1) and in P(x1) are 
universal, and that y1 is not universal.

See next slide for rest of tableau.

11diiContinued from Slide 11di

After closure (1) (above the wavy line), and making universal variables explicit, the 
open branches  ≡ ∀y[(∀x.A(x,y) ∧∀x.P(x))∨ (∀x.A(x,y) ∧R(y))∨ B(y)]   (*)

(1)  ¬P(a)∨∀z.¬A(b,z)    (2) ¬R(c)∨¬A(c,c)   (3) ∀x.A(x,y)∨B(y)  (4) ¬A(x,y)∨P(x)∨R(y)

Variables z and x in givens (1) and (3) 
are universal, as indicated.

After closure (1) can ``forget’’  the 
bindings to universal variable  x in 
∀x.A(x,y1); also x2 in P(x2) becomes 
universal.  

At (2)  instances A(x3,y1) and A(b,z3) 
are unified (x3, z3 being the fresh copies 
of x and z) leaving y1 unbound. 

At (3) y1 is bound to c and at (4) ¬A(c,c) 
unifies with A(x4,c), x4 the fresh copy of 
x in ∀x.A(x,y1) => ∀x.A(x,c). 

The last open branch contains B(c). 
Notice  B(c) is derivable from (*),(1), (2).

∀x.A(x,y1)
B(y1)⇒
B(c)

¬ A(x2,y2)
y2==y1

(1)

P(x2)
(∀x.P(x))

R(y2)
⇒R(y1)

¬P(a)

∀z.¬A(b,z)
¬R(c)
y1==c

¬A(c,c)

(2) (3)
(4)

Soundness of the Generalised Closure Rule:

Justification that the generalised closure rule is sound can be made by appealing to the 
expression represented by the open part of a partial tableau, distributing quantifiers 
maximally across literals containing universal variables.  

The ``open part'' of any tableau (i.e. the set of branches not yet closed) typically represents a  
universally quantified formula in dnf; i.e. a disjunction of (possibly quantified) conjunctions 
of literals.  This was illustrated on slide 11di. Suppose a new clause is added to the leftmost 
open branch. Assume that non-universal variables in the added clause are always renamed 
as fresh free variables. 

When a new clause is added in an extension step there are two options for forming the 
binding in the closing unifier for a variable x: either x is universal and a fresh copy of x 
becomes bound, or x is not-universal and is bound in the normal way. Thus e.g. when 
matching ∀x.A(x,y1) with ∀z.¬A(u1,z), the universal fresh copy x2 of x in A(x2,y1) is 
bound to u1, and the fresh copy z2 of z in ¬A(u1,z2) is bound to y1 (ie "fresh copy–x"==u1 
and "fresh copy_z"==y1). The open part of the extended tableau can be recomputed and 
universal quantifiers distributed to maximise occurrences of universal variables. 

Assuming the criterion on slide 11cvi is adhered to, it is not hard to show that universal 
variables remain so.  Given the dnf representation of the open part of a partial tableau (call it 
dnf(T) ), it is then easy to show that if T" is derived from T then dnf(T) |= dnf(T").

11diii
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•  Prolog-like - use stacks for implementation (but: need to detect ancestors,           
and use the occurs check)
•  Prolog technology: compilation, structure sharing, stack maintenance
•  Easy to obtain variations
•  Easy to implement in Prolog
•  Easy to extend to modal logics (and others)

•  Consider a problem  Data |– P → Q.   Clausal form of ¬(P → Q) is P and ¬Q.  
May want to work forwards from P and "backwards "  from ¬Q.  In ME  must 
choose one of them as top clause.

•   May be beneficial to resolve some clauses initially if they only resolve with 
one or two others. i.e. a non-linear beginning.

•  Left-Right depth first generation of search space may not be the smallest.

•  Quite often the search space contains several variations of the same 
refutation, in which the clauses are used in different orders. (It is this property 
that was exploited in non-essential backtracking removal.)

Summary of A dvantages of ME-style tableaux

Disadvantages

11fiSummary of Slides 11
1. The Model Elimination (ME) tableau method can be extended and modified in 
various ways.

2. The introduction of universal variables and the generalised closure rule that 
results leads, in many cases, to reduced tableaux. Universal variables are treated in 
the tableau as being universally quantified, instead of as free variables, so multiple 
instances are allowed. This leads to the generalised closure rule, which is 
implemented by not propagating bindings to universal variables (in effect such 
bindings are ignored).

3. ME tableau are complete. However, some completeness can be sacrificed 
through pruning back-tracking of the "non-essential" kind. It turns out that in many 
problems involving unsatisfiable data, while some completeness is lost, in that not 
all refutations can be found, it is still possible to find at least one refutation.

4. ME style tableau have advantages, especially in that they are easily 
implementable in Prolog, which is good for testing new ideas. All the Prolog 
technology is available to build good systems. The method extends to other logics, 
e.g. modal logic. 

5. ME style tableau have disadvantages, mainly related to their being linear.

SSSTTTAAARRRTTT   ooofff   OOOPPPTTTIIIOOONNNAAALLL   MMMAAATTTEEERRRIIIAAALLL
(((SSSLLLIIIDDDEEESSS   111111)))

Motivating GCR in more detail
     (see also slides A2e in 
       Appendix A2 for slides 9-11)

11gi

Example    Given: 1. Rx ∨¬Px,    2. Px ∨Q,     3. ¬Ra ∨¬Rb,    4. ¬Q

An Extension to Basic ME Tableaux (1)

As in Slide 11bi but showing standard ME 
tableau.

Notice that clauses 5 and 6 correspond to 
the leaf literals of the open branches after 
each of the first 2 steps of ME.

Compare step 3 (giving (7)) with ME: 

QPx1⇒Pa

¬Px2
x2==x1

Rx2=>Rx1
       ⇒Ra

¬Ra
x1==a

¬Rb

Rb ¬Pb

Pb Q

¬Q

¬Q

Cannot unify Rb 
with Rx2 here as 
x2 has been 
bound to a.

Standard ME Tableau Resolution Refutation

(5 = 2+1): Rx ∨Q            
(6 = 5+3): ¬Rb ∨Q
(7 = 6+5): Q ∨Q ⇒  Q
(9 = 8+4): [ ]

vs.
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Example    Given: 1. Rx ∨¬Px,    2. Px ∨Q,     3. ¬Ra ∨¬Rb,    4. ¬Q

An Extension to Basic ME Tableaux (2)

Instead of standard ME tableau 
below ¬Rb try repeating 1st 2 
steps below ¬Rb (blue part of 
the tableau) but with new free 
variables x3 and x4, which will 
become bound to b instead of a. 

In some cases can avoid actual 
duplication. e.g. here would 
close at the leaf ¬Rb (implicitly 
matching a second copy of Rx1). 
Results in the generalised 
closure rule.

Notice that x1 does not occur in 
any open branch to the right of the 
branch ending at ¬Rb. In the fresh 
instance of the enclosed tableau 
the branch below Q  can be closed 
by a merge with Q**, so simulating 
the resolution proof.

Q**
Px1

¬Px2 Rx2⇒Rx1⇒Ra

¬Ra
x1==a

¬Rb

Px3⇒Pb Q

¬Px4
¬Q

¬Q

Rx3

x2==x1

x4==x3 x3==b

corresponds to the
resolution step 
 ¬Rb ∨Q + Rx3 ∨Q ⇒ Q ∨Q

Can merge Q
with Q**

Merge step 
corresponds 
to Q ∨Q ⇒Q 
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Given: 1. Rx ∨ ¬Px,    2. Px ∨ Qx,     3. ¬Ra ∨ ¬Rb,    4. ¬Qa

An Extension to Basic ME Tableaux (3)

In some cases cannot avoid 
actual duplication. 

Notice that x1 now occurs in two 
branches, including the open 
branch to the right of the branch 
ending at Rx1, in Qx1.

In the fresh instance of the 
enclosed tableau the 2nd 
branch below ¬Rb becomes Qb, 
which doesn't merge any more 
with Qa.

It is incorrect to avoid the 
duplication as the branch below 
Qb would be lost leading to the 
wrong result, since this branch 
fails.

Qx1⇒Qa**
Px1

¬Px2 Rx2⇒Rx1⇒Ra

¬Ra
x1==a

¬Rb

Px3⇒Pb Qx3⇒Qb

¬Px4

¬Qa

Rx3

x2==x1

x4==x3 x3==b

corresponds to the
resolution step 
¬Rb ∨Qa + Rx3 ∨Qx3 ⇒ Qb ∨Qa


