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Question:
Given this derivation of [ ] would you expect (1), (2), (3) to be unsatisfiable?
(Hint: replace = by the predicate symbol S.)

(1)    T(p,q)∨T(q,p)   (p,q are constants)
(2)    ¬T(X,X)                                                  (3)      p=q

12aiEQUALITY

(1)    T(p,q)∨T(q,p)                (2)    ¬T(X,X)                 (3)    p=q
(4)  (1 + 3) T(q,q)∨T(q,p)         (substitute q for p in T(p,q))
(5)  (4 + 2)  T(q,p)  
(6)  (5 + 3)  T(q,q)                    (substitute q for p in T(q,p))                    
(7)  (6 + 2)  []

A "Natural"  derivation of  []

• Actually, they  do have a model!            

So what has gone wrong?

12aii(1)    T(p,q)∨T(q,p)       (2)    ¬T(X,X)               (3)      p=q

•  But they  do not  have a H-model in which '=' satisfies the  'equality axioms'.

• They  do have a model!        
eg           Let  Domain = {1,2}                p -> 1;  q -> 2
               Set T(1,1) ,  T(2,2)  both false     
               Set T(1,2),  T(2,1) both true       
               Set =(1,2)  is true

Paramodulation is a reasoning step that implicitly incorporates the use of such 
equality properties to generalise the notion of substitution

Informally, the equality axioms state that 
         "if t1 = t2 and property P holds for t1, then P holds for t2"  

Can you argue that 1, 2 and 3 have no H-model satisfying the above?
Hint: Suppose property P is "T(p,q)"

First let's see how paramodulation operates
Then we'll see why it is correct reasoning

See Optional part for why the simple notion of identity is no use for H-models

DEFN: (PARAMODULATION)  (generalises simple substitution) (ppt)

 if  C1≡ L[t]∨ C1' (i.e. t occurs in L) , C2 ≡  r=s ∨ C2' (or s=r ∨ C2') and rθ=tθ,   
 then the clause  (C1' ∨ C2' ∨ L[sθ])θ is called a  paramodulant.

12aiii

a=b  L(X) ∨ M(X) 

 L(b) ∨ M(a) 

(P)
Can also obtain: L(a)∨ M(b). 

Substitutions occur in 1 argument 
position at a time. 

Example

Comparison with definition:

C1 is L(X) ∨ M(X).   X in L(X)  is "t" and C1' is M(X)
C2 is a=b.  a is the "r" term and b is the "s" term.   C2' is the empty clause

Unify "a" with X.  θ is the substitution X==a, and aθ =Xθ
The term sθ is "b", since the substitution θ doesn't affect "b".

The paramodulant clause is therefore  (M(X) ∨ L(b))θ, which is M(a)  ∨ L(b)

The next slide gives a simple prescription for performing paramodulation



DEFN: (PARAMODULATION)  (generalises simple substitution) (ppt)

 if  C1≡ L[t]∨ C1' (i.e. t occurs in L) , C2 ≡  r=s ∨ C2' (or s=r ∨ C2') and rθ=tθ,   
 then the clause  (C1' ∨ C2' ∨ L[sθ])θ is called a  paramodulant.

12aiv

a=b  L(X) ∨ M(X) 

 L(b) ∨ M(a) 

(P)

Example

In general:
1. Unify the "to" term – the one to be replaced in C1 (t) 
and the "from" term – the one in the equality being replaced (r) (mgu is θ)

2. Apply the unifier θ to both clauses C1 and C2 to give C1θ and C2θ

3. Replace the "to" term in C1θ by the term on the other side of the "from" 
equation – the one in the equality that is the replacement (sθ)

4. The result is the disjunction of C1θ and C2θ after replacement and 
without the equation.

X in L(X)  is the "to" term
a in a=b is the "from" term
Unify a with X ( θ is X==a)
C1θ is L(a) ∨ M(a)
Replace a in L(a) by b
Result is L(b) ∨ M(a)

12av

f(X)=b ∨ C(X) R(f(a))∨ Q 

 C(a) ∨  R(b) ∨ Q
(P)

match f(X) with  f(a) and 
replace  by b.

f(X,g(X))=e ∨  T(X) S(Y,f(g(Y),Z)) ∨ W(Z)

 S(Y,e)∨W( g(g(Y)) )∨T(g(Y) ) 

(P)

match f(X,g(X)) with f(g(Y),Z)  (X/g(Y), 
Z/g(g(Y)) ) and replace f( g(Y),g(g(Y)) ) by  e.

SOME MORE EXAMPLES (ppt)
U=V T(p,q) ∨ T(q,p) 

T(V,q) ∨  T(q,p)

(P)

Identify the "to" and "from" terms

12avi

1.  T(p,q) ∨T(q,p)   (Not everyone is trying equally hard. 
                                                                      ¬∀x∀y[¬T(x,y) ∧ ¬T(y,x)] )
2.  ¬T(X,X)            (No-one tries harder than himself)

3.  U=V                 (There is not more than one person.¬ ∃x∃y¬ [x = y]  )

(4)  (P. 3+1)  T(V1,q) ∨T(q,p)        (take instance U1=V1 of (3);
                                                      match U1 with p and replace by V1)
(5)  (4+2)  T(q,p)               

(6)  (P. 5+3)  T(V2,p)                     ( take instance U2=V2 of (3);
                                                        match U2 with q and replace by V2)
(7)  (6+2) []

Another Example (from Hodges) for you to check

12biParamodulation

Paramodulation  is the method by which equality is included in resolution refutations. It is a 
generalisation of equality substitution: if s=t and s occurs in some sentence S, then t can replace  s 
in any of the occurences. Similarly, if t occurs in S, then s can replace t. (See definition on 12aiii.)

The paramodulation rule consists of several steps, given in 12aiv. It is easiest to apply instantiation 
first, to both the clause containing the equality E as well as to the clause containing the term to 
which the equality will be applied, so that the term being substituted from  is the same as the term 
being substituted into. Then apply the equality substitution.  The resulting clause, called a  
paramodulant,  is the disjunction of the instantiated and substituted clauses (apart from equality E, 
which is omitted).

We'll see that paramodulation implicitly makes use of the Equality Axiom clausal schema 
(12bii/12biii) and can be simulated by resolution, in which case there are two distinct phases: 
(a) use EQAX2 and equation E to obtain  equation E', that can be used to substitute at atom level; 
(b) use E' and EQAX3 to make the substitution at atom level. 

For  (a) there may need to be  (none, 1 or more) applications of using the appropriate EQAX2. 

For example, suppose the clause a=b ∨ C were to be used (E is a=b). In order to substitute into 
P(f(a)), an equality of the form f(..)=t is required. From a=b∨ C and the instance (of EQAX2) 
¬x=y ∨ f(x)=f(y) we get f(a)=f(b)∨C (E' is f(a)=f(b)); then we can use the instance (of EQAX3) 
¬x=y ∨ ¬P(x) ∨ P(y) to obtain P(f(b))∨C.  If, instead of P(f(a)), the atom was P(g(f(a))), then an 
additional instance of EQAX2, ¬x=y ∨ g(x)=g(y), is necessary to obtain g(f(a))=g(f(b))∨C from  
f(a)=f(b)∨C.   
Exercise: Show how paramodulation of X=b into P(f(Y),Y) to derive P(f(b),Y) is simulated by 
resolution and appropriate instances of EQAX2 and EQAX3.



EQAX2 and EQAX3 are substitutivity schema.
There is one axiom for each argument position for each function/predicate.

EQAX2 and EQAX3 as clauses:
EQAX2      ∀[¬xi=yi ∨ f(x1,…,xi,…,xn)=f(x1,…,yi,…,xn)]
EQAX3      ∀[¬xi=yi ∨ ¬P(x1,…,xi,…,xn) ∨ P(x1,…,yi,…,xn)]

Reasoning with equality  "naturally" uses the equality axioms implicitly
EQAX1      ∀x[x=x]
EQAX2      ∀[xi=yi → f(x1,…,xi,…,xn)=f(x1,…,yi,…,xn)]
EQAX3      ∀[xi=yi ∧ P(x1,…,xi,…,xn) → P(x1,…,yi,…,xn)]

12biiEquality Axioms

There is an equivalent form of the Equality Axioms, which are also useful.

Alternative form for EQAX2 and EQAX3:
EQAX2 (Alternative)      
      ∀[¬x1=y1 ∨...∨ ¬xn=yn  ∨  f(x1,…,xn) = f(y1,…,yn)]
EQAX3 (Alternative)      
      ∀[¬x1=y1 ∨...∨ ¬xn=yn  ∨  ¬P(x1,…,xn) ∨ P(y1,…,yn)]

12biiiThe Equality Axioms

Reasoning with equality in resolution and in tableau  implicitly makes use of a set of clausal 
axiom schema and the reflexivity of equality (EQAX1). There are 2 basic substitutivity 
schema:

(i) those that deal with substitution at the argument level of atoms (EQAX3), and
(ii) those that deal with substitution at the argument level of terms (EQAX2).
They are given on Slide 12bii.

An alternative form of EQAX combines the schema for each argument place into a single 
schema that will deal with one or more arguments at the same time. They are:

EQAX2 (Alternative) ∀[x1=y1 ∧ ... ∧ xn=yn → f(x1,…,xn)=f(y1,…,yn)]
EQAX3 (Alternative) ∀[x1=y1 ∧ ... ∧ xn=yn ∧ P(x1,…,xn) → P(y1,…,yn)]

or as clauses:
EQAX2 (Alternative) ∀[¬x1=y1 ∨ ... ∨ ¬xn=yn ∨ f(x1,…,xn)=f(y1,…,yn)]
EQAX3 (Alternative) ∀[¬x1=y1 ∨ ... ∨ ¬xn=yn ∨ ¬P(x1,…,xn) ∨ P(y1,…,yn)]

Exercise (a jolly good one!): Show that the two forms of EQAX are equivalent.
Hint: To show EQAX2(Alternative) implies EQAX2 (and similarly for EQAX3) is easy. You 
need to use Reflexivity. The other direction is a bit harder.

A discussion of models and interpretations of Equality is given later.

Where, in the  "natural" derivation on 12ai, are EQAX used?

To derive line 4, which was T(q,q)∨T(q,p): 
Use EQAX3: ∀x,y,z[¬x=y ∨ ¬T(x,z) ∨ T(y,z)]    +    (p=q)   +   T(p,q)∨T(q,p)

p=q   +   EQAX3 ==> ∀z[¬T(p,z) ∨ T(q,z)]
∀z[¬T(p,z) ∨ T(q,z)]   +    T(p,q)∨T(q,p) ==>  T(q,q)∨T(q,p)

12bivUsing the Equality Axioms in Resolution

The refutation in full from (1)-(3) on slide 12ai  using EQAX:
Given  (1)  T(p,q)∨T(q,p)    (2) ¬T(X,X)     (3)  p=q

(4).  ¬S=Z ∨ ¬T(S,W) ∨ T(Z,W)  (EQAX3)
(5)   (3+4)  ¬T(p,W) ∨ T(q,W) 
             + (1)  =>  T(q,q) ∨ T(q,p) 
(6)  (5+2)   T(q,p)
(7)  ¬S=Z  ∨ ¬T(W,S) ∨ T(W,Z)  (EQAX3)                  
(8)  (3+7)  ¬T(W,p) ∨ T(W,q)  
             + (1) => T(q,q)  
(9)   (8+2) []

Note:  intermediate 
clauses like (5) formed 
from (4) + (3), or (8) 
formed from (7) + (3),  
need not be retained.

12bvSimulating Paramodulation by Resolution
EQAX1      ∀[x=x]
EQAX2      ∀[¬xi=yi ∨ f(x1,…,xi,…,xn)=f(x1,…,yi,…,xn)]
EQAX3      ∀[¬xi=yi ∨ ¬P(x1,…,xi,…,xn) ∨ P(x1,…,yi,…,xn)]

A resolution simulation of paramodulating f(x)=x  ∨ R(x) into P(g(y),y) ∨ Q(y))
                              to give  P(g(x),f(x)) ∨ Q(f(x)) ∨ R(x)

Notice that EQAX2 is 
used first to obtain  an 
equation with a term 
matching the "to" term
(it's g(y) here).

Then EQAX3 is used to 
make the replacement

P(g(x),f(x)) ∨ Q(f(x)) ∨ R(x)

f(x)=x  ∨ R(x)

P(g(y),y) ∨ Q(y)

EQAX2
¬u=v ∨ g(u)=g(v)

R(x)  ∨ g(f(x))=g(x)

EQAX3
¬u=v ∨ ¬P(u,z) ∨ P(v,z)

R(x)  ∨ ¬P(g(f(x),z) ∨ P(g(x),z)

Simulation of this kind 
shows soundness of 
paramodulation. WHY?



Transitivity can be shown similarly. 

1.  X=X                              (EQAX1)
2.  ¬U=V ∨ ¬U=Z ∨ V=Z    (EQAX3)
         (¬U=V ∨ ¬P(U,Z) ∨ P(V,Z) put = for 'P' )
3.  a=b
4.  ¬(b=a)   (3 and 4 from ¬∀x∀y [x=y → y=x]

5.  (2+4)  ¬U=b ∨ ¬U=a
6.  (5+3)  ¬a=a
7.  (6+1)   []

12bvi Equality Axioms also hold for the "=" predicate

EQAX3 ⇒ transitivity of '='.

1.  ¬U=V ∨ ¬Z=U ∨ Z=V    (EQAX3)
         (¬U=V ∨ ¬P(Z,U) ∨ P(Z,V) put = for 'P' )
2.  a=b
3.  b=c
4.  ¬(a=c)   (2, 3 and 4 from ¬∀x∀y [x=y ∧ y=z → y=x]

5.  (1+3)  ¬Z=b ∨ Z=c
6.  (5+2)  a=c
7.  (6+4)   []

Can show that EQAX1 and EQAX3 ⇒ symmetry of '='.
Can combine resolution refinements with the use of equality axioms 
Enables to control the use of equality axioms

eg Paramodulation can be combined with hyper-resolution:

In Hyper-paramodulation,  Hyper-resolution is used for the resolution steps and is 
forced on the use of EQAX. This leads to some restrictions:

(a)  Can only use X=Y if it is an atom in an electron.

(b)  Can only paramodulate into an electron.

•   May need specific instances  of EQAX1 - e.g. f(x) = f(x),  g(x,y) = g(x,y), 
            or must allow explicit use of EQAX2.

12ci

Example1:   (1) a<b ∨ a=b     (2) ¬ a<c     (3)  b<c     (4) ¬x<y  ∨  ¬y<z  ∨  x<z        
(5)  1+3+4: a=b ∨ a<c}     
(6)  P: 5+3: a<c  ∨ a<c ==> a<c (factor) (replace b in b<c by a i.e. use a=b as b=a)   
(7)  6+2: []

Hyper-paramodulation - A Paramodulation Strategy

In Hyper-paramodulation,  Hyper-resolution is used for the resolution steps and is 
forced on the use of EQAX. There are some restrictions:

•   Can only use X=Y if it is an atom in an electron.
•   Can only paramodulate into an electron.

•   May need specific instances  of EQAX1 - e.g. f(x) = f(x),  g(x,y) = g(x,y), 
            or must allow explicit use of EQAX2.

12cii

Example 2: (1)  a=b      (2) ¬P(f(a),f(b) )         (3)  P(x,x)       (4) x=x

Note: (5) P: 1+2: ¬P(f(b),f(b))                                    % would violate restriction (b)

(6) P: 1+3:  P(a,b)                        % unify 2nd x in (3) with a and then replace by b

Then STUCK!                            % Either need (4a)  f(x)=f(x) or use of EQAX2 +(1)

(7)  P:1+4a: f(a)=f(b)    % either unify second x in (4a) with a and then replace by b

                                                                                      % or apply EQAX2 using (1)

(8)  P: 7+3: P(f(a),f(b))            % unify 2nd x in (3) with f(a) and then replace by f(b)

(9)  8+2: []

Hyper-paramodulation (contd) (ppt)

•  EQAX3 (eg ¬x=y ∨ ¬ P(…,x,…) ∨ P(…,y…))  is a nucleus – needs 2 electrons;
one electron must be the one in which a=b occurs and the other must be the one 
in which  P(…,a,…) occurs. This enforces the two restrictions (a) and (b)                                    

•  EQAX2 (eg ¬x=y ∨ f(x) =f(y)) is also a nucleus and needs 1 electron;
that must be the one in which a=b occurs; helps enforce (a)
(Remember: 
         EQAX2 enables terms to be built up for substitution at argument level)

• (c) is caused by (b); 
eg cannot make ¬P(f(a),f(b)) into ¬P(f(b),f(b)) using a=b   
                  (say in order to match P(x,x)), 
     so must derive P(f(a),f(b)) instead from P(x,x); (so can match with ¬P(f(a),f(b)))
     and this requires to derive f(a)=f(b) from a=b
     either by EQAX2, or from f(x)=f(x) and paramodulation

12ciii
How do the restrictions for Hyper-paramodulation arise?
a)   Can only use X=Y if it is an atom in an electron.
b)   Can only paramodulate into an electron.
c)   May need specific instances  of EQAX1 - e.g. f(x) = f(x),  g(x,y) = g(x,y), 
            or must allow explicit use of EQAX2.

Can then use paramodulation (match f(a) from f(a)=f(b) with 2nd x in P(x,x))



12civ

RUE-Resolution (Digricoli,Raptis)  (Uses the alternative form of EQAX)

Informal example:  
P(a)∨D, ¬P(b) and ¬x=y ∨ ¬P(x) ∨ P(y)  (ie C1, C2 and EQAX3) ==> D ∨ ¬a=b

To match P(a)  and ¬ P(b) (to resolve C1 and C2) must show a = b. 
The goal "show a=b" is represented by ¬a=b 
         and it is refuted after matching P(a), P(b)

Given   C1≡L(t1,...,tn) ∨ D    and    C2≡¬L'(t1',...,tn') ∨ E
the RUE-resolvent is D ∨ E ∨ ¬t1=t1' ∨ ....  ∨ ¬tn=tn'  
where, in EQAX3,
L(t1,...,tn) unifies with L(x1,...,xn) and L'(t1',...,tn') unifies with L(y1,...,yn)

RUE forces a kind of locking  on use of alternative EQAX
The locking gives ¬x1=y1, ..., ¬xn=yn higher indices than other literals

EQAX2 (Alt)      ∀[¬x1=y1 ∨...∨ ¬xn=yn  ∨  f(x1,…,xn) = f(y1,…,yn)]
EQAX3 (Alt)      ∀[¬x1=y1 ∨...∨ ¬xn=yn  ∨  ¬L(x1,…,xn) ∨ L(y1,…,yn)]

Example2:   (1)P(x,x,a)      (2) ¬P(b,y,y)       (3)   a=b    
                     (4)  RUE: (1+2):   ¬x=b  ∨ ¬x=y ∨ ¬a=y  (Match arguments)
Now there are several solutions:
Solution 1: x==b, y==b (match with EQAX1on lits 1 and 2 and (3) on lit 3)
Solution 2: x==b, y==a (match with EQAX1 on lits 1 and 3, use (3) as b=a)
Solution 3: x==a, y==b (match with (3) for all literals)
Solution 4: x==a, y==a (match with EQAX1 on last 2 literals)

12cvRUE-Resolution (Contd.) (ppt)

Can also use some simplification steps to reduce literals of the form ¬t1=t2 
eg ¬f(a)=f(b) can reduce to ¬a=b by EQAX2 implicitly
     ¬x=a can reduce to x==a by EQAX1 implicitly
These are optional steps.

Given   C1≡L(t1,...,tn) ∨ D    and    C2≡¬L'(t1',...,tn') ∨ E
the RUE-resolvent is D ∨ E ∨ ¬t1=t1' ∨ ....  ∨ ¬tn=tn'  

Example1:  (1)  a<b ∨ a=b     (2) ¬a<c      (3)   b<c      (4)  x<z ∨ ¬y<z ∨ ¬x<y    
               (5)  RUE  (2+3): ¬a=b ∨ ¬c=c            (6)  (5+1): a<b  ∨ ¬c=c 

               (7) (4+6+3): a<c ∨ ¬c=c        (9)  (7+2): ¬c=c      (10) (9+reflex): [ ]

Notes on Hyper-paramodulation

The simulation of Hyper-paramodulation using Hyper-resolution (HR) and equality axioms 
shows soundness of paramodulation.  For completeness, we'd like to show that a hyper-
paramodulation refutation can be constructed from a HR refutation using also EQAX.

Suppose there is a HR refutation using EQAX. Then
Use of EQAX3 simulates a hyper-paramodulation step already
Use of EQAX2 can also be turned into a hyper-paramodulation step using reflexive axioms 
such as f(x)=f(x).   (Details an exercise.)

Notes on  RUE-resolution
RUE-resolution is an alternative to paramodulation as a way of including EQAX implicitly 
into the deduction. It can, informally, be interpreted as trying to impose locking onto the use 
of equality axioms.  It is as though some kind of locking strategy is applied to EQAX3 such 
that the non-equality literals must be resolved (with other clauses) before any other useful 
resolvents can be made using these axioms. i.e. the equality literals are locked highest in 
EQAX3. The alternative form of EQAX3 (and EQAX2) are the most appropriate to use 
here. That is:

EQAX2 (Alternative) ∀[¬x1=y1 ∨ ... ∨ ¬xn=yn ∨ f(x1,…,xn)=f(y1,…,yn)]
EQAX3 (Alternative) ∀[¬x1=y1 ∨ ... ∨ ¬xn=yn ∨ ¬P(x1,…,xn) ∨ P(y1,…,yn)]

Thus the basic step is to match two potentially complementary literals with the two "P" 
literals in the appropriate EQAX3 schema. The result is a disjunction of inequalities, which 
can then be resolved with either EQAX1, EQAX2, or equations in the data.

12cvi

Notes on RUE-resolution (continued)

If the RUE-resolvent includes an equality ¬t1=t2 such that t1 and t2 are not different 
constants, then further simplifications may be applied using either EQAX1 or EQAX2.

For instance:
If t1 and t2 are identical terms, then resolve with EQAX1.
If t1 and t2 are functional terms f(x1,...,xn) and f(y1,...,yn) (and there is no appropriate 
positive equality matching ¬t1=t2), then resolve with the EQAX2 (for f) to get 
¬x1=y1∨... ∨¬xn=yn. Can possibly apply further simplifications to each of the 
inequalities so introduced. 
If t1 or t2 is a variable, then could resolve with EQAX1 to instantiate the variable. But 
note that  ¬t1=t2 might also resolve with some other equality present in the data.
In all 3 cases the original inequality will be eliminated.

Exercise (good one):  
Compare the use of RUE-resolution and Paramodulation for the 3 clauses   
         (1)   P(x,x,a),    (2)   ¬P(b,y,y),    (3)   b=a.

12cvii



12di

•    Useful models are those in which  '=' satisfies EQAX at ground level.

SOME PROPERTIES OF EQAX

•  Paramodulation allows the properties of '=' to be taken into account 
implicitly and to avoid using them explicitly.

•   (Theorem)  A set of clauses S is E-unsatisfiable  iff  S has no models in 
which '=' is interpreted as  the identity relation (called normal models).  
(See Optional material for these slides)

•   S is  E-unsatisfiable if S has no E-interpretations.

•   (Corollary)  S is E-unsatisfiable iff S+EQAX is unsatisfiable.

•  Completeness Result:  (Peterson 1983)     If S is E-unsatisfiable, 
then [] can be derived from S ∪ {X=X} by paramodulation and resolution.  

•    An E-interpretation is an H-interpretation HI ,  which satisfies:
         t=t is true in HI for all t in the Herbrand Universe
         if s=t is true in HI then t=s is true in HI
         if s=t and t=r are true in HI then s=r is true in HI
         if s=t is true in HI then f(s)=f(t) is true in HI for every functor f
                           (and similarly generalised to functors of arity > 1)
         if s=t and L[s] are true in HI   then L[t] is true in HI

12eiSummary of Slides 12
1. The use of equality is ubiquitous in every day reasoning. It uses the natural rule 
of substitution. Given an equality atom such as p=q, occurrences of p may be 
repalced by q (or vice versa) in any context.

2. Equality reasoning implicitly makes use of equality axiom schema. We called 
these schema EQAX1 (Reflex), EQAX2 (for building up equations between terms) 
and EQAX3 (for substitution).

3. In resolution theorem provers the natural rule of equality substitution is 
generalised to paramodulation, in which the equality may be one disjunct of a 
clause, and may involve variables, both in the equality and/or the context.

4.Paramodulation leads to a large increase in the search space, especially when 
equalities have variables, since they will match many contexts. e.g. given f(x)=x, 
even if the equality  is restricted so that only occurrences of the RHS may be 
substituted for occurrences of the LHS, there are four places in which the equality 
can be used in the context P(f(f(y)),y). (What are they?)

5. The completeness of paramodulation and resolution states that E-
(un)satisfiability can be checked using paramodulation.

12eii

6. In the context of H-models and equality, (un)satisfiability is defined through the 
notion of E-(un)satisfiability and E-interpretations.

7. Ways to control paramodulation have been investigated. Hyper-paramodulation is 
one way, in which hyper-resolution restrictions are imposed on the use of equality 
substitution axioms, as well as the ordinary clauses. These restrictions constrain 
both the equality used to provide the substitution and the literal being substituted 
into to belong to an electron. For completeness, functional instances of EQAX1 
(Reflex) may be needed.

8. A second control method is RUE resolution, in which the equality literals in 
equality axioms (EQAX3) are always the last literals to be resolved upon. This 
enforces resolution on the two "P" literals in such axioms, which results in 
``matching'' the literals and generating negative equality literals that can be 
interpreted as goals to be derived. e.g. P(f(f(y)),y) can be RUE-resolved with 
¬P(f(a),a): first match corresponding terms: f(f(y))=f(a) and y=a and then set them as 
goals (i.e. negate them) yielding ¬f(f(y))=f(a) ∨ ¬y=a, which gives ¬f(y)=a ∨ ¬y=a. 
These have to be proved from the given data.

SSSTTTAAARRRTTT   ooofff   OOOPPPTTTIIIOOONNNAAALLL   MMMAAATTTEEERRRIIIAAALLL
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12fiModels including the Equality Literal: Notes on Normal Models(1)

Herbrand Models and Equality: You may already have come across interpretations and 
satisfiability when equality is involved and learned that "=" is normally interpreted as identity. 
That is, Val("="(p,q)) = Val(I("=")(I(p), I(q))) holds iff I(p) = I(q). That is, iff "p" and "q" are 
mapped to the same domain element. On slide 12aii we  apparently found a model because we 
did not observe this convention.

Now, you have also learned that by definition a H-interpretation maps each term to its name, 
and thus "p" and "q" will map to different domain elements and the above convention cannot 
be incorporated in the context of H-models and H-interpretations. (Recall that I("p") = p and 
I("q")=q, and p and q are unique domain elements. This is why, in the context of resolution 
and Herbrand interpretations we use the equality axioms instead. The theorem on slide 12di 
states that the two approaches are equivalent for refutations. 

Standard approaches to incorporating equality in tableau and first order logic introduce the 
notion of normal  models, in which the equality predicate is interpreted as identity. I.e. if p=q 
is true, then p and q must be interpreted as the same domain element.  Consider again the 
clauses on slide 12ai: (1)  T(p,q)∨T(q,p)    (2)  ¬T(X,X)     (3)  p=q
Let I(p)=I(q) = s (say).  Then  Val(p=q) = Val(I(=)(I(p),I(q))) = Val(I(=)(s,s)).  If I(=) is 
identity, then I(=)(s,s) is True.  Hence Val(T(p,q)) = Val (I(T)(s,s)) = Val (T(q,p)) = 
Val(T(p,p)) = Val(T(q,q)).    Then (1) and (2) cannot both be true

12fiiNotes on normal models (2):

Justification of Corollary on Slide 12di: 
We show the contrapositive: S is E-satisfiable iff S+EQAX is satisfiable. 
(if case:) Let M be (any) model of S+EQAX; then there is also a H-model of S+EQAX (see 
slides 4). But this is an E-interpretation by definition, so S is E-satisfiable. 
(only if case:) On the other hand, suppose S is E-satisfiable and let M be an E-interpretation 
that satisfies S; then M also satisfies the EQAX by definition.

(Proof outline of Theorem on Slide 12di)

(Theorem)  A set of clauses S is E-unsatisfiable  iff  S has no models in which '=' is 
interpreted as  the identity relation (called normal models).  

(only if case:) Suppose S is E-unsatisfiable - then S+EQAX are unsatisfiable and S has no 
normal model, for such a model would violate the assumption. 

(if case:) On the other hand, if S +EQAX are satisfied by some model M, i.e. they are E-
satisfiable, then S+EQAX have a H-model H; this H is therefore an E-interpretation. E-
satisfiable clauses S have normal models as well, formed by considering the equivalence 
classes imposed by the given equalities as domain elements and constructed from H (see 
Chapter notes on paramodulation on my webpage www.doc.ic.ac/~kb for the construction 
details). See example on next slide.

12fiii
Notes on normal models (3):

Example:  Given: S is the set of facts p=q, T(p,q), ¬T(X,X). 
Suppose T(p,q), p=q, q=p, p=p, q=q are true and T(p,p), T(q,p), T(q,q) are false.
This is not an E-interpretation as it doesn't satisfy the following instance of 
EQAX3: ¬p=q  ∨ ¬T(p,q) ∨ T(q,q).

Now let  S' be S without ¬T(X,X) (i.e. S' is the set of facts p=q and T(p,q)).
Suppose all atoms are true, then both facts in S' are true in this (Herbrand) E-interpretation.  
However, it is not a normal model as it satisfies p=q, yet p and q are not mapped to the 
same domain element.

A normal model M for S' might use the domain {d}, and the mapping p->d, q->d. 
Suppose M sets T(d,d) true and interprets "=" as the identity relation (i.e. d=d is true). 
M satisfies p=q (which is interpreted as d=d), and clearly satisfies the equality axioms.

In general, to obtain a normal model must ensure that all terms that are equal to one 
another, i.e. in the same equivalence class, are mapped to the same domain element. The 
domain of the normal model consists of  the names of the equivalence classes (c.f.  d in the 
example.)

12giUsing Equality in Otter

Otter includes many settings for controlling paramodulation. It is possible to restrict whether 
paramodulation is allowed from either the left or the right sides of an equality literal 
(para_from_left, para_from_right), or to either the left or the right sides of an equality literal 
(para_into_left, para_into_right), (all set by default). 

Paramodulation from variables and into variables can be controlled (para_from_vars, 
para_into_vars), (both clear by default).

Paramodulation from or into units can be enforced (para_into_units_only, para_from_units_only), 
(both clear by default).

There are some other flags which are useful if orderings have bee imposed, in that equalities are 
ordered. Used in conjunction with the para_from_left and para_from_right flags enables the 
search space to be quite reduced. 

Of course, completeness is not guaranteed if certain steps are forbidden. But the search space is 
much reduced, and often a refutation can still be found. The Otter manual gives full details.


