AUTOMATED REASONING

SLIDES 14:

TERM REWRITING SYSTEMS
Term rewriting
Overview of Knuth Bendix completion
Properties of rewrite systems
Church-Rosser
Confluence
Termination
Relation between the properties
Using confluent rewrite systems

KB - AR - 2013

Some Terminology of Rewrite Systems 14aii
L A rewrite rule is an oriented equation | =>r, s.t. all variables in r occur in I.
e An expression e[s] rewrites to e[r0] (e[s]=>e[rB]) by |=>r ifs=10
Note: ground terms rewrite into ground terms
* s =>*t denotes s rewrites to t using none or more steps
¢ A term is irreducible (canonical) w.r.t. a rewrite system if no rule applies to it.

A term may rewrite forever: Given: 3. x+y => y+x
a+tb =>b+a=>atb=>b+a=> ...

« A term may be rewritten in more than 1 way by a set of rules:
Example:

4. 0+x =>x 5. -x+x =>0 6. (X+y)+z => x+(y+2z)
0+((-1+-1)+1) =>(4) (-1+-1)+1 =>(6) -1+(-1+1) =>(5) -1+0
0+((-1+-1)+1) =>(6) 0+(-1+(-1+1)) =>(5) 0+(-1+0) =>(4) -1+0

But sometimes different orders may vyield different results:

(--1+-1)+1 =>(5) 0+1 =>(4) 1

(--1+-1)+1 =>(6) --1+(-1+1) =>(5) --1+0

The aim of the Knuth Bendix Procedure is to eliminate this second effect

Term Rewriting Systems 14ai

« All sentences are unit equations (O is implicit).
« Problem is to show that ground terms t1 and t2 are equal given equations E.
Although this could be done using paramodulation

« To cut down the search space the equations are used in one direction only,
called orienting the equations.

EXAMPLES of rewriting using oriented equations
1. x+0 =>x 2. x+s(y) => s(x+y)

s(0)+s(s(0)) => s(s(0)+s(0)) (by 2) => s(s(s(0)+0)) (by 2) => s(s(s(0))) (by 1)
ie s(0)+s(s(0)) and s(s(s(0))) are equal given the equations 1 and 2.

Also:
s(2)+s(s(0)) => s(s(2)+s(0)) (by 2) => s(s(s(2)+0)) (by 2) => s(s(s(2))) (by 1)

In these examples bindings are applied to the rules (1 and 2) but not the terms;

We can't rewrite s(u+v) using 1 or 2 (L=>R) since v is not known to be 0 or s(?)
We can't rewrite s(u+v) using 1 or 2 (R=>L) as arrow goes in other direction

If the data consists only of equations there are special techniques that can be applied tc
given goal. A set of equations can be usedtamarewriting system. This requires that (i) the
equations are orientated and used in paramodulation steps in one direction only, (ii) the
not used to paramodulate into each other, and (iii) variables in the term being paramody
into are not bound by the step.

With the restrictions (i), (i) and (iii), the proofs can be written down in a simpler way, wh
they are calledewrite proofs and the steps are callealriting steps. If requirement (iii) is
relaxed, so that the term being paramodulated into may be instantiated by the step, thel
process is calledarrowing. (See slides 17.)

Some simple examples show that limiting the use of equations to a single direction and
restricting their use can prevent some true goals from being proved. For example, consi
and a=c, which we know should entail b=c. Howeifenve are allowed only to substitute for
(ie to use the equations as rules a=>b and a=>c), then the negated goal -(b=c) cannot |
refuted. We need the additional equation b=>c, from which we can derive the goal ~(c=
hence [].

To avoid this problem, the rewriting equations should satisfZtuech-Rosser property, or,

equivalently confluence. The Church-Rosser property guarantees that if two teemdt can

be shown to be equal (eg by refuting —~(s=t) by paramodulation and reflexivity), then the
be rewritten into a common term by the orientated equations. In the above example, the
rewriting equations do not have this property, as clearly b=c, yet b and c do not rewrite
common term. =(b=c) can be refuted by paramodulating with a=b and a=c to give =(a;
then resolving with x=x. 14aiii

The Knuth-Bendix Completion procedure will attempt to find, from a given set of
equations, a set of (equivalent) rewriterulesthat possess the Church-Rosser property.

Rewriting and Paramodulation 14aiv

In general, given some equations, to show s=t by paramodulation, start from —(s=t)

and try to use equations to turn both s and t into a common term r, deriving —(r=r)
and then resolve with x=x. i.e. =(s=t) + equations ==>*[]

We'll write s =*t to denote that =(s=t) ==>* [] by paramodulation
Example: (4) O+x=>x (5) -x+x=>0 (6) (Xx+y)+z => x+ (y+2z)

If (4) - (6) are treated as equations, from —(--a+0=a) derive [] by paramodulation:
=(--a+0=a) ==>(5) =(- -a+(-x1+x1) = a) (replace 0)

==>(6) -((--at+ -x1)+x1 = a)

==>(5) -(0+a = a) (instantiate x1==a)

==>(4) =(a=a) ==> [] (resolve using reflexivity)

Hence --a+0 =* a

If (4)-(6) are treated as _ (- -a+ -a)+a
rewrite rules can transform . %+Qm<; (r?) +a==>0

--a+0 into a only if rules a}_’ ai: <c_e (-6a) a== o

can be used in both c-at(-ata)<= - -at+(-a+a) +a
directions; i.e. it is not a g%)za =>(5)

rewrite proof. <= means a a=>(4)

rule is used in reverse - -a+0 a

Summary of Rewriting So Far

Given a set of rewrite rules:

« To show s=*t by rewriting:

either: rewrite s into t, (s =>*), or rewrite tinto s, (t =>* s)

or rewrite s into r and rewrite tinto r (s =>* r and t =>*r)

— all steps in the direction of => and no binding to variables in s or t

« This is essentially using (restricted) paramodulation in direction of =>,
to derive [] from =(s=t) (needs additionally one resolution step using x=x)

A rewrite proof of s=*t

s s -— Uses directions of =>
— r

A non-rewrite proof of s=* t

. Does not always use
¥ \ directions of =>

l4av

Completion — Informal Overview (Specific case) (ppt) 14bi

Example: Wantto show: --a+ 0 =*a but using all rules in => direction

Given (1) O0+x=>x (2) x+x=>0 (3) (Xty)+z =>x+(y+z)

A non-rewrite proof Suppose could derive (4) -x1+(x1+z) =>z
(--a+-a)+a - -a+(-a+a)
(3/ \2) j w‘
--a+(-ata) Ota --a+0 a
1(2) 1(1) Still not a rewrite proof
--a+0 & Suppose could derive (5) - -z+0 => z
--at0 A rewrite proof

o

The Knuth Bendix Procedure tells us how to derive (4) and (5) from (1) - (3)

Completion — Informal Overview (General case) 14bii

/P A non-rewrite proof

1 \ Want to derive some new

/ / \ rewrite rules to avoid peaks.
Then t1 and t2 can be rewritten
to the same irreducible term t.
(See 4)

t1

— . The crucial terms are those at

2 * the top of the peaks, such as

/ \ / P1, which can be rewritten in

tl . > more than one way, by (say)
rules (a) and (b).

Nearly a rewrite proof
3 Then a new rewrite rule can be
tl—"" . derived that reduces the size of

the peaks.
A rewrite proof Eventually all peaks will be
4 . - » removed and a simple rewrite
t ™ proof can be found.
Critical Terms(I1) 14biv

Finding critical terms is quite easy. Given two rules rl and r2, if the LHS of r1 can be 1
with the LHS of r2, or with a subterm of the LHS of r2, then the "common" instance ca
rewritten by rl and r2 into (say) rl1' and r2'. By applying rewrite rules to r1' and r2', rew
as far as possible, two terms will be derived that are either the same (no problem), or
When they are not the same the two different terms yield a new rule. This overlappinc
matching is calleduperposition. Actually, it is also paramodulation of one rule into anott

For example, suppose there are two rules$(x,x)=>x and r2: f(a,u)=>bThe common

instance (and the critical term), found by superposition, is f(a,a) and it can be rewritter
to a (by rl) and to b (by r2). The new rule would be (say) b=>a, which of course can k
by paramodulation too: paramodulate f(a,u)=b into f(x,x)=x¥e §=a, maybe ordered as
b=>a (bind u==a and x==a). This new rule b=>a is needed to show by rewriting that f(
and b are equal (they both rewrite to a). This would not otherwise be possible by rl ar
alone, even though we can show f(b,a) =* b using r1 and r2 as equations and restricti
paramodulation s.t. no bindings are made to the "into" term. The paramodulation deri
would be: -(f(b,a)=b) ==>(by r1 in the wrong direction) -=(f(b,f(a,a))=b) ==>(by r2)

=(f(b,b)=b) ==>(by r1) -b=b ==>[] (by resolution with x=x). With the new rule we can
directly from =f(b,a)=b to =f(a,a)=b, and then to =b=b by r2, which resolves with x=x .

On the other handsing the new rule and rewriting, f(b,a) => f(a,a) => a and b=> a, he
f(b,a) and b both rewrite to the same term "a".

Paramodulation is therefore used in two ways in finding critical pairs: first in superpos
and then in rewriting. In rewriting a restricted form is used.

Critical Terms (1) 14biii

In general, a rewrite proof to show terms t1 and t2 are equal will rewrite t1 and t2
common term t. However, sometimes this can only be carried out if some of the ¢
are made in therong direction (i.e. using the rewriting equations froight to left
instead of fromeft to right.) In this case the "proof" will have one or mpeaks. The
example on 14bi is like this. The term at the apex of the peak is

(--a +-a)+a, which can either be rewritten into --a +(-a +a) by (3) and then into -
by (2), orinto 0 +a by (2) and then into a by (1).

If there is a peak in the proof, then at the apex there is gtdtrat can be rewritten in
two different ways. Such terms pscalledcritical terms, play a crucial role in the
Knuth-Bendix procedure arzhn be rewritten (in 1 or more steps) into ditberent
termss andr. (If sandr could be rewritten to a common term, then there would be
need to go to the top of the peak and back.) The Knuth Bendix procedure finds |
most general critical terms which rewrite to eitical pair of (different) terms andr
from whicha rewrite rule can be derived, eitlser> r orr => s; this rule can be usec
to flatten out the peak.

In the example on Slide 14bi the critical term (--a + -a) +a is an instance of the cr|
term (-x+x) +z. A new rule is found from the result of rewriting this in two ways,
namely -x+(x+z) => z. This new rule will allow a shorter way to show --a +0=a:
--a+0 <=--a+(-a+a) => a. It might be quite useful for other rewrite proofs (in this
domain) as well. The Knuth Bendix procedure gives a way of finding these new ri

Critical terms and Critical Pairs (1) (ppt) 14ci
c If ¢ can be rewritten in two ways it is called a critical term
/ \ Results of rewriting t1 and t2 as far as possible are called
a critical pair
Most general critical terms are found by overlapping
1) f(x,x)=>e L.H.S. of rules in a process called Superposition

©) f(g(u).v) =>g(f(u.v)) ie a common instance of the LHSs of two rules can be

rewritten in more than one way.

Here it's f(g(u),g(u)) which will rewrite by (1) and (2):
f(g(u),g(u)) f(g(u),g(u))=>e (1) and =>g(f(u,g(u)) (2)
(by l}/ \ (by 2) Exercise : find superpositions using (3):

= g(f(u,g(u))) can either overlap LHSs of 2 rules, or LHS of one
rule with a subformula in another rule

Unify f(x,9(x)) in (3) with f(g(u),v), or

Unify g(u) in (2) with g(f(x,g(x))), or

There's one more - can you find it?

Hnt: consider 2 copies of (3) (Answer on 14cii)

Obtain a new rule:
(3) 9(f(x,g(x))) => e

Critical Terms and Critical Pairs (2) (ppt) 14cii
2 1l g .
g(u),v) =>g(f(u,v
(3) g(f(x.gX)) =>e g(f(g(U()Z.?(g(U))) —
(4 9(g(f(u.glgW)) => e (by 3) by 2)
(5 g(f(ix.g(x)v) => fev) / X
e g(g(f(ug@EwW))
€)
g(f(f(x,9(0) 9(F(x.9x))))) @)
®) f(g(f(x.gx)).v)
R NE 3) — (5)
b
oliixo)e) e R ARNCE
y5) / / ofx.g0)v) flew)
f(e.e) (by1
Super position: Some Examples 14ciii

Example 1. (Slide 14ci/14cii) The rule (3) and rule (2) can be superposed in two diffe
ways: the first way yields a critical term g(f(g(u), g(g(u)))), which rewrites by (2) into
g(g(f(u,g(g(u))))) and by (3) into e giving new rule (4) g(g(f(u,g(g(u))))) =>e. The sect
way vields a critical term f(g(f(x,g(x))),v), which can be rewritten by (2) into
g(f(f(x,g(x)),v)) and by (3) into f(e,v). This gives another new rule (5)
g(f(f(x,g(x)),v))=>f(e,v). Rule (3) can also be superposed onto a copy of itself:

g(f(x,g(x))) matches with g(x1) in the copy g(f(x1,9(x1)), rewriting to g(f(f(x,g(x)),e)) ¢
then by (5) to f(e,e) and by (1) to e and also by (3) to e, giving no new rule.

Note also that g(f(u,g(u)) on slide 14ci cannot be further rewritten by (1) or (2) asto
do so would require making a binding to u.

Example 2. (Slides 14civ-cviApplying superposition to the rules on 14civ, the first

attempt at a new rule yieldsthing. Although a term that matches (0+y)+z can be rew
in two different ways, the result is the same eventually. But the second attempt, usir
(2) and (3), in which (x+y) in (3) is matched with -x1+x1 from (2), gives the new rule
x1+(x1+z)=>z. In the example, this allows - -a+(-a+a) to be rewritten into a, so the re
proof using this rule in addition to rules (1-3) is - -a+0 <= - -a+(-at+a)=>a (see slide 1
This has a smaller peak than before (and has a new critical term). The last step sup
(2) onto (4) giving new rule (5), which allows - -a+0 to be rewritten directly into "a".

If the example on 14civ is continued, after some more superpositions it will eventual
terminate, there being no new rules produced. But the example on 14cii does not te
- there are always new (and more and more complex) rules that can be derived.

Given (1) 0+x=>x (2) x+x=>0 (3) (X+y)+z =>x+(y+2z)

() Superpose 1 on 3: (0+y)+z
7 N\
-— 0+(y+2) (y+2) X (-x1+x1)+3z
(y+2z) / —~—

-X1+(x1+2)

0+z
* (1) Superpose 2 on 3:
z gives -x1+(x1+z) =>z (4))

<-Z+(-2+2)

(Il Superpose 2 on 4.
gives - - z+0=>7z (5) V\é (|V) NOW, using (5) can

- -7+0 z rewrite - -a + 0 into a

Additional Example: Want to show: —a+0=>a 14civ

Exercise: T4cvi

Using the rules (1) to (5) from 14civ (repeated here), find some more rules
that will allow to rewrite --a into a.

(1) O+x=>x (2) x+x=>0 (3) (xty)+z =>x+(y+2)
Derived (4) -x1+(x1+z)=>2z and (5) --z+t0=>2

Hints:

Try (3) + (5) to give a further new rule (6) --z+w =>z+w
and then use (5) and (6) to derive z1+0=>z1

and then possibly (2) and (6) to obtain z+-z=>0

or (2) + (4) ...

Example: Wantto show: --a+0=>a l4cv

Given (1) O+x=>x (2) x+x=>0 (3) (X+y)+z =>x+(y+z)
Derived (4) -x1+(x1+z)=>2z and (5) --z+0=>2
+-a) + -7+ a)+a
(--a+-a)+a
3 (2 \
/ \4) --a+(-ata) O+a
--a+(-ata) O+a

/ /
@) (1) --a+-a)+a --a+

--a+0 a
\ --7+(a+a) O+a
(4 /
--at0 \ !

You can see how rule (4) allows to remove the peak at (--a+-a)+a,
and rule (5) allows to remove the peak at --a+(-a+a)

Example (see ppt): (1) O+y=>y (2) s(x) +y => s(x+y) 14cvii

No possibilities here for overlapping LHSs except overlapping on a variable,
which only ever leads to equations of the form t1=t1, so no extra rules.
eg, try overlapping 0+y1 on x in (2). Effect is to bind x==0+y1

s(0+yl)+y =>(1)=> s(y1l)+y and then =>(2)=> s(y1+y),
AND
S(0+yl)+y =>(2)=> s((0+y1)+y) and then =>(1)=> s(y1+y)

Can show that the only terms rewritable in two ways which need to be
considered are critical terms formed by
overlapping LHS(rulel) onto (non-variable subterm of) LHS(rule2)

see optional part of slides 16 for a justification)
That is, there is no need to overlap LHS(rulel) onto a variable in LHS(rule2)

Superposition and Paramodulation (Non-examinable)
We saw already that rewriting is a restricted form of paramodulation

Superposition and forming critical pairs is also paramodulation:
(but now the "to" and "from" terms are the LHS of equations only)

1) fxx)=>e 2) f(g(u).v) => g(f(u.v)) 3) g(f(x.g(x)) =>e
Use (1): unify f(x,x) with f(g(u),v)

giving f(g(u),g(u)) = e and f(g(u),g(u)) = g(f(u,g(u)))
leading to e = g(f(u,g(u))) by paramodulation.

Generally: if given

L1=R1 and L2[L3] = R2 (meaning L3 occurs in context L2) and L16 =L30
then superposition gives L2 [R16] 8 = R26 (ie replace L36 (= L16) by R16)

In the example:

L1 is f(x,x) and L3 is f(g(u),v); the context L2 is empty;
0 is {x==g(u), v==g(u)}, R1is e and R2 is g(f(u,v)); R16 =e and R26 = g(f(u,g(u)))

PROPERTIES OF REWRITE SYSTEMS (1) 14di

» Would like a rewrite system R to be complete

If s =*t then Cl[s=>*u and t =>*u]
i.e. when two terms are equal want to prove that they are by rewriting.
This is called the Church Rosser property.

e andsound If Cl[s =>*u and t =>*u] then s =*t
i.e =(s=t) ==>*[] by paramodulation
i.e. two terms proved equal by rewriting are so.

To be useful, a rewrite system should also terminate -
else how could you use it to conclude —(s =*1t)?

« A rewrite system is called Noetherian (terminating) if there is no infinite
sequence of rewrites of the form s0=>sl=> ... =>sn=>...
(eg f(x,y) => f(y,x) is not terminating)

yielding: L2[e] = e = g(f(u,g(u))) 14cviii

PROPERTIES OF REWRITE SYSTEMS (2) 14dii

Soundness: If Cu[s =>*u and t =>*u] then s =*t

Proving Soundness is quite easy:
Recall that rewrite rules are also equations and rewriting is restricted
paramodaulation;

Hence
s =>* yimplies (1): s =* u and and t =>* u implies (2): t =*u;
Therefore, by one or more paramodulation steps
=(s=z) ==>* =(u=z) (for any z) by (1), and
=(v=t)==>* =(v=u) (for any v) by (2)
(all by EQAX)

Now, given —(s=t) first apply steps of (1) to s to derive -(u=t),
then apply steps of (2) to derive =(u=u),
and then use EQAX1 and resolution.

PROPERTIES OF REWRITE SYSTEMS (3) 14dii

e Church-Rosser property:
if s=*t then Cu[s=>*u and t=>*u]
i.e. equal terms rewrite to the same term.

¢ Confluence:
if s =>*u and s =>* v then [[u=>*t and v =>*{]
i.e. if a term rewrites to 2 other terms then those terms rewrite to a common term.

¢ Local confluence:
if s=>u and s=>v then [Q[u=>*t and v=>*].

Some Useful Facts (Proofs in Optional Material)
(Fact A) R is Church-Rosser iff R is Confluent

(Fact B) If R is confluent and terminating then every term has a unique
normal (irreducible) form. We say R is canonical .

(Fact C) If Ris locally confluent and terminating then R is confluent.

USING A REWRITE SYSTEM to SHOW s=t 14div Basis of the KNUTH-BENDIX procedure 14dv

Given: R, a confluent and terminating rewrite system and two terms s and t. » Using the facts A, B and C, and given a rewrite system R, to
show R is complete you need to:

(i) Since R is confluent it is sound and complete.

(i) Apply R to s and t; since R is terminating the rewriting will stop.

(iii) Suppose s =>* w and t =>*z and w and z are identical.

(iv) Then s =*t (by soundness).

(v) Suppose s =>* w and t =>*z and w and z are not identical. Then s =*t is false:

» show R has the Church-Rosser property;

* i.e. show R is confluent (by Fact A);

« i.e. show R is locally confluent and terminating (by Fact C). /\/
If R is not locally confluent, then the dotted part in the u

diagram cannot be completed; so add rule ul =>v1 (or ‘[|:+
vl

Proof of (v): Suppose s =*t were true; by completeness [x[s =>*x and t =>*x] and vl =>ul). The two terms u and v then rewrite to a

by Fact B x rewrites to a unique irreducible term y (say). Hence s and t also common term, namely v1 (or ul). ul

rewrite to y uniquely, contradicting that w and z are not identical. (See left below) This is the basis of the Knuth Bendix procedure. . p
t

S t t Knuth Bendix relies on rewriting sequences being terminating.
C }, S If w and z are identical Informally, "Termination" will occur if each term in a rewriting sequence is
C C O then s =*t "smaller" than the previous one and no infinite descending chains of such
X) sequences can exist.
If w and szre different If (i) for all rewrite rules the RHS is "smaller” than the LHS, and
W C 7 then —(s =*t) \ :
O (ii) reducing a subterm of a term also reduces the term,
\ }/ W z then sequences of rewrites will lead to smaller and smaller terms.
As long as the ordering chosen is well-founded, termination will always occur.

y

Summary of Slides 14 14ei

1. A rewrite rule is an ordered equation used in paramodulation in one direction
only, from left to right. Variables on the rhs must also occur on the Ihs.

8. The main operation in the Knuth Bendix procedure is the formation of
critical pairs. All terms s that can be rewritten in 2 or more ways can be
captured by superposition, in which the left hand sides of 2 rewrite rules (say
rule 1 and rule 2) are matched, or overlapped. The resulting term is rewritten

2. A rewrite rule r=>s can be used to rewrite a term e[t], by matching t with r
and then replacing it by s6. Note no substitutions are applied to t.

3. A term may often be rewritten in more than one way using rules in a rewrite
system R. R is called canonical if, whatever rewrites are applied to a term t,
there is only one outcome (i.e the rewrite system is confluent and terminating).

4. A rewrite System is called terminating if there is no infinite sequence of
rewrites for any term in the language.

5. Arewrite system is confluent if, whenever t rewrites to t1 and t2, then t1
and t2 rewrite to a common term s.

6. A rewrite system is Church Rosser if, whenever s=t (modulo rewrites taken
as ordinary equations), then s and t rewrite to a common term.

7. At the heart of the Knuth Bendix procedure is the aim to make a rewrite
system confluent.

as far as possible starting in two different ways, first using rule 1 and then
any of the other rules, and then using rule 2 and any of the other rules.

If the results are different, say s1 and s2, then s1 and s2 are called a critical
pair.

9. The Knuth Bendix method relies on the fact that local confluence +
termination imply confluence. A system is locally confluent if, whenever s
rewrites to 2 different terms s1 and s2 in one step, then s1 and s2 rewrite to
a common term.

Note the difference with confluence, where s is assumed to rewrite to s1 and
s2 in an arbitrary number of steps. Thus local confluence is weaker, hence
the extra condition on termination is required in the Knuth Bendix procedure.

10. A confluent and terminating system can be used to show s=*t modulo a
rewrite system: if s and t (eventually) rewrite to the same term then s=*t, and
if s and t (eventually) rewrite to different terms then —(s=*t).

14eii

START of OPTIONAL MATERIAL
(SLIDES 14)

Proofs of Facts A, B and C on Slide14d

Proof of FACT A (continued) 14fii

Confluence - Church-Rosser

Suppose u =*v.

Let P(n) be "Confluence + a rewrite proof using n peaks => [I[u =>*t and v =>*{]"
Base— P(0): Either: u=>*v orv=>*u oru=>*t'andv=>*t" (i.e. no peaks)
Clearly [i[u =>*t and v =>*t] is true in all cases.

A/
\> Y

Ind. Step — let n>0 and assume as IH that P(n-l).
We show P(n): Suppose confluence and a rewrite proof using n peaks.

Then t1 exists by confluence and t1=* v ; there are n-1 peaks in the proof to
show t1=*v; hence (by IH) @3 [t1 =>*t3 and v =>*t3].

Since u =>*t1, 13 [u =>*t3 and v =>*t3] and so P(n) holds.

PROOF OF FACT B: Proof of FACTA 4

Confluent and terminating implies Church-Rosser — confluence :
unique normal forms. Suppose s =>* u and s =>*v:
Suppose there were two different then u =* v (turn around steps from s
normal forms for s, namely u and v, to u)

SN SN\
. N

By confluence u and v rewrite to a hence by assumption the rules have

common term, which contradicts
h ST T the Church-Rosser property and
irreducibility. Termination ensures s [Hu =>* and v =>*1].

does not rewrite for ever (so u,v
exist).

PROOF OF FACT C (BUNDY): 14fii

Local Confluence + Termination - Confluence

* Assume Local confluence and termination.

* Termination ensures there are a finite number of
terms obtained by rewriting s.

« Let s be arbitrary and suppose s rewrites to two

different terms u and v.

» Use structural induction over set of rewrites of s.

« Ind Step : Assume that all terms obtained by LU

rewriting s satisfy confluence; i.e. ul,vl and J\ /
rewritings of these. t

* Show that u and v rewrite to a common term.

+ Consider the first steps from s to u and to v, / \
which reach ul and v1.

« t1 exists by local confluence.

By hypothesis, since ul,tl,v1 are rewritings of s,

t2 and t3 exist, hence t exists.

* Hence, u and v also rewrite to a common term.

Comments on Slides 14f:

In the proof of Fact A, the induction proof allows to conclude that P(n) holds for ever
n=0. Since u =* v there must exist a rewrite proof, even if it uses some equations ir
wrong direction. Remember that u and v are ground and the derivation by paramot
to show —(u=v)==>*] can always be made into a ground derivation. This follows fr
the completeness of paramodulation. This rewrite proof must kvpaaks and hence
the property P(n) can be applied to derive the Church-Rosser propef@atftat=>* t3
and v=>* t3].

For Fact C: Lets be an arbitrary term. Structural induction over the set of all terms
obtained by rewriting is used to show that confluence holdsfoNote that there is a
finite number of such terms as R is terminating.

The Induction Hypothesis states that, for all tetnobtained frons by rewriting,t
satisfies confluence.

Lets rewrite to two different terms andv and letul andvl, respectively, béhe
results of the first rewriting steps frogntou and tov .

By local confluencél exists and hence, by the induction hypothd8igndt3 exist.
(See diagram on 14eiii.)

Again by the induction hypothesis applied20andt3, t exists. Hence confluence for
is shown.

The Base Case is whemoesn't rewrite at all. Clearlg satisfies local confluence1 Afiv

