
AUTOMATED REASONING

SLIDES 15:

TERMINATION OF REWRITE SYSTEMS
   Properties for termination
   Two useful partial orders: kbo and rpo

The ERUDIO tool (for interest only)

KB - AR - 2013

15aiTermination of Rewrite Systems (Overview)
Q: Why should we want terminating rewrite systems?

A: We’ve seen that to be useful a set of rewrite rules should be complete;
     to check completeness uses the Knuth Bendix procedure;
     this requires to apply rewriting to critical terms ==> termination

Examples:   (1) f(e,x) => x       (2) f(i(x),x) => e       (3)  f(x,g(y)) => f(g(y),x)
                     (4) g(g(h(x)) => h(g(x))             (5) h(h(x)) => h(g(h(x))

Would you guess any of these rules (on its own) is terminating?

Informally, 
an ordering is monotonic if rewriting a term by a specific rule always makes it 
smaller, wherever the match to the rule appears
e.g. h(x)->x can be applied to h(a), to h(f(a)), f(h(a)), g(g(h(x),x),h(x)) etc.

an ordering is well-founded if there’s no infnite sequence of decreasing terms

These slides will give some foolproof methods to determine termination

(Fact D)  Given a set of rewrite rules R, if > is a monotonic and well-founded 
ordering on terms  such that lσ > rσ for each rule l->r and each ground 
substitution σ, then R will be terminating 

15aii

• A partial order relation “>” is a transitive and irreflexive relation   
              i.e. ∀x,y,z[x>y and y>z → x>z],   ∀x.¬(x>x)
• It is also non-symmetric - i.e.  ∀x,y[x>y  → ¬(y>x)]    (derivable)   

Termination of Rewrite Systems (2)
Overview of partial orders and well-foundedness

Exercise (ppt):  s > t if #(s) > #(t)     – for ground term s #(s) is the number of 
                                                           symbols (constants or functions) in s

Is > a partial order (is it transitive?  irreflexive? non-symmetric?
Is > a total order? Is it well-founded?

Note: s<t is the same as t>s;  s ≥t means s>t or s=t;  if > is a partial order 
         then ≥ is reflexive (∀x.x≥x) and antisymmetric (∀x,y[x≥y and y≥x  →x=y)]

• A partial order > is usually written in infix notation - x>y rather than >(x,y)
• Most relations we consider  are total on ground terms (ie x>y or y>x)

• A partial order > is well founded on a set of terms S 
          if there is no infinite descending chain t1 > t1 > ... > ti > ...

  eg1 S is the set of integers >-10 and > is the ordinary “greater-than” relation
  eg2 Any relation on a finite set S

15aiTermination of Rewrite Systems (based on Dershowitz, JSC, 3, 87)

The above paper by Dershowitz contains a wealth of information about orderings for 
rewrite rules.  He introduces many ad hoc orderings, as well as some specific 
orderings, of which we’ll cover two: “recursive path ordering” (rpo) and “Knuth 
Bendix ordering” (kbo). In the optional material of these slides is a third ordering, 
“lexicographic path ordering” (lpo), as well as some ad hoc orderings as further 
examples. For our purposes kbo and rpo should be enough, though lpo is sometimes 
useful, if you’re interested.

We will not include proofs that kbo and rpo are indeed partial orders - but asume 
that they are. If you’re interested, you can check in the paper.

There is an excellent tool written by an MSc student Andrei Dvornik, called 
ERUDIO, which allows you to see the different orderings in practice; it gives 
justifications for ordering a rule in a particular direction, if that direction leads to a 
termination order. Some notes on ERUDIO are in the optional material for these 
slides.  We’ll see it in action later.



15aiv

•  Monotonicity:  if t>u then f(…t…) > f(…u…).   
i.e. reducing a subterm reduces any superterm of it.
e.g. would like to be sure that if a<b then g(h(a))<g(h(b)).

•  Simplification:  A monotonic  ordering > is called a simplification  ordering 
if for all ground terms t,  f(… t …) > t.   
Most standard orderings used to prove termination are simplification orderings.

•  Stability: if t>u then tσ > uσ  for all ground substitutions σ.  
i.e. enables > to be applied between non-ground terms. 

Termination of Rewrite Systems (3)
Some  basic  properties  relevant for termination

Example:      s > t if #(s) > #(t)           – for ground term s #(s) is the number of 
                                                             symbols (constants or functions) in s

Monotonic? – yes:  if s has more symbols than t, then                  
                        f(...,s,...) has more symbols than f(...,t,...) for any functor f

Simplification? – yes:  f(...,s,...) has more symbols than s

Stable? – depends:  
eg   we can say f(x,x)>g(x) – whatever ground term x is #f(x,x)>#g(x)
       but not f(x,y) > h(x,x) – if x is bound to a longer term than y, #f(x,y)<#h(x,x)

15avChecking a ruleset R for termination

                
Use  s > t if #( s) ># (t)  
For each ground substitution for x, clearly LHS(2) > RHS(2)
Also LHS(1)>RHS(1):  #f(e,x) =2+#x  > #x     (#x means number symbols in x) 
Similarly for (4)    
The order is monotonic: if s<t then f(s,z)<f(t,z), f(z,s)<f(z,t), i(s)<i(t) (for any z), etc.
The order is well-founded as #s is ≥0.     

Examples:   (1) f(e,x) => x       (2) f(i(x),x) => e       (3)  f(x,g(y)) => f(g(y),x)
                     (4) g(g(h(x)) => h(g(x))             (5) h(h(x)) => h(g(h(x))

What about (5)? (This is a bit harder!) See optional material for an answer

It would be much easier if we could apply a standard set of simple tests - 
    it turns out we can, though we have to generalise the notion of ordering a little 

(Fact D)  Given a set of rewrite rules R, if > is a monotonic and well-founded 
ordering on terms  such that lσ > rσ for each rule l->r and each ground 
substitution σ, then R will be terminating 

15avii

Proof  of Fact D: 
Let R be a set of rewrite rules and < be a well-founded monotonic term order. Assume lσ > rσ 
for each rule and each ground substitution σ. Suppose  that s0 => s1 => … sn ... is a non-
terminating  ground rewrite sequence using R,  then, by assumption  s0>s1>…>sn> ...  (since 
each rewrite uses a rule and < is monotonic). But as > is well-founded  the sequence cannot 
continue forever, so the original rewrites cannot do so either. This is a contradiction, so the 
original assumption is false.

In case the rewrite sequence includes variables, instantiate to obtain a non-terminating ground 
rewrite sequence and use the above. 

Well-founded Ordering:
An order < is a well-founded ordering on a set of terms if there is no infinite descending 
sequence of terms s0>s1>s2>... . eg < is well-founded on {integers>k} for any particular choice 
of k, but not on the set of integers. For our purposes we assume the si are derived by rewriting: 
s.t. s0 =>s1, ..., si=>si+1



15bi

Recall:
A standard partial order  <  is irreflexive and transitive (and s<t implies ¬(t<s) WHY?)

The relation ≤ defined by s ≤ t iff s < t or s = t, where < is a standard partial order,  is 
reflexive, transitive and anti-symmetric     (i.e. s≤t and t≤s implies s=t) 

Sometimes we want to relax anti-symmetry to allow R(s,t) and R(t,s) even if s≠t.

A quasi-partial order  <≈ is reflexive and transitive but need not be anti-symmetric.              
i.e. if s <≈ t and t <≈ s, then we say  s ≈  t

For a quasi-order <≈, we define s < t  iff s <≈ t and not (t <≈ s).

There are some famous quasi-orders:  ≤kbo and ≤rpo etc. (see slides 15ci - 15civ).

To show termination of R using a simplification quasi-order <≈≈≈≈ such as ≤≤≤≤kbo 
or ≤≤≤≤rpo show each rule in R satisfies  lσσσσ > rσσσσ for all substitutions σσσσ.

A little bit more notation (Dershowitz):

Quasi-orderings can be simplification orderings, monotonic, stable, etc.
The definitions of those are simply given by using the quasi-order <≈ in place of the 
standard partial order < properties.

To use  kbo to show termination of R:
                       show each rule in R satisfies l > r for all substitutions σ.

Knuth - Bendix  ordering (kbo) (ppt) 15ci

1.  is ok since #+/- in LHS  > #+/- in RHS.
2.  is ok since #+/- in LHS≥2 > #+/- in RHS = 0.
3.  is ok since #+/- in LHS = #+/- in RHS,   both terms have outer +,  and 
 ((x+y),z) ≥*kbo (x,(y+z)) as #+/- in x+y > #+/- in x;   
                                                     (i.e. lexicographic order based on kbo) 

Also, <≈ is a simplification ordering: eg x<y==>-x < -y and -x > x.

1.  0+x => x
2.  (-x) +x => 0
3.  (x+y) + z=> x + (y + z)

s <≈ t
if # occurrences of +/- in s ≤ 
   # occurrences of +/- in t;

s= ( f(s1 … sm) ) ≥kbo t (= g(t1 … tn) )
        •    if  s> t (where >≈ is a simplification quasi-ordering on ground terms)    
                                                                                                   (definitely >)
        •    or  s ≈ t  and f >1 g   (>1 applies to functors here)        (definitely >)
        •    or  s ≈ t,  f  = g  and (s1 … sm) ≥* (t1 … tn)

≥* is the lexicographic ordering induced by ≥kbo

15cii

{3,3,4,0}>>{3,3,2,2,1,1} if {4,0}>>{2,2,1,1) (remove occurrences of = elements)
{4,0}>>{2,2,1,1} if  each element in {2,2,1,1} is dominated by an element in {4,0}                          
                                                         (Here 4 dominates all of 2,2,1,1.)
{3,3,4,0}>> {3,3,3}  if  {4,0} >> {3}.      (4 dominates 3 so OK)
{4,3,3} >> {4,3}  if  {3} >> ∅.                 (OK)
{4,1,1} >> {4, 2} if {1,1} >> {2}.          (Not OK as 1 doesn’t dominate 2)

Recursive Path Ordering  (rpo)

Multi-set Ordering (ppt)
•     A multi-set  over a set of terms E with order > is a mapping m  from  E to N.  
e.g. S={3,3,4,0} = {3 -> 2, 4 -> 1, 0 -> 1}   or S(3) = 2,  S(4) = 1,  S(0) = 1.
•     If S is a multi-set then d(S) = {elements in S (as a set)} 
•     If e in E and not(e in d(S)) then S(e)=0
•     S>>T iff ∀e:e in d(T) [S(e) ≥ T(e) ∨ ∃g [g in d(S) ∧ g > e ∧ S(g)>T(g)]]

s (=f(s1 … sm)  ) ≥rpo  t  (=g(t1 … tn) )
         •   if         si ≥rpo t    for some i = 1… m      (definitely >)
         •   or       f >1  g and s >rpo tj   for all j =1…n
                          (>1 orders functors)                    (definitely >)
         •   or       f = g and {s1 … sm} >> {t1 … tn} (>> is a multi-set ordering)      

1  ¬¬x => x          
2  ¬(x ∧ y) => ¬x ∨ ¬ y          
3  ¬(x ∨  y) => ¬x ∧ ¬y
4  x ∧ (y∨ z) => (x ∧ y ) ∨ (x ∧ z)                 
5  (y ∨  z )∧x => (y ∧ x) ∨ (z ∧ x)

•  1   ¬¬x ≥rpo x  {x is a subterm}                       
                                  (use n(x) for ¬x  if you prefer)
•  2   ¬(x ∧ y) ≥rpo ¬x ∨¬y  if  ¬(x ∧ y)  >rpo ¬x  and >rpo  ¬y      
                                  (choose ¬ >1 ∨)           
        i.e. if {x ∧ y} >> {x} (and >> {y}) which it is as x/y are subterms of x ∧ y
                                  (use a(x,y) for x ∧ y,    and o(x,y) for x ∨ y if you prefer)
•  3  similar
•  4  x∧(y∨z) ≥rpo (x∧y)∨ (x∧ z)  if x∧(y∨z) >rpo x∧y  and  >rpo x∧z 
                                  (choose ∧ >1 ∨)
   i.e. if {x, (y∨z) } >> {x,y} and >> {x,z} which they are.
•  5  similar    

15ciiiExample of using  recursive path ordering   (ppt)

Exercise: Suppose that s and t are terms, and t is a subterm of s, or of a 
subterm of s. When comparing s and t by rpo, explain why the first case will 
always hold (though it may have to be applied more than once).



15civ
The two orderings  kbo, and rpo

The Knuth Bendix Ordering (kbo) (on 15ci) is the easiest to use. To apply it you need an 
order on functors that you choose and a quasi-simplification order <≈   on ground terms. A 
standard choice for <≈ is the number of symbols, but others are possible. If you use another 
order, you just need to show it is a simplification order (ie if x <≈y then f(...x..)<≈f(...y...) for 
all functors f, and that f(...,x,...)>x.) In Case 3 the lex ordering is  a dictionary ordering based on 
the underlying kbo. That is, to compare two lists of terms, compare the lists as you would 
compare words in a dictionary.

The Recursive Path Ordering (rpo) (on 15cii) is next easiest. There are 3 cases. 
To show s≥rpo t, Case 1 checks if an argument of s≥rpo t. This will be true, for example, if t 
occurs as a subterm of s, for you can recursively apply this case until you have extracted t as a 
subterm of s. If Case 1 doesn’t  hold, then look at the outer functors of s and t. Note that the 
second condition requires s to be definitely greater than t.   In Case 3 a multi-set ordering is 
used. Despite the complicated definition it is easy to check. First strike out identical terms from 
the two lists. Next, take each element e left in t and check there is an element left in s that is 
larger than e. (Exercise: Show this procedure satisfies the given definition of >>.)

A third ordering, the Lexicographic Path Ordering (lpo) is given in the optional part of these 
slides.

All three orderings were proved by Dershowitz to be well-founded simplification orderings.

15diSummary of Slides 15
1. Rewrite systems are most useful when they are terminating. There are 
several ad hoc methods to show termination, the most useful of which is 
stated in Fact D.

2. Important properties of term orderings are stability: if s<t then also sθ <tθ; 
monotonicity: if s<t then f(...s...) < f(...t...); and simplification: t<f(..t...).

3. s≤t is defined as s<t or s=t (for a partial order ≤). 

4. The more useful orders are based on quasi-orderings, which are (partial) 
orders that are not anti-symmetric. That is, it is possible for two terms s and t 
to satisfy  s <≈ t and t <≈ s and yet for s≠t. s < t  iff s <≈ t and not (t <≈ s).

5. The two quasi-orderings considered here are knuth bendix ordering (kbo) 
and recursive path ordering (rpo). Both orders depend also on an ordering of 
function symbols, which can be chosen by the user. The knuth bendix ordering  
depends also on a total order on ground terms that is also a simplification 
ordering. The recursive path ordering uses the concept of multi-set ordering.

SSSTTTAAARRRTTT   ooofff   OOOPPPTTTIIIOOONNNAAALLL   MMMAAATTTEEERRRIIIAAALLL
(((SSSLLLIIIDDDEEESSS    111555)))

A third useful partial order: lpo
Extra examples of ad hoc orders
ERUDIO

15ei

This example uses Fact E  f(f(x)) => f(g(f(x)))  ?   
(Try  ffgfggfa => ? - does it terminate?)  
(i) Find a well-founded order (not necessarily monotonic) and show LHS>RHS 
for all x
(ii) Show the order is monotonic on terms that rewrite to each other.
Hint: consider counting adjacent occurrences of f

This example can also be shown to be terminating by Fact E, but it needs a 
more complicated ordering:  
f(g(x)) => g(g(f(x)))              
(Try fgfggfa =>?     does it terminate?)
Hint: What happens to the occurrences of f to the left of an occurrence of g?

More Examples (solutions on 15eii)

(Fact E)    Even if > is not monotonic, Fact D can be relaxed: 

R will be terminating if  > is a well-founded ordering on terms, lσ > rσ for each 
rule and each ground substitution σ, and s =>*t and s>t implies f(...s..)>f(...t...) 
– i.e. R is monotonic at least on terms that rewrite to each other.  



15eii

f(g(x)) => g(g(f(x))). 
Count #gs to right of each f. Note  #fs remains fixed  for rewriting a given term – let #fs = n. 
Let (ai) be the number of gs to right of i’th f from the left.
Define (a1, a2, …, an) > (b1, b2, … bn) iff  ai > bi and ∀j :  i+1 ≤ j ≤n → (aj = bj)
ie i is first position from right at which ai ≠≠≠≠ bi
e.g. fgfggfa => fgggfgfa and the counts are (3,2,0) and (4,1,0); Notice (3,2,0)>(4,1,0)
Check  > is  well-founded and LHS>RHS for all substitutions of x 
Well founded: minimal counts =(0...0) (n × 0 for n fs). eg count(g...gfffa)=(0,0,0) 
Suppose f(g(x)) has k occurrences of f with count =(ck,...,c1).
Then g(g(f(x))) has count = (ck-1,...,c2,c1) which is <(ck,...,c1).

Solutions to Examples on 15ei

Also, check that if s=>*t and s>t then f(s)>f(t) and g(s)>g(t) (do this in a similar way to 
above – notice g(s) has the same count value as s). Then use Fact E.

f(f(x)) => f(g(f(x))). 
Count #pairs of adjacent fs. It is clear that for any x the number of adjacent pairs of f is 
reduced by 1 after applying the rule. As counts are ≥0 the ordering is well-founded.
The ordering is not monotonic though: g(f(f(a))) has 1 pair of adjacent f and f(a) has none. So 
g(f(f(a)))>f(a). But f(g(f(f(a)))) is not > f(f(a)) as both have 1 pair of adjacent f. However, 
g(f(f(a))) does not rewrite to f(a). If this is a general property, then we can apply FACT E:

Comparing f(s) and f(t) it’s clear this property is maintained  (and also for g(s) and g(t)).
Assume s=>t, then s has the form (<...>ff<....> ) and t has the form (<..>fgf<...>).  If the 
number of pairs of f in s > number of pairs in t, then it’s easy to argue, by considering cases 
and counting, that the same holds for f(s) (i.e. f (<...>ff<....> )) and f(t) (i.e. f(<...>fgf<....> )).

  

 (x+y)+z ≥lpo x+(y+z):   main functor = + in both cases so case 3

• ((x+y, z)  ≥*lpo (x,(y+z)) since (x+y) ≥lpo x 
                   (because x is a subterm of x+y), and
• (x+y)+z ≥lpo (y+z): main functor = + in both, so case 3
          • ((x+y, z)  ≥*lpo (y,z) since (x+y)≥lpo y, and
          • (x+y)+z ≥lpo z (because z is a subterm)

Lexicographic path ordering (lpo) 15eiii

Example of using  lexicographic path ordering

s (= f(s1 … sm) ≥lpo t ( = g(t1 … tn) )     if   
            •  si ≥lpo t for some i = 1 … m, or
            •  f >1 g and s >lpo tj for all j = 1 … n, or                               

            •  f = g and (s1…sm) ≥*lpo (t1 … tn)  and s >lpo tj for all j = 2 … n,
                        where ≥*lpo is the lexicographic ordering induced by ≥lpo

Another occasionally useful fact about term orderings is the following.
(Fact F)  If < is well-founded on the set of ground terms, then R will be terminating if for 
ground terms s and t, if s =>*t then s>t.
(Not very useful actually, as it is hard to consider all pairs of ground terms)

Proof  of Fact F:  Let < be well-founded and s=>t imply s>t for all terms s and t. (*). Suppose 
first that s0 => s1 => … sn ... is a non-terminating,  ground rewrite sequence using R,  then, 
by (*), s0>s1>…>sn> ... .  But as > is well-founded  the sequence cannot continue forever. So 
neither can the original rewrites. This is a contradiction, so the original assumption is false.

For the general case, notice that no variables other than those in s0 may appear in any si.  
Suppose s0 is not ground and there is a non-terminating sequence s0 => s1 => … sn ... .  
Consider some ground instance s0θ of s0 and hence  of {si} ({siθ}). It is still the case that s0θ  
=>s1θ  => … =>  and hence s0θ > s1θ > … >  and this sequence must terminate at some skθ 
as < is well-founded. Hence skθ  does not rewrite to sk+1θ. But then sk could not rewrite to 
sk+1 either, a contradiction. So the original rewrite sequence must terminate.

The Lexicographic Path Ordering (lpo) is similar to rpo. The two orders only differ when 
the two terms to be compared have the same top level functor, that is for Case 3. In Case 3 
you must first check the arguments of s and t are pairwise lexicographically ordered (as in 
kbo) and then recursively  check s is definitely >lpo than each argument of t (other than the 
first). You can show that  if the first lexicographic condition finds (say) argument 2 of s >lpo 
argument 2 of t, then the second  condition can start at argument 3, since Case 1 would hold 
for s>lpo  argument 2. For example, to compare f(x,b,y) and f(x,a,y), where b>a, Case 3 says to 
compare [x,b,y] and [x,a,y] lexicographically, which holds as b>a. The second condition of 
Case 3 says to check f(x,b,y)>lpo a and f(x,b,y)>lpo y. Both of these are true by Case 1. 

15eiv

15evERUDIO

In 2010, MSc student Andrei Dvornik implemented ERUDIO, a tool for 
carrying out Knuth Bendix completion. It operates in two modes - automatic, 
or step-by-step. The latter is very useful for learning about the various 
orderings, finding critical pairs and so on. (I will arrange a lab session to 
show how it works.)

It has several built-in ways to order equations (namely kbo, rpo and lpo).

You can run the tool by typing erudio at the linux prompt. The first window 
allows you to add equations and save them, or to load previously saved 
equations. The next window allows you to perform ordering of the equations. 
Only after equations have been ordered consistently can you move on  to the 
superposition window, which allows to find critical pairs and other useful 
simplification steps. (See slides 16).

A further feature is that the tool deals with equations that cannot be ordered.
Warning: There are one or two bugs in the tool, but I assure you that there 
are not very many (we only found one or two last year).

There are many improvements and extensions possible if anyone would like 
an interesting project.




