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SLIDES 16:

KNUTH BENDIX COMPLETION
   Basic steps of Knuth Bendix completion
   Knuth Bendix Procedure

KB - AR - 2013

In what follows, R are the rewrite rules and A are equations not yet orientated.

Knuth-Bendix Completion Procedure (Rules 1) 16ai

A ∪ {s=t}  ; R

A ; R ∪{s =>t} 
(or A ; R ∪{t =>s}) 

orient equation

(Oeq)
A ; R

 A ∪ {s=t} ; R

find critical pairs if u

s t

* *(CP)

The KB procedure essentially consists of 3 steps:
     • orient equations to form directed rewrite rules
     • form critical pairs and hence new equations
     • use the rewrite rules to rewrite terms (and so make them smaller)

These steps can be taken in various combinations. 
eg we used all three in our earlier examples of finding new rules in Slides 14.
There are also other steps useful to keep the final rule set streamlined.

Example of using (Nru)      (Nru) is similar to transitivity.
given f(x)=>g(x,x) and g(x,y)=>x 
then by (Nru) obtain  f(x)=>x 

remove useless equation A ∪{s=s} ; R

A;R

(Req)

Knuth-Bendix Completion Procedure (Rules 2) 16aii

normalise equation A ∪ {s = t} ; R 

A ∪{s = u};  R 
 if {t => *u} (Neq)

normalise rule A ; R ∪ {s => t}

A ; R ∪{s => u}
if {t =>*  u} (Nru)

Use of various kinds of Normalisation is implicit in finding critical pairs 
       (recall that in (CP) u is rewritten as far as possible into terms s and t
                  effectively using normalise rule (Neq))

16aiii

Eg1: given (i) f(x) => g(x,x),  (ii) f(b)=>c,  (iii) b=>a  

        Take s as f(b), t as c,  v as b, and w as a

         f(b) =>f(a)=>g(a,a). 

         Then by (Coll) obtain (iv) g(a,a)=c and remove (ii)

If (iv) orders as g(a,a)=> c, left with (i), (iii), (iv)

Informally, f(b)=>c is now redundant – can obtain same result with (i) (iii) and (iv)

(Coll) is very useful and applies if the critical term is identical to s in rule s=>t
(see slide 16av for a comparison of (Coll) and (CP) )

Knuth-Bendix Completion Procedure (Rules 3)

collapse rule
A ; R ∪ {s => t}

A∪{u = t} ; R 

if {s =>*  u} and first rule used 
is v =>w, where s |> v (Coll)

where  s |> v if s, or some subterm of s, is an instance of v but not vice versa 
(i.e. s and v are not identical upto renaming, and s can be rewritten by v)



Eg3: Given (1)  -0=>0  (2)  0+z=>z  (3)  -0+z=>z

Apply (Coll) to (3) using (1): -0+z => 0+z => z giving z=z which (Req) removes         

Also, Coll removes (3) leaving just (1) and (2)

16aiv

Eg2: Given (i) f(y)=>g(y,y), (ii)  f(f(x))=>h(x)    

         Take s as f(f(x)) and v as f(y); then  f(x) in f(f(x)) is an instance of f(y)

f(f(x))=> f(g(x,x)) =>g(g(x,x),g(x,x)) 

Then (Coll) derives g(g(x,x),g(x,x)) =h(x) (iii) and can remove (ii)

But also can take s as f(f(x)) and v as f(y) such that f(f(x)) is an instance of f(y)

f(f(x))=> g(f(x),f(x)) =>g(g(x,x),g(x,x))

Then (Coll) (again) derives g(g(x,x),g(x,x)) =h(x)  and  removes (ii)

Knuth-Bendix Completion Procedure (Rules 3 contd)

collapse rule
A ; R ∪ {s => t}

A∪{u = t} ; R 

if {s =>*  u} and first rule used 
is v =>w, where s |> v (Coll)

where  s |> v if s, or some subterm of s, is an instance of v but not vice versa 

16av
collapse rule A ; R ∪ {s => t}

A∪{u = t} ; R 
if {s =>*  u} and first rule used 
is v =>w, where s |> v (Coll)

where s |> v if s, or some subterm 
of s, is an instance of v but not vice 
versa 

Rules (Coll) and (CP) compared

A ; R

 A ∪ {s=t} ; R

find critical pairs if u

s t

* *

If (Coll) and (CP) both apply then there can be two cases: either s and v are renamings of 
each other, or they are not. The first case is, in fact, ruled out by the proviso for (Coll).

Case 1: s and v are not renamings of each other.  The condition of (Coll) means that 
variables in s are not bound by the superposition step. Given s=>t, s=L[vθ] for some context 
L, v=>w. Now, (CP) will give L[wθ]=>t as the first step of CP, where θ applies only to 
variables in v and w. If (Coll) applies too, then L[wθ]=>*u (say). The result u=t is the same, 
but under (Coll) the original rule s=>t is removed, whereas under (CP) it is not. Thus in this 
circumstance (Coll) is better.

The examples on 16aiii,16aiv were all of this kind. For instance, in EG1 on 16aiii, using 
(CP) will derive g(a,a)=> c, the same as (Coll). But with (CP) rule (ii) is not removed.

Exercise: Check examples EG2 and EG3 are also of this type.

16avi

collapse rule A ; R ∪ {s => t}

A∪{u = t} ; R 
if {s =>*  u} and first rule used 
is v =>w, where s |> v (Coll)

where s |> v if s, or some subterm 
of s, is an instance of v but not vice 
versa 

Rules (Coll) and (CP) compared

A ; R

 A ∪ {s=t} ; R

find critical pairs if u

s t

* *

Case 2: s and v are renamings  (This case is ruled out for (Coll) by the proviso)

In this case, applying (CP) will achieve the effect of removing either s=>t or v=>w. For 
example, f(x)=>h(x) and f(x)=>x, will give by (CP) the critical term f(x), which will rewrite 
in two ways to give h(x) and x. If the equation is ordered h(x)=>x, it can be used to 
normalise (Nru) f(x)=>h(x) into f(x)=>x, which is already present. The net effect is to 
remove f(x)=>h(x). 

If (Coll) is used (to collapse f(x)=>h(x)), the effect is exactly the same. 

If (Coll) is used to collapse f(x)=>x, the effect is first to remove this rule and add h(x)=>x 
and then to normalise f(x)=>h(x) to f(x)=>x. A roundabout way to get the same effect as 
with (CP).

Thus the case when s and v are renamings of each other is ruled out for (Coll).

Example of subsumption:  a= b and h(g(a),x) = h(g(b),x) 

Of course, equations or rules θ-subsumed by rules can be removed too.

Q: Can equations be used to θ-subsume rules ?
Hint: consider f(x,y)=f(y,x) and f(b,a)=>f(a,b)

remove subsumed  equations A∪ {s=t, u[sσ] = u[tσ]} ; R

A ∪{s=t} ; R
(Sub)

Knuth-Bendix Completion Procedure (Rules 4) 16avii



16biKnuth Bendix   Procedure:

The Knuth Bendix procedure can be presented in several different ways:

(1) As a  collection of inference rules that can be applied in any order to a set of equations and 
rewrite rules;
(2) As an imperative program;
(3) As a corresponding declarative (eg Prolog) program.

In all cases, the input to the procedure is a set of unorientated equations and, when successful, 
the output is a confluent set of rewrite rules. The various steps may be applied in any order, 
although a fixed sequence of applying the various steps can be made, as shown on the slides. 

There are two unsuccessful outcomes: 
(i) the procedure doesn't terminate - always another step can be applied, or 
(ii) an equation is derived that cannot be orientated sensibly. 
An example of such an equation is x+y = y+x - it is bound to lead to non-termination of a 
rewriting sequence.

In fact, both undesirable outcomes can still be put to some good use. 
In the case of (i), called divergence, the rules obtained at a given stage may be adequate to 
show that the answer to the current problem (is s=*t?) is TRUE; however, an incomplete set of 
rules cannot be used to show the answer is FALSE. 

If an equation E: l=r can't be orientated, then it can be left as an equation and used for rewriting 
in both directions. The only restriction is this:  if an instance lσ=rσ of E is used for rewriting lσ 
into rσ then lσ > rσ and if used for rewriting rσ into lσ then rσ > lσ.

Terminates  converges to 
a confluent set of 
terminating rewrite rules.

Diverges  (and never 
stops): the confluent set 
would be infinite.

Fails  (and stops):  cannot 
find a termination ordering 
to orient the rules.

(eg x+y = y+ x 
causes difficulties.)

16bii

WHILE equations remain in A {
     remove equations that rewrite to x=x 
         or are subsumed
     select an equation E 
          and remove from A {
               normalise E;                 //(Neq)
               orient E;                       //(Oeq)
               normalise RHS. of rules in R 
                    using and including E;    //(Nru)
               find all critical pairs C of E with R; //(CP)
               add E to R;   add C to A;
               apply (Coll) using E;
           }
    }

Knuth Bendix Algorithm (Imperative)

Often, (Neq), (Nru), (Coll) and (Oeq) are 
performed on all current equations before finding 
critical pairs (CP). New equations cause a new 
sequence of (Neq), (Oeq), (Nru) and (CP). But one 
at a time may be easier for a person to do.

Outcomes of Knuth 
Bendix Procedure:

16ci

Summary of Slides 16
1. The Knuth Bendix procedure can be described using an imperative or 
declarative program, or by a set of inference rules. The main operations are 
orient, find critical pairs and normalise.

2. It is only necessary to search for overlapping of the LHS of rules in order to find 
all possible terms that could lead to a critical pair. Overlapping onto a variable is 
not necessary.

3. Normalising is the operation that applies rewrite rules to other rules or 
equations. It can be applied to rewrite rules (the RHS), or to equations (either 
side).

4. The operation of removing useless equations (they  rewrite to s=s), or 
subsumed equations (they are implied by other equations or rules) is helpful.

5. The Knuth Bendix procudeure can terminate, diverge (non-terminating), or fail 
(an equation can’t be oriented – eg x+y=y+x).

6. The Knuth Bendix procedure is correct - when it terminates the final set of rules 
is confluent and terminating. The proof method shows that the procedure does 
not remove any proofs, but each proof becomes more like a rewrite proof as each 
new rewrite rule is generated.
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A full example (slides 16d)
Aspects of Critical Pair formation
Outline of Correctness of Knuth Bendix

16di

(1) (x+y)+z =>x+(y+z)
(2) -x1 +x1 =>0
(3) 0+z1 => z1

1 on 1  unify:
(x2+y2)+z2 and (x+y) 
in (x+y)+z:

x == (x2+y2) , y == z2

Finding critical pairs enables new rewrite rules to be 
formed, which will contribute towards confluence.

Apply the Knuth Bendix Procedure (Revision)

3 on 1 unify: 
x == 0,y ==z1

(0+z1)+z

z1+z 0+ (z1+z)

z1+z

(3) (1)

(3)
z

(-x1 + x1) + z

-x1 + (x1 + z) 0+z

2 on 1:
unify: x == -x1,y ==x1

(1) (2)

(3)
((x2+y2) +z2) +z

(x2+(y2+z2))+z (x2+y2)+(z2+z)

x2+((y2+z2)+z)

x2+( y2+(z2+z) )

x2+(y2+(z2+z))

(1) (1)

(1)(1)

(1)

Examples of 
Forming 
Critical Pairs

16dii

(1) (x+y)+z => x+(y+z)
(2) -x1 +x1 => 0
(3) 0+z1 => z1
(4) -x1 + (x1+z) => z

Applying the Knuth Bendix Procedure (1) 
There are various options next, but the useful ones 
are (2) on (4) and (3) on (4) giving (5) and (6).

I leave the rest as an exercise, for you to work out 
their derivations 

(5) --x1+0 => x1
(6) -0+z => z

(7) --0+z => z
(8) -0 => 0

(9) --x1 + z => x1 + z
(10) x + 0 => x
(11) --x  => x

In fact  (1), (2), (3), (4), (8), (10), (11) is not the final confluent set.
Can also derive 
(12)  x+ -x => 0                 (use 2 and 11)
(13)  x + (-x + z) => z        (use 1 and 12)
(14)  - (x + y) => -y + -x    (use 4 and (i), where (i) is y+ -(x+y)=>-x, from 1 and  
                                             (ii), where (ii) is x + (y+ - (x+y))=>0, from 1 and 12,
                                             and (i) subsumes (ii) and (14) subsumes (i)  )  

(6) and (7) can be removed using (8) by (Coll)

(9) and (5) can be removed using (11) by (Coll)

NOTE: There are 2 different orderings that can be 
used, which are shown on 16biii and 16biv

16diii

(1) (x+y)+z => x+(y+z)
(2) -x1 +x1 => 0
(3) 0+z1 => z1
(4) -x1 + (x1+z) => z

Ordering using lpo 
Ordering is lpo:  ranking of operators is “-” >1 “+” >1  “0”

(5) --x1+0 => x1
(6) -0+z => z

(7) --0+z => z
(8) -0 => 0

(9) --x1 + z => x1 + z
(10) x + 0 => x
(11) --x  => x

(12)  x+ -x => 0                 (use 2 and 11)
(13)  x + (-x + z) => z        (use 1 and 12)
(14)  - (x + y) => -y + -x    (use 4 and (i), where (i) is y+ -(x+y)=>-x from 1 and 
(ii), where (ii) is x + (y+ - (x+y))=>0 from 1 and 12
(i) subsumes (ii) and (14) subsumes (i)    

2-7, and 10,11,12, 13 are fairly clearly ordered left to right
8 is ordered left to right as -0 > 0 by ranking
1 is ordered left to right:
   {(x+y),z} ≥*lpo  {x,(y+z)} since x+y >lpo  x, and
    (x+y)+z ≥lpo  (y+z), since (x+y) >lpo  y and (x+y)+z >lpo  z
9 is ordered left to right
    {--x1,z} ≥*lpo  {x1,z} since --x1 >lpo  x1, and 
    --x1+z ≥lpo  z  (case 1 of lpo)
14 is ordered left to right by ranking, and 
     -(x+y) >lpo -y and -(x+y) >lpo -x (case 3 of lpo)
(i) is ordered by case 1 of lpo
(ii) is ordered by ranking



16div

(1) (x+y)+z => x+(y+z)
(2) -x1 +x1 => 0
(3) 0+z1 => z1
(4) -x1 + (x1+z) => z

Ordering using kbo
Ordering is kbo: basic order on ground terms is to
sum the weights of terms, where wt(-)=0, wt(+)=wt(0)=1  
ranking of operators is “-” >1 “+” >1  0

(5) --x1+0 => x1
(6) -0+z => z

(7) --0+z => z
(8) -0 => 0

(9) --x1 + z => x1 + z
(10) x + 0 => x
(11) --x  => x

(12)  x+ -x => 0                 (use 2 and 11)
(13)  x + (-x + z) => z        (use 1 and 12)
(14)  - (x + y) => -y + -x    (use 4 and (i), where (i) is y+ -(x+y)=>-x from 1 and 
(ii), where (ii) is x + (y+ - (x+y))=>0 from 1 and 12
(i) subsumes (ii) and (14) subsumes (i)    

1-7,10,12,13, (i) and (ii) are clearly ordered left to right
8 is ordered left to right as -0 > 0 by ranking
9 is ordered left to right:
       sum of wt(left) = sum of wt(right) (for any x1 and z)
       left ≥*kbo  right since --x > x for every x (if x is u+v or    
              0, this is easy; if x is -u, show --u>u; use 
              induction: since the term structure is decreasing, 
              will reduce to previous cases of 0 or +.
For 11, use similar argument as for 9.
14 is ordered left to right: 
        sum wts(left)=sum wts(right) for any x and y
        and - >1 +

16ei

About forming Critical Pairs :

A critical pair may occur when a term (the critical term ) rewrites in two different ways.  If 
the two resulting terms are different and cannot be further rewritten to the same term, the  
eventually resulting different terms are called the critical pair.  On  Slide 16di there are 3 
examples. The first yields the critical pair (z , -x1+(x1+z)) and the second and third examples 
do not yield a critical pair. Critical terms arise because the LHSs of two rewrite rules apply to 
a term s  in two different ways. (It may be just one rule involved in different places.) This can 
happen in essentially  three ways. 

(a) One way is when the parts of  s  being rewritten do not overlap. This way will not yield a 
critical pair (see 16eii, case 1): if a term s  can be rewritten in two ways, but by rewriting two 
non-overlapping terms, then this will not be because the LHSs of the rules overlap. The two 
steps can be applied separately. If θ is the substitution applied to rule 1 and σ the substitution 
applied to rule 2, then s  can be written as s[LHS1θ, LHS2σ ], which rewrites into s[RHS1θ, 
LHS2σ ] or s[LHS1θ, RHS2σ ] and then into s[RHS1θ, RHS2σ].

(b) Otherwise, the LHSs themselves must "overlap" or can be superposed.  That is, either  
LHS1 and LHS2 unify, or LHS1 unifies with a subterm of LHS2 (or vice versa). There are 
two different ways in which this can occur, only one of which is useful. If the LHSs of the 
two rules overlap on a variable subterm x – ie LHS1 unifies with a variable x in LHS2 with 
substitution θ, then the critical term is the instance LHS2θ of LHS2;   although LHS2θ  
rewrites to 2 different terms, these can always be rewritten to a common term:  LHS2θ, 
rewrites into RHS2θ (by rule 2) and also into LHS2θ' by rule 1, where θ' is the substitution 
x==RHS1. Both of these rewrite into RHS2θ', the first by rule 1 and the second by rule 2. 
You should draw a diagram to convince yourself that this is so.  Case 2 on 16eiii illustrates 
this. Note that if x  does not occur in RHS2 then RHS2θ is the same as RHS2θ'. 
(Continued on Slide 16ev.)

16eii

Case 1: non-overlapping occurrences 
of LHSs of two instances of a rule: 

can rewrite occurrences in turn and 
will write to a common term.

3. f(y,y) => e     
4. f(x,e) => x

Case 2:  Rules apply such that they 
overlap on a variable subterm:

will also rewrite to a common term.

1. f(y,y) => e
2. f(x,e) => x

Are all critical pairs found by (CP)?

f(f(z,z), f(z,e))

f(e,f(z,e)) f(f(z,z),z)

f(e,z)

(3) (4)

(4) (3)

f( f(y,y) , e)

f(y,y) f(e,e)

e

(2) (1)

(1) (2)

When might a term be rewritten in more than one way? 16eiii

Case 1: non-overlapping occurrences: 
can rewrite occurrences in turn and 
can write to a common term.

3. f(y,y) => e     4. f(x,e) => x

Case 2:  Rules apply such that they 
overlap on a variable subterm - can 
also rewrite to a common term.

1. f(y,y) => e
2. f(x,e) => x

Formation of critical pairs - possibilities for non-confluence

f(f(z,z), f(z,e))

f(e,f(z,e)) f(f(z,z),z)

f(e,z)

(3) (4)

(4) (3)

f( f(y,y) , e)

f(y,y) f(e,e)

e

(2) (1)

(1) (2)

s  = f(f(z,z), f(z,e)) 
      can be rewritten by 3 and 4:
θ (for  3) = {y==z};  σ (for 4) = {x==z}
s = f(LHS3θ, LHS4σ )
=> (by 3) f(RHS3θ, LHS4σ ) 
        or (by 4) f(LHS3θ, RHS4σ )
=> f(RHS3θ, RHS4σ) (by 4, or by 3)

s  = f(f(y,y), e) 
    can be rewritten by 1 and 2
    (they overlap on variable x in f(x,e))
θ (for  2) = {x==f(y,y)}
s = LHS2θ => (by 2) RHS2θ
        or (by 1) LHS2θ’  (θ’ = {x==e})
=> RHS2θ’ (by 1, or by 2)



16eiv

Case 3: rules apply such that they overlap on a non-variable  subterm 

• Only need to check occurrences of Case 3 for possible non-confluence.  

• All necssary critical pairs can be found by unifying the LHS of rules with 
non-variable subterms of other LHS and rewriting as far as possible  (first 
using overlapping rules, then maybe other rules)

5. f(g(x),y1) =>g(f(x,y1))   
6. f(y2,y2) => e

Formation of critical pairs - possibilities for non-confluence continued

f(g(z), g(z))

e g(f(z,g(z)))

(6) (5)

Optional part of slide   Using notation of 16cii, 
l1[l2σ]σ = f( g(z) , g(z) )  and      l2σ = f( g(z) , g(z) ) 
σ = {x==z, y1==g(z), y2==g(z)}

l1[l2σ]σ rewrites (by 5) to  r1σ = g( f(z,g(z) ) ) and (by 6) to l1[r2σ]σ = l1[e] = e

(-1+1)+1

0+1 -1+(1+1)

l2θ'= -1+1 l1θ=(-1+1)+1

s matches  l1                         (l1 => r1)
s' in s[s'] matches l2              (l2 => r2)

s=l1θ,       s' = l2θ'
and s' is not in a
variable position in l1θ

s =l1θ

s'= l2θ'

i.e. l2 and a subterm of l1 have a 
common instance.
Hence ∃σ: l2σ is a subterm of l1σ.

So l1[l2σ]σ rewrites (by 1) to 
r1σ and (by 2) to l1[r2σ]σ

Exercise: identify θ,θ',σ in the following:

Use (x+y)+z => x+(y+z)   (1)
and -x1+x1 =>0                 (2)

s=(-1+1)+1 matches with l1 and s' = (-1+1)
s rewrites to 0+1  (by 2)
and to -1+(1+1) (by 1)     

θ'  is {x1==1}, θ is{x==-1, y==1, z==1}  
and  σ is {x==-x1, y==x1}

(c) s  rewrites in 2 different ways by rules that overlap on a non-variable sub-term of s. In 
this case the LHS of the two rules also overlap on a non-variable sub-term (see below). 
(This is illustrated in Case 3 on 16bviii). 

16ev

l1[l2]σ=(-x1+x1)+z1

l1[r2]σ=0+z1 r1σ=-x1+(x1+z1)

(2) (1)

16fi

•  The inference rule approach allows  logic and control to be separated
•  Invariant properties can be found  that imply confluence on termination.

•  A derivation using the inference rules has the form:  (A0,R0) , (A1,R1) , ….
•  Because of subsumption and Collapse some rules may not remain forever. 
•  A persistent rule  is one that occurs in Ri and remains in Rj, ∀j≥i.
•  R∞ = {persistent rules}     [formally = ∪(i≥0) (∩(j≥i )Rj) ]
•  Aim is for  R∞ to be canonical  - 
             any equation valid in (A0,R0) = (A0,{}) has a rewrite proof in R∞.

•   We define the relation ⇔A∪R by (u,v) ∈ ⇔A∪R  iff (A,R) |= u=v
     ⇔A∪R is obtained by using  A and R together and treating R as equations.
     ⇔A∪R is an equivalence relation on terms;
     (Exercise: Show ⇔A∪R is an equivalence relation)

•  Invariant of procedure:  For each i, (Ai, Ri) and (Ai+1, Ri+1) are related:
                                          ⇔Ai∪Ri   =   ⇔Ai+1 ∪ Ri+1

•  Ensures that  (A0,{}) |= u=v  iff ({}, R∞) |= u=v  
                 i.e. no proofs (possibly with peaks) have been lost or gained.

Correctness of Knuth Bendix Rules  (Bachmair) 

16fii

•  Idea of the proof :  
to show R∞ is confluent must show that rewrite proofs using derivation (Aj ,Rj)  
are “less complex” than those using  (Ai,Ri), i<j

•  A non-rewrite-only proof uses equations as well as rewrite rules
•  Making an equation a rewrite rule may  mean it is used 'backwards' in a proof
•  Generating  critical pairs allows for  new rewrite rules to be added which will 
smooth out a proof (ie remove a peak or two)
• Fairness  is required so that equations cannot be ignored for ever
• All critical pairs will eventually be formed
• Any proof eventually becomes a rewrite proof as proofs decrease in complexity 
as rewrite rules are formed from equations.

•  The KB algorithm can fail because a selected equation cannot be oriented
or because R∞ is not finite.
•  It may be possible to try a different ordering, 
or may still be able to use rewrites generated so far to show s=t .

Problems:

is less
complex

thant1 t2
t3

t1 t2t3

eg


