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SLIDES 17:

KNUTH BENDIX EXTRAS  (if time permits)
   Failure in Knuth-Bendix Procedure
   Knuth Bendix and Theorem Proving
              Narrowing

KB - AR - 2013

The Knuth Bendix procedure fails  if an equation cannot be orientated

•   eg    x+y = y+x   leads to circular rewriting as in   2+3 => 3+2 => 2+3 ..., 
            f(x, g(z)) = f(g(z), x) leads to f(g(a),g(b))=>f(g(b),g(a))=>f(g(a),g(b)).....

17ai

Avoid failure by allowing superposition to/from either side of an non-orientable 
equation as long as certain conditions are met to avoid non-termination.  

When Knuth Bendix Completion Fails 

•  Can superpose l = r and s => t as long as ¬(lθ ≤ rθ);  
        (θ is either mgu of l and a subterm of s, or of s and a subterm of l.)
        (¬(lθ ≤ rθ) means there are some instances for which  lθ > rθ, else  lθ ≤ rθ)
•  > must be total on ground terms; (i.e. any 2 ground terms can be ordered)
•  when rewriting  using l = r, must have lθ >rθ.  (Ideas due to Bachmair)

• eg f(x,g(z)) = f(g(z),x),  f(a,y) => y, f(y,b)=>y (use kbo based on counting terms)

Cannot superpose  f(a,y) and f(x,g(z))  (f(a,g(z))) because f(a,g(z)) <kbo f(g(z),a)

Can superpose  f(y,b) and f(g(z),x) (f(g(z),b)) because f(g(z),b) >kbo f(b,g(z))
                           gives f(b,g(z))=>g(z)

(4)  x+ -x => 0                 (5)  x + 0 => x                     (6)  u+v = v+u

Use kbo:  s >≈ t iff # functors in s ≥ # functors in t, and 0 <1 all other terms.

(5)+(6) give critical term x+0

check OK:   ¬(x+0 ≤kbo 0+x)  since for some x (i.e. x≠0) x+0 >kbo 0+x

(In other words, if x≠0 can orient x+0 => 0+x since x >1 0

17aiiExamples of conditional Orientating (ppt)
•  Can superpose l = r and s => t as long as ¬(lθ ≤ rθ);  
                 (θ is either mgu of l and a subterm of s, or of s and a subterm of l.)
                  i.e. there are some instances for which  lθ > rθ  (else  lθ ≤ rθ).
•  > must be total on ground terms;
•  when rewriting  using l = r, must have lθ >rθ.  (Ideas due to Bachmair)

(4)+(6) give critical term x+-x
          not OK since it’s not the case that ¬(x+-x ≤kbo -x+x); 

          in fact, x + -x <kbo  -x +x as -x>x

However can use (6) to rewrite -a+a
         -a+a >kbo a+-a; hence  -a+a ==> a+-a ==> 0

17aiii

Form critical pair – unify LHS of 1 with LHS 2
Check:   ¬(n(g(u,v),g(u,v)) ≤n(M,g(u,v)))
In fact, n(g(u,v),g(u,v)) > n(M,g(u,v)) (LHS has more symbols than RHS, so OK)

gives new rule   
n(u,n(v,g(u,v))) => n(M,g(u,v))

n(g(u,v),g(u,v))

n(M,g(u,v)) n(u,n(v,g(u,v)))

(1) (2)

(1) n(y,y) = n(M,y)                  (2) n(g(u,v),x) => n(u,n(v,x))

Use kbo:  s ≥kbo t if #symbols in s ≥ #symbols in t.

Cannot order (1): y>M==>n(y,y)>n(M,y)     and        y<M ==>n(M,y)>n(y,y)

Example using  the orientation restriction



Informally, the method described on Slides 17ai-17aiii works because the transformation 
steps applied to any ground proof (using equations) to turn it into a rewrite proof by 
critical pair formation can be lifted to the general level.  The lifted proof will not have 
been excluded by the restrictions:

•  if lθ ≤ rθ (i.e. an excluded step) then all instances of it would lead to excluded steps too; 
these excluded steps could not have been part of the transformation process of the original 
ground derivation, leading to a contradiction.

Note about the constraint ¬(lθθθθ ≤≤≤≤ rθθθθ) 
Since ≤ is stable, ¬(lθ ≤ rθ) means that “it is not the case that lθσ ≤ rθσ for every 
substitution σ”. Hence ¬(lθ ≤ rθ) →  lθσ > rθσ for some ground substitution σ. 

Hence it is possible to have both ¬(lθ ≤ rθ) and ¬(rθ ≤ lθ) (for different substitutions σ1 
and σ2 - that is lθσ1 > rθσ1 and rθσ2 > lθσ2). In such a case the equation l=r  could be 
used in both directions but at different times.

17aiv

If we relax the restriction if s = lθ to sθ = lθ we obtain Narrowing
•  An expression e[s] is narrowed  by  l => r  if sθ = lθ and (e[s])θ=> (e[r])θ.

(i.e. bindings may be made to vars in the term s  that is being rewritten)

17biParamodulation and Narrowing
Recall the definition of rewriting:
•  An expression e[s] is rewritten  by  l => r  if s = lθ and (e[s])=> (e[r])θ.

(i.e. no bindings are made to vars in the term s being rewritten)

Example:           (1) x+0 => x            (2)    x+s(y) => s(x+y)            (3)   y=y
s(0)+v narrows to s(0) by (1), if v==0
s(0)+v narrows to s(s(0)+y1) by (2) if v==s(y1), which narrows to s(s(0)) by (1) if y1==0

• Narrowing corresponds to using paramodulation with oriented  equations
• Rewriting corresponds to using restricted paramodulation with oriented  equations

17bii

• Consider goals of the form ∃x[ t1[x] = t2[x] ]  and data restricted to equations.  

• The negated goal is ∀x[ ¬(t1[x]= t2[x]) ]  

• This leads to ==> ¬(t1[x1]=t2[x1]) (using free variable rule)

•  The two sides of the equality can be narrowed  until a substitution is found 
that makes both sides equal

•  The resulting inequation can then be resolved with x=x.

•  The Knuth Bendix procedure can also be applied incrementally to the rewrite 
rules and the constrained form (of Slides 17a) used for equations that cannot 
be oriented. This copes both with failure and divergence. 

Using Knuth Bendix Completion  as a Theorem Prover

Show  ∃x[ s(0)+x = s(s(0)) ]     ( or find x s.t. s(0)+x = s(s(0)) )
¬( s(0)+x1 = s(s(0))) ==> (P 2.)  ¬( s( s(0) + y1) = s(s(0)) )        (if x1==s(y1) ) 

¬(s(s(0) + y1) = s(s(0)))   ===> (P 1.)  ¬( s(s(0))) = s(s(0)) )    (if y1 ==0 ) 

¬(s(s(0))) = s(s(0)))  ==> (R 3.)   [ ]      (x1==s(y1)==s(0) )

Example 1:           (1) x+0 => x            (2)    x+s(y) => s(x+y)            (3)   y=y

Use oriented  paramodulation - ie use equations in direction of =>

17biii

Using Knuth Bendix Completion  as a Theorem Prover (2)

Example 2:    (1)  g(a,b) => a              (2) g(g(x,y),y) => h(y,x)

Superposition of (1) onto (2) gives g(g(a,b),b)

       g(g(a,b),b) =>* a (use (1) twice) and => h(b,a) (by (2)) giving (3)  h(b,a) => a 

Suppose the goal is ∃z[ g(a,z)= h(z,a) ]. (ie find a z s.t. g(a,z) = h(z,a))

Negated, this is ∀z [¬(g(a,z)=h(z,a))]   (leading to ¬(g(a,z1)=h(z1,a)))

Using the rules (1) and (3) we get ¬(a = h(b,a)) (by (1) and binding z1==b) 

                                          and then ¬(a = a) (by (3)),  which resolves with x=x.

The derivation yields also the witness z1 (here z1==b)



1  n(x,x) = n(M,x)                    2  n(g(u,v),x)=>n(u,n(v,x))              4  x= x
3   n(z,z) ≠ z  (negation of goal “find z s.t. n(z,z)=z”
                         i.e. ¬(∃z. n(z,z)=z), becomes ∀z. n(z,z)≠z)

Use kbo:  s≥kbot if #symbols in s ≥ #symbols in t (similar to slide 17aiii)

(5)  (1+3)   n(M,z) ≠ z                                                
                          (Check: ¬ (n(x,x) ≤ n(M,x)), True - if x>M then n(x,x)>n(M,x)

(6)  (1+2) n(u,n(v,g(u,v))) => n(M,g(u,v))        (see 17aiii for details of this step)
                 
(7)  (5+6)   n(M,g(M,v1)) ≠ n(v1,g(M,v1))     ( u==M and z==n(v1,g(M,v1)) ) 

(8)  (7+4)  []      (v1 ==M )   

                                       Hence  {z== n(v1,g(M,v1)) == n(M,g(M,M)) }                           

17bivExample 3

Question: Are there any other solutions?

17ciSummary of Slides 17

1. The Knuth Bendix procedure normally has three outcomes: success (a confluent 
and terminating set of rules is produced), failure (some rule cannot be oriented) 
and divergence (there are an infinite number of rules). Leads to consider how to 
deal with failure.

2. In the unfailing KB procedure, superposition is allowed between l=r and s=>t if 
lθσ>rθσ is for some substitution σ, where θ is the unifying substitution of the 
superposition step.

3.The Knuth Bendix procedure can be used as a theorem prover. The goal (often 
of the form ∃x[ t1[x] = t2[x] ]) is negated to give ∀x[ t1[x] ≠ t2[x] ]. Knuth Bendix is 
applied to generate rewrite rules and they are used in narrowing steps to reduce 
both sides of the inequality to a common term.  Resolution with x=x then gives [ ].
Even if the KB procedure diverges, interleaving of rule generation with narrowing 
can give a solution.

SSSTTTAAARRRTTT   ooofff   OOOPPPTTTIIIOOONNNAAALLL   MMMAAATTTEEERRRIIIAAALLL
(((SSSLLLIIIDDDEEESSS   111777)))

Non-termination: a special case
Oriented paramodulation and resolution

17di

For a commutative and associative operator (eg +, or set union),  there is a special 
unification algorithm called AC-unification, which takes these properties into account 
during superposition. The result is always a finite number of unifiers (possibly none). 
(See Bundy: Computer Modelling of Mathematical Reasoning)

Example of a special case   of non-termination

Commutativity and associativity can also be included when rewriting

eg x+-x =>0  together with commutativity of + allows -(b+a)+(a+b) => 0:

-(b+a)+(a+b) can be unified with x+-x  with substitution x==(b+a) or x==(a+b)
      by using commutativity (either once at outer level, or twice)  => 0  (by the rule)

(Note that adding x+y=y+x explicitly will not necessarily allow to derive -x+x=>0 from 
x+-x =>0 because of the oriented restriction: -x+x ≥ x+-x is likely the case; see17aii)

(-0 )+ 0

0

(1)
(2) and 
comm

-0

eg (1) -x+x => 0     (2) 0+y => y   give critical pair  -0 = 0

(-x+x = x+-x  (by commutativity)
then obtain substitutions x==0 and y==-0;)

adding x+y=y+x  explicitly allows to derive x +-x => 0 since -x+x >kbo x+-x 
but does not allow to derive y +0 => y since ¬(0+y >kbo y+0)
In fact, if  y>0 then  0 +y ≤kbo y+0 and can’t superpose as orientated restriction  not 
satisfied     ¬(0+y ≤ y+0) only holds if y=0 (when it is obviously useless!)



17eiOriented Paramodulation (OP) 
•  We can use the idea of ordering an equation to control paramodulation steps:
•  Restrict paramodulation by requiring the replacing term to be definitely  not 
greater than the one being replaced.
•   In case an equation can be orientated (ie every instance satisfies LHS>RHS) 
then the restriction allows to order the equation LHS ==> RHS. 

Oriented Paramodulation:  l= r ∨ C paramodulates into s[u], u not a variable 
                       if        lθ =uθ   and   ¬ (lθ ≤ rθ ), where
≤ is a stable monotonic simplification ordering (eg rpo, kbo).

(Method due to Hsiang and Rusinowitch CADE 8, 1986)

Example :
n(x,x)=n(M,x) and the kbo: n(x,x)<n(M,x) if x is bound to a term  t<M;
                                           n(x,x)>n(M,x) if x is bound to a term s>M;

Can apply oriented paramodulation into P(n(u,v)):
          use  L to R to give: P(n(M,v)) or R to L to give: P(n(v,v)) 

Thus θθθθ    may be u==v and must check ¬(n(v,v) ≤≤≤≤ n(M,v)) (OK)

Or θθθθ    may be u==M and must check ¬(n(M,v) ≤≤≤≤ n(v,v))   (OK)

17eii

Example:  1.  x=a ∨ x=b    2.  ¬ g(x) = g(y) ∨ x=y    3.  ¬ (g(g(a)) = a)    4. g(a) =>b
Choose  a < b < g and ≥rpo ( so a<b <g(a) < g(b) < g(g(a)) , …   )  
5     [P (1+3) ]      g(g(a))=>a ∨ ¬b=a     ( put x=g(g(a)) and replace by b in 3;
                    check ¬(g(g(a)) ≤ b) ; OK)
6     [R (3+5)  ]     ¬ b=a                       
7     [R (6+ 2) ]     ¬ g(b) = g(a)          
8     [P  (4+3) ]     ¬ g(b) = a               (OK  g(a) >b )
9     [R  (1 + 8) ]     g(b) => b               
10   [P (9+7) ]      ¬ b = g(a)               (OK g(b) >b )
11   [R  (10+ 4) ]    []                         (use symmetry)

Oriented Paramodulation (Example) 

Notes : 
(i) can replace u=v by u=>v if u>v for every instance of u,v
   – so g(a)=b becomes g(a)=>b and g(b)=b becomes g(b)=>b
(ii) ¬(lθ ≤ rθ) means “it is not true that for every ground substitution σ, lθσ ≤ rθσ”
    i.e. “there is some ground substiution σ, lθσ > rθσ”

•   In case an equation can be orientated (ie every instance satisfies LHS>RHS) 
then the restriction allows to order the equation LHS ==> RHS. 
•   l= r ∨ C paramodulates into s[u] (u not a variable) if   lθ =uθ  and  ¬(lθ ≤ rθ )

17eiii

•  Oriented paramodulation can be combined with an ordering on predicate 
symbols (note the largest  predicate symbol has highest priority here):
•  ≤ is extended to literals as well as terms such that "=" ≤ all predicates

Example:  the Aunt Agatha problem

1. K(d,a),    2. d=>a ∨ d=>b ∨ d=>c,    3. H(b,d),    4. x=b ∨ H(b,x),    5. ¬a =b   
6.  ¬K(x,y) ∨ H(x,y),         7. ¬H(c,x) ∨ x=b,       8.  ¬K(a,a),    9.  ¬H(x,f(x))

Order functors as f>d>a>b>c and predicates K>H>'=' (K has highest priority).

10. (1+2, P)     K(a,a) ∨ d=>b ∨ d=>c                15. (13+14, R)   d=>c                     
11. (10+8, R)   d=>b ∨ d=>c                              16. (1+6, R)       H(d,a)
12. (4+9, R)     f(b) =>b                                      17. (16+15, P )  H(c,a)
13. (12+9, P)   ¬H(b,b)                                       18. (7+17, R)    a=>b
14. (11+3, P)   H(b,b) ∨ d=>c                             19. (18+5, R)    []  

OP and Predicate Ordering

•  C1: s=t ∨ D1 can paramodulate by oriented paramodulation into literal with 
largest predicate in C2 if D1 consists of predicates equal in the order to “=”
•  C1:  E1∨ D1  and C2: ¬E2 ∨ D2 can be resolved if E1σ and E2σ are unifiable 
and no predicate in D1 is > E1 and  no predicate in D2 is > E2.
            i.e. E1/E2 use the largest predicates in C1/C2

17eiv
Combining Oriented Paramodulation and Predicate Ordering:

Oriented  Paramodulation allows to control the  use of paramodulation. It can also be 
combined with predicate ordering if we treat predicates as functors for the purpose of 
ordering. It is easiest to make the greatest predicate have the highest priority (in 
contrast to what we did in Slides 7, but like Otter does), and to give the = predicate 
lowest priority. In case paramodulation is explicitly simulated by resolution, this 
behaves similarly to locking the equality axioms as we suggested in Slides 12. We can 
also extend the use of quasi-orderings to other refinements, even if paramodulation is 
not involved, such as atom ordering and hyper-resolution.  Some examples of using 
these ideas are given on Slide 17ev.

An example of an ordering of terms that’s combined with a predicate ordering was 
given in the optional material in slides 7 (the lexicographic ordering). However, once 
orderings are combined also with paramodulation steps, we require that the order be a 
simplification order too; for instance, kbo or rpo. If < is such an order, then we can 
compare two atoms thus:

s=P(s1,...,sn)>t=Q(t1,...,tm) if 
       (i) P>Q in the predicate order, or 
      (ii) P=Q, P is not “=” and [s1,...,sn]>*[t1,...,tm], where >* is the lexicographic 
order based on <, or 
     (iii) P=Q, P is “=” and {s1,s2}>>{t1,t2} (multi-set order because = is symmetric).



Completeness of the method is shown in Hsiang and Rusinowitch, CADE- 8.

17evFurther Examples:  (Extension to atom ordering) 

1)  P(0)     2)  ¬P(x) ∨ P(s(x))

P(s(x)) > P(x) because s(x) > x (using any simplification ordering)
so P(s(x)) is the literal that must be selected in (2).
There are then no ordered resolvents between these clauses.

Group Theory problem :

1.     f(a,b) => c        2.   ¬f(b,a) = c        3.    f(x,x) => e       4.  f(x,e) => x        
5.     f(e,x) => x        6.       f(f(x,y),z)  => f(x, f(y,z))

Use kbo based on length of terms.

7.  (1+6, P)        f(a, f(b,z)) => f(c,z)      10. (9+6, P)          f(a, f(c,z)) => f(b,z)
8.  (3+6+5, P)    f(x,f(x,z)) => z              11. (10+ 3+4, P)   f(b,c) => a
9.  (1+8, P)        f(a,c) => b                    12. (8+11, P)        f(b,a) => c
                                                              13. (2+12, R)        [ ]

17fiSummary of Optional material in Slides 17

1. There are special procedures for the particular case of an associative and 
commutative operator, eg +, in which the properties are built into the unification.

2. Oriented paramodulation restricts paramodulation according to some term 
ordering. It can be combined with resolution restricted by atom ordering. An 
equation l=r may be used for paramodulation from l to r as long as there are 
some instances such that lθ>rθ. Otherwise, r≥l and the rule must be used in 
that direction.


