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1ai

For propositional sentences there are some special techniques 
Here we look at (the famous) Davis Putnam   procedure using clausal form

A few notations for ground clauses (no quantifiers):
•  the propositional language  L names the atoms that may occur in a clause 
•  a ground clause  is a disjunction of ground literals
•  a ground literal  is a ground atom or negated ground atom
•  a singleton  clause is called a fact  or unit  clause
•  a clause C in which literals X and ¬ X occur is a tautology (always true)

Techniques  and Examples for Propositional Clauses

Examples :  Let the language be {A, B, C, D}
• A and ¬B are literals
• A∨¬B∨¬D is a clause.   So is C.   
• C is a fact, also called a unit clause.
• � is the empty clause, (an empty disjunction) which is always False.
• A∨¬B∨¬A is a tautology, which is always true.

Note:  A∨B∨C may be written as, and identified with, {A, B, C} (or ABC); 
if X and Y are sets of clauses their union may be written X + Y.

1aii

Let L be a propositional language
• a  valuation  over L  assigns True(T) or False(F) to every atom in L
• a valuation over L assigns T/F to literal ¬X if it assigns F/T to atom X
• a valuation over L satisfies clause C if it assigns T to ≥1 literal X in C

Valuations for Propositional Clauses (1)

Examples:     Given the clauses    A∨B,       ¬A∨C∨¬D,       ¬C
 Which clauses are satisfied by
 (1)  the valuation A=B=C=D= False ?
 (2)  the valuation A=B=True; C=D= False ? 

• a valuation  over L is a model  of a set of clauses S written in L 
          iff  it satisfies all clauses in S.   
• S is satisfiable  if it has a model

Valuation (2) above is a model of the given clauses
The given clauses are satisfiable

• S is unsatisfiable  if it is not satisfiable; ie if it does not have a model

1aiiiValuations for Propositional Clauses (2)
Let L be a propositional language
•  let S be a set of clauses and G be a clause in L. 
Then  S |= G iff for all valuations M over L,  

if M is a model of S, then M is a model of G;

Examples: 
A∨B,  ¬A,  ¬B are unsatisfiable. Why?

                  A∨B,  ¬A |= B since every model of  A∨B  and ¬A  is a model of B
A∨B |= A∨B   (¬(A∨B) is equivalent to  (≡) ¬A and ¬B) 

• S+{¬ G} is unsatisfiable iff S |= G
(because every model of S satisfies G and falsifies ¬G;

                 if G is a clause then ¬G is a set of facts)



1aivValuations for Propositional Clauses (3)

Example: 
{¬(A∨B)} is equivalent to {¬A,  ¬B}  Why?

•  clause X subsumes  clause Y if  X  ⊆ Y.     Note X |= Y;   Why?

Example: 
¬A∨¬D subsumes  ¬A∨C∨¬D.  Note ¬A∨¬D |= ¬A∨C∨¬D;   Why?

• Let S1 and S2 be sets of clauses written in L;
  S1 is equivalent to S2 (written S1 ≡ S2) iff 
                  (M is a model of S1 iff M is a model of S2)

In other words, S1 and S2 have the same models

(Remember clauses can be considered as a set of literals)

The Davis  Putnam  decision procedure is used to decide whether ground 
clauses S are satisfiable or unsatisfiable. 

It attempts to show that S has no models by reducing satisfiability of S to 
satisfiability of sets of simpler clauses derived from S

1biDavis Putnam Method

(Also called the Davis Putnam Loveland Logemann (DPLL) method)

• DP is called with 2-arguments:
• Arg1 is a partial model of clauses processed so far, and
• Arg2 is the list of clauses still to process.
        Either  no model exists and false is returned, 
        or all clauses are processed and true is returned with a model in Arg1. 

• Initial call is DP([],S).
Since no clauses processed so far, Arg1 is empty and Arg2 =given clauses.

• It is usual to first remove tautologies and merge identical literals in a clause,  
(e.g. A∨A∨B becomes A∨B), and then call DP([], S)

The algorithm is on 1biii and an example is on 1bii

DP Example written as a tree (see ppt slides)
 No tautologies and no subsumed clauses
DP([], S) = DP([],[LK,  ¬L¬K,  ¬LM,  ¬MK,  MR])  

R is pure so delete MR (step 4) and make R true:   
DP([R], S’) =  DP([R],[LK,  ¬L¬K,  ¬LM,  ¬MK ])

Choose L  (step 7)

Make L true
DP([L,R],S’) = DP([L,R],[¬K, M,¬MK])

Choose ¬K (step 6)
DP([¬K,L,R],[M,  ¬M])

return False(step 2)

K subsumes ¬MK (step 3)
DP([¬L,R],[K])

K is pure (step 4)
DP( [K,¬L,R],[])

return True (step 1)
Finally return (False or  True) = True  (so data is satisfiable) and recover a 
partial  model from the right branch = {K, ¬L, R}. Can assign either T or F to M

1bii

Make L false; DP([¬L,R], S’’)=
DP([¬L,R], [K,  ¬MK])



1biiiThe DP procedure 

procedure DP(M, S) : boolean;

%M is a possible model so far and S are clauses still to process

1. If S is empty  record M and return true;                  %M is  a (partial) model

2. If S contains clauses X and ¬X return false;                 % S has no models

3. If C is  a subsumed clause in S return DP(M,S-C);

4. If P is literal in  C with no complement in S (called a pure literal)
    then  return DP([P|M], S'), where   S' = S -  { D | P in D};       %Make P true

5. If A is a fact in S return DP([A|M], S'),  where S' =  S processed as follows:  
       remove clauses containing A and remove ¬A from rest

6. If ¬A is a fact in S return DP([¬A|M ], S"), where  S"= S processed as 
       follows: remove clauses containing ¬A and remove A from rest.     

7. Otherwise  select an atom A in a non-unit clause in S and form
      S' and S" as in Steps 5 and 6;  return  DP([A|M ], S') ∨ DP( [¬A|M],  S")

1bivThe DP procedure (Notes)

On slide (1biii) [P|M] is the Prolog list notation for a list with head P and tail M.

The partial model M from step 1 is formed by assigning T to atom A if A is in M, 
and assigning F to atom A if ¬A is in M.

Since M need not have assigned either T or F to some atoms in the language of 
the given clauses it is a partial model, and the assignment must be extended to 
make it a model.

The partial model can be extended to be a model by assigning either of T or F 
to any  still unassigned atom in the language. 

As an example, carry out the procedure on the initial clause A ∨ B. You will get 
the partial model A assigned T, or the partial model B assigned T.

Often, a model is represented by the set of atoms assigned T by the valuation.

Davis Putnam Procedure:

When computed by hand the sets of clauses that are arguments to calls of DP can be 
maintained in a tree.  For the inital clauses S = {LK, ¬L¬K, ¬LM, ¬MK, MR} we might get 
the  tree shown on Slide 1bii.  (There are others, it depends on the choice of literals in steps 4 
and 7.) The initial node contains the initial set S and an empty partial model.  

R is pure, so remove MR (Step 4). The tree is extended by a node containing the set 
{LK, ¬L¬K, ¬LM, ¬MK} and R is added to the partial model. Next use (Step 7) and choose 
M (note: for illustration this is a different choice than shown on Slide 1bii, but the final 
decision about satisfiability will be the same); the tree is extended by 2 branches, one getting 
model {R,M} and reduced clauses {LK, ¬L¬K, K} and the other getting model {R,¬M} and 
{LK, ¬L¬K, ¬L}. From {LK, ¬L¬K, K} use (Step 5) for K and get a new node below it with 
model {R,M,K} and reduced clauses {¬L} and from {LK, ¬L¬K, ¬L} use (Step 3) to remove 
¬L¬K, and then (Step 6)  for ¬L and get a new node beneath it with model {R,¬M,¬L} and 
reduced clauses {K}.  In case 1, ¬L is pure and in case 2, K is pure. Removing either leads to 
an empty set of clauses and the procedure returns true so the initial clauses are satisfiable.  

The first branch returns the (partial) model {R,M,K,¬L} and the second branch returns the 
(partial) model {R, ¬M, ¬L, K}. You can check these both satisfy the initial clauses.

Note for example, that if we add L¬K to the initial set of clauses, then we would have got 
{¬L,L} and/or {K, ¬K} in the last nodes. Both  return false showing the set of clauses {LK, 
¬L¬K, ¬LM, ¬MK, MR, L¬K} is unsatisfiable.

1bv 1bviVarious properties can be proved for DP:

As the Davis Putnam procedure progresses, the first argument M is maintained as a 
partial model of clauses already processed. If the procedure ends with an empty set 
of clauses then M will be a partial model of the initial set of clauses S. It may have 
to be extended to the whole signature, for instance if it doesn't include assignments 
for all atoms. The second argument is simplified at each step. 

The following two invariant properties are proved on Slides 1ciii and 1civ.

(1) At each step any literal that appears in M will not occur positively, or 
negatively, in S. This is clearly true vacuously at the start.

(2a) At each single branching step  
                M∪S is satisfiable iff M' ∪S' is satisfiable,
       where M' is the resulting value of Arg1.

(2b) At each double branching step 
                M∪S is satisfiable iff M' ∪S' is satisfiable or M'' ∪S'' is satisfiable, 
       where M' and M'' are the resulting values of Arg1.

Note: If it is required to know only whether a set of clauses S is satisfiable or not, 
there is no need for the argument that maintains the model and the invariant (1) can 
be dropped, and (2a) and (2b) simplified by dropping reference to M, M' and M". 



1ci

We'll consider a simple version where we don't bother with finding a model.

Why Does DP Work? (1)

S1 (un)satisfiable

S2 (un)satisfiable

S3 (un)satisfiable

S4 (un)satisfiable

Until:
Sn is clearly  
unsatisfiable – 
Sn includes A and ¬A 
or: 
Sn is clearly  
satisfiable – 
Sn is empty 

EG: Want to show S1 is (un)satisfiable. 
After a sequence of steps may reach the simpler Sn.....
Conclude S1 is unsatisfiable if Sn is shown to be unsatisfiable, and
S1 is satisfiable  if Sn is empty

The idea behind the procedure: 
       each step  should maintain satisfiability/unsatisfiability of clauses S:        

       i.e. in the call DP(S) S is satisfiable                                                        
                                       iff                    (iff is shorthand for if, and only if)
             in the next call DP(S’) S' is satisfiable

This is equivalent to S is unsatisfiable iff S’ is unsatisfiable 

1ciiWhy Does DP Work? (2)   (see ppt)

EG Step 4 – P is pure:     delete clauses including P from S to give S' 

(1) S satisfiable  ==> S' is satisfiable:
Let I be a model  of S. 
S' is smaller than S so I must be a  model of S'.  

(2) S' satisfiable ==> S is satisfiable:
Suppose I is a model of S'
In order to make S true I must also satisfy the deleted clauses like C = P∨D
Since P is pure in S, ¬P does not occur in any clause in S or S' - Why?
So I does not have to assign to P to satisfy S'
Hence we can arbitrarily assign true to P in I and make true all clauses like C

Hence the property holds for step 4.

For the branching step 7, the (simplified) invariant is a bit more complicated:

S is satisfiable iff S' is satisfiable or S'' is satisfiable ≡
S is unsatisfiable iff S' is unsatisfiable and S'' is unsatisfiable. (See 1ciii - 1cv)

Proof of Correctness of DP:

In the following proof, some details are left as exercises, labelled Exercise 1, Exercise 2, etc. 

Exercise 1: Let S be a set of clauses. Show that
S is satisfiable iff S' is satisfiable is equivalent (≡ ) S is unsatisfiable iff S' is unsatisfiable.
Hint: S is unsatisfiable  ≡≡≡≡ not (S is satisfiable)

First is shown that the simplified invariant property holds, and then is shown how this leads to 
the property that DP(S) returns False iff S is unsatisfiable.

The simplified invariant property states that the clauses S before the step are satisfiable iff the 
clauses after the step S' are satisfiable. For example, the case for (Step 4) is given on Slide 1cii. 

Exercise 2: Show the invariant holds for (Step 3), (Step 5), (Step 6) 

Exercise 3: Show that  the invariant holds for (Step 7): the clauses S before the step are 
satisfiable iff at least one of the clauses after the step, S' or S'', are satisfiable

Using the invariant property we now show by induction on the number of propositional 
symbols occurring in S that DP(S)=False iff S is unsatisfiable. 

Case 1:  S has no proposition symbols;  S is  empty, hence satisfiable, and result = True by 
(Step 1) is correct
Case 2: S contains one proposition symbol; either (Step 4) is possible and the clauses are 
satisfiable and the correct result of True will be returned by (Step 1) or S ={L}+{¬L} (two 
clauses) and is unsatisfiable so result = False by (Step 2) is correct. (Note that if tautologies are 
initially removed they will never appear in the argument S, so S cannot be the clause L∨¬L.)  

1ciii
Proof of Correctness of DP continued:

Case 3: S has k>1 proposition symbols. Assume for induction hypothesis (IH) that if S has <k 
proposition symbols then DP(S) returns the correct result (i.e. False when S is unsatisfiable, 
otherwise True).  For each of Steps 3-6 S'/S" has fewer atoms than S and so by (IH) 
DP(S')/DP(S") returns the correct result, which is also the correct result for S according to the 
invariant.  For Step 7, the (IH) states that DP(S') and DP(S'') give the correct result for S' and S''. 
The disjunction will be false when both are false, i.e. when S' and S'' are both unsatisfiable. By 
the invariant S is unsatisfiable and so the disjunction gives the correct result (false) for S. 

Exercise 4: Show that when the disjunct is true the correct result is also given. 

Next we show that another useful property from Slide 1bv (for the 2 argument variant) holds: 
if a literal is in M then neither it nor its complement occurs in S.  

Assume this is true for a call DP(M,S). If any literal L is added to M then all occurrences of L 
and ¬L are removed when forming S' / S'' and no literals are added to S' / S'' that were not in S. 
Hence the property still holds. It clearly holds for the initial call DP({ }, S).

Next we show the invariant property for the full procedure that returns a model. The subsequent 
induction part is quite similar to the proof just given and will be omitted. 

Exercise 5: Proofs of the invariant are given for Steps 4 and 7 on slide 1cv. Give the proofs for 
Steps 3, 5 and 6.

1civ



Proof of Correctness of DP concluded:
To show the invariant property you must show for each step that M∪S is satisfiable iff M' ∪S' 
is satisfiable. For example, the case for (Step 4) is as follows. 

Assume P is pure, then the procedure adds P to M to give M'. We assume that literals in M do 
not occur in S, which implies P is not in M. 

First we show M∪S is satisfiable ==> M' ∪S' is satisfiable. Let I be a model of M and of S. 
Since S ⊃S' I is a model of S'. If I makes P true then I satisfies M'=M ∪ {P}. If I makes P false, 
let C = P∨D be a clause in S (P occurs only in such clauses). I makes D true, hence can form I' 
from I by reassigning P to true in I. P is not in M or S', so I' will still satisfy M ∪ {P} ∪ S’ (ie 
M' ∪ S’).

Next we show that M' ∪S'  is satisfiable ==> M∪S is satisfiable. Suppose I is a model of M' and 
S'. Since P is in M' I makes P true and hence makes S true as it satisfies the deleted clauses like 
C = P∨D. I makes M true since M' ⊇M. Hence the property holds for step 4.

For (Step 7) assume atom L is chosen. Let I be a model of M∪S. If I makes L true then we 
show I satisfies S' and M'=M∪{L}. The analogous case for when I makes L false using S'' is 
similar. I clearly makes M' true.  (Remember that L is in S and so by assumption L does not 
occur in M.) Consider the exemplifying clause ¬L∨B∨C in S. Since L is true in I, B∨C is forced 
to be true in I, as required to satisfy S'. Clauses in S not including ¬L or L are unaffected and 
are still true (in S'). On the other hand, if M' ∪S' has a model I, then I satisfies L and hence all 
the clauses deleted from S to form S'. I still satisfies M and clauses in S such as ¬L∨B∨C since I 
also satisfies B∨C in S'. Similarly, if M'' ∪S''  has a model.

1cv

The data

(1)  C(d) ∨ C(e) ∨ C(f)    One of the threee girls was the culprit
(2)   C(x) → H(x)            { C(d) → H(d), C(e) → H(e), C(f) → H(f)  }     
                                               to convert into propositional form  
(3)  ¬(C(d) ^ C(e))
(4)  ¬(C(d) ^ C(f))            Only one of the three girls was the culprit
(5)  ¬(C(f) ^ C(e))

(6)  C(d) ∨ H(d)  ∨ ¬C(e)                                (Dolly's statement negated)
(7)  C(e) ∨ C(f) ∨ ¬(C(e) → (C(d)  ∨  H(d)))    (Ellen's  negated)
(8)  C(f)  ∨ ¬H(d)  ∨ ¬((H(d) ^ C(d)) →C(e))   (Frances's negated)

 "The three little girls"  problem 1di

Here we include a negated conclusion ¬C(f) and look for False. 
The other case, to look for True (and C(f) in every model), is left to you.

Convert to clauses and remove any tautologies or subsumed clauses at the 
start. Also merge identical literals.

(Next week's notes will include a systematic algorithm for conversion to 
clauses.  For now we do it by hand.)

Solution to "The three little girls" by DP  (see ppt)
(1)   C(d) ∨ C(e) ∨ C(f)        (2a)  ¬C(d) ∨ H(d)               (2b)   ¬C(e) ∨ H(e)            
(2c)  ¬C(f) ∨ H(f)                  (3)   ¬ C(d) ∨ ¬C(e)             (4)    ¬ C(d) ∨  ¬C(f)
(5)   ¬ C(e) ∨ ¬C(f)              (6) C(d) ∨ H(d) ∨ ¬C(e)        (7a)  C(e) ∨ C(f) ∨ C(e)      
(7b)  C(e) ∨ C(f) ∨ ¬C(d)     (7c)  C(e) ∨ C(f) ∨ ¬ H(d)     (8a) C(f) ∨ ¬H(d) ∨ H(d)    
(8b) C(f) ∨ ¬H(d) ∨ C(d)      (8c)  C(f) ∨ ¬H(d) ∨ ¬C(e)    (9)  ¬C(f)   ( neg  conc)

1dii

Merge literals in (7a)  to obtain C(e) ∨∨∨∨    C(f) and remove (8a) (tautology);
(7a) subsumes (7b), (7c), (1);    (9) ¬C(f) subsumes (2c),  (4) and (5);

call DP( [ ],  [2a, 2b, 3,  6, 7a, 8b, 8c, 9] );
Apply (Step 6) on ¬C(f)  and then apply (Step 4) as H(e) is pure;
call DP([H(e) ,  ¬C(f)],  [2a, 3,  6, C(e), ¬H(d) ∨∨∨∨    C(d),  ¬H(d) ∨∨∨∨    ¬C(e)]);

Apply (Step 5) on C(e)  and then apply (Step 3) as ¬H(d) subsumes {¬H(d),C(d)};
call   DP([H(e) , ¬C(f) , C(e)],  [2a, ¬C(d), H(d) ∨∨∨∨    C(d),  ¬H(d)]);

Apply (Step 6) on ¬C(d);
call DP([H(e), ¬C(f), C(e), ¬C(d)], [H(d),¬H(d)]);

Apply (Step 2) on H(d)  - terminate and return False.



1ei

DP([ ],S) halts with false if S has no models

DP([ ], S) halts with true and returns at least one model M if S is satisfiable

Theorems for DP

EG: DP([ ], [A∨B]) will return either the model {A} or the model {B}.  
The model {A} can be extended to the model {A,B} or to {A, ¬B} as both 
satisfy the clause A∨B.  Analogously for the model {B}.

In fact, M is a partial model

Atoms A s.t. neither A nor ¬A occur in M can be either true or false 

Arguments of calls to DP(M,S) satisfy the invariant:

     M +S has a model iff either 
            M' + S' has a model, (in single call cases), or
            at least one of  M' + S' or M" + S" has a model (in otherwise case).

Also, if literal L(or ¬L) occurs in M then neither L nor ¬L occurs in S.

1fiImplementing DP efficiently (1)
The DP algorithm was invented in 1960. It is still widely used for proving  
unsatisfiability for propositional logic - eg in PVS,  Prover9, all modern satsolvers

What kind of optimisations are possible if the number of atoms and/or clauses 
is very large? 

At least will need to find an efficient way to:

 -  check when a clause becomes a unit clause so can apply (Step 5) or (Step 6)

 -  check when a clause is subsumed  (can ignore it)

 -  check when a clause is empty (branch finished);

 -  eliminate complements of singletons (Steps 5, 6 or 7)

 -  and choose atom for split in (Step 7)

1fiiImplementing DP efficiently (2)

The system Chaff (2001) Moskewicz et al  (and extensions) introduced the 
idea of watchers:

• keep a pair of indices associated with every clause that indicate  2 literals in 
the clause that have not yet been eliminated 
This allows to detect 
     - non-singletons (2 literals so indicated)
     - singleton (only 1 literal indicated)
     - empty clauses (no literals indicated) 

They also recorded  the last literal decision affecting a clause and whether the 
clause is deleted or not. 

This 

     - helps with choice of selected literal 

     - aids restoration of states when back-tracking to alternative branches

Back-tracking was improved by using information about

     - why decisions were forced (Steps 5/6) 

     - which atoms are contradictory in a False branch

1fiiiImplementing DP efficiently: Example (see ppt)

Suppose e = False and h =True set already¬b e g ¬ha
Let a and g be watched

1.  If g set to True then clause can be ignored
2.  If g set to False then select new watched 
          - must choose ¬b as it is the only literal not yet set and not yet watched

4.  If b set to True then ¬b is set also - a and g are still the watched literals 

5. After 2:  Suppose next a set to False; 
                    then only ¬b is watched so forces b = False

In general:
If a literal in clause becomes True, clause can be ignored;
If a literal in clause becomes False (and hence status becomes set) then
      if literal is not watched, do nothing
      if literal is watched then choose new watched
            and if only one literal left to be watched it is forced to be true

3.  If b set to False then clause can be ignored 



1fivImplementing DP efficiently (3)  
(Non-chronlogical back-tracking) (see ppt)

EG:  LK      ¬L¬K       ¬LM       ¬MK     MR    ¬RLM     ¬ML¬R     ¬MR     ¬KL

Idea is to keep track of forced decisions:

Can stop - no need 
to back-track to try 
R = False since R 
was not responsible 
for conflict

Add conflict clause ¬K

R=1

K=0

Conflict(K)

L=1
M=1

R=0

Conflict(L)
K=1

When K=1, both L and ¬L are forced.

The learned conflict clauses are ¬K and K. 
More generally, conflict clauses can be used elsewhere in the search space.

Choose K=0;  L, then M, then K are forced. Conflict(K)R=1

K=1 L=0
L=1 K=0 L=1 M=1 K=1

Undo K=1

Choose R=1 (True)

Choose K=1

Now K=0  (False)

1fvExample: Three girls revisited (see ppt)

(1)   subsumed                    (2a)  ¬C(d) ∨ H(d)                 (2b)   ¬C(e) ∨ H(e)            
(2c)  ¬C(f) ∨ H(f)                   (3)   ¬ C(d) ∨ ¬C(e)              (4) ¬ C(d) ∨ ¬C(f)
(5)   ¬ C(e) ∨ ¬C(f)                (6) C(d) ∨ H(d) ∨ ¬C(e)        (7a)  C(e) ∨ C(f) 
(7b)  subsumed                    (7c) subsumed                      (8a) tautology    
(8b) C(f) ∨ ¬H(d) ∨ C(d)        (8c)  C(f) ∨ ¬H(d) ∨ ¬C(e)   

Conflict in Cf due to Cd=1
   ==> conflict clause ¬Cd

¬Cd, ¬Ce, Cf,  Hf is a model as all clauses are satisfied!

• This time check for a model - i.e. don't add ¬Cf

Conflict in Cf due to Cd=0 and Ce=1
clause Cd ∨ ¬Ce
    ==> ¬Ce (using ¬Cd)
    ==> Cf (by 7a)
    ==> Hf (by 2c)

Cd=1 Ce=0 Cf=1

Hd=1

Cf=0

2a

4

7a
3

Cd=0

Ce=1 He=1

Cf=0

Hd=1 Cf=16

5

8b
3

1gi
1. Definitions (for propositional logic) of ground atom, ground literal, valuation, ground 
clause, satisfiable, unsatisfiable, (ground) subsumes, tautology, merge, pure literal 
and logical implies  (|=) were given.   

2. If S |=G then every model in the language of S and G that satisfies S also satisfies 
G and hence does not satisfy ¬G.  Therefore there is no model of {S,¬G}.

3. The Davis Putnam (DP)  method for testing satisfiability of propositional clauses 
was described. 

4. DP returns True for given set of clauses S if S has no models. It returns False if 
there S has a model and will then also return a model for S – i.e. an assignment of 
T/F to atoms in S that makes every clause in S true. This assignment can be 
extended to all atoms by assigning T or F to any remaining unassigned atoms. 

5. The state of DP can be represented as a tree, in which each node is labelled by 
the current set S and current partial assignment. Each call (and subcalls) of DP(M,S)  
maintains an invariant: M is a partial model of S iff M’ is a partial model of S’, where 
the subcall is DP(M’,S’). 

6. The correctness property of DP is proved by induction on the number of atoms 
occurring in the current clause set.

7.  DP was used to solve the “Three Little Girls” problem.

8. Heuristics for efficient implementation of DP were given (Chaff).
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A Solution to Aunt Agatha's Burglary

Note: (x and y are  implicitly universally quantified)

(1)  s(m,a)      (someone stole from Agatha)
(2)  x=a  ∨ x=b  ∨ x=j         (The only people are Agatha, James and the butler)                  
(3)  s(x,y) → (d(x,y) ^ ¬ r(x,y))     
                                          (thieves dislike, and are not richer than, their victims)
(4)  d(a,x) → ¬d(j,x)          (James dislikes no-one whom Agatha dislikes)
(5)  ¬ x= b  → d(a,x)           (Agatha dislikes all but the butler)
(6)  ¬r(x,a) → d(b,x)          (butler dislikes anyone not richer than Agatha)
(7)  d(a,x) → d(b,x)            (and also anyone Agatha dislikes)
(8)  ¬(∀z d(x,z))                (No-one dislikes everyone)
(9)  ¬ a=b
(10) Conclusion: s(a,a)      (Agatha burgled herself)

First simplify (8) to ∃z ¬d(x,z) and then to ¬d(x, f(x)). 
                  (For each x, f(x) is a person x doesn't dislike)

Put x as m in (2); m=b and m=j will lead to contradictions forcing m=a.

1hi

(See slides  further in the course for other approaches.)

m=j: s(j,a) (by equality substitution in (1)) and hence d(j,a) and ¬r(j,a) from (3); 
From (5) and (9) d(a,a) hence ¬d(j,a) by (4);
Contradiction so m≠j.

m=b: ¬d(b,f(b)) (*) (put x as b in (8) );
hence ¬d(a,f(b)) by (7) and  ¬ ¬ f(b)=b by (5);
Therefore f(b) = b and ¬d(b,b) from (*);
s(b,a) (by equality substitution in (1)) and hence d(b,a) and ¬r(b,a) from (3); 
Hence d(b,b) from (6);
Contradiction so m≠b;

Therefore m=a;
s(a,a) (by equality  substitution in (1)) which is the conclusion.
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A (Natural) Solution to the "three little girls"
(1)  C(d) ∨ C(e) ∨ C(f)    
(2)   C(x) → H(x)                           (x is  implicitly universally quantified)
(3)   ¬(C(d) ^ C(e))
(4)   ¬(C(d) ^ C(f))
(5)   ¬(C(f) ^ C(e))
(6)  C(d) ∨ H(d) ∨ ¬C(e)             (Dolly's statement negated)
(7)  C(e) ∨ C(f) ∨ ¬(C(e) → (C(d) ∨ H(d)))      (Ellen's  negated)
(8)  C(f) ∨ ¬H(d) or   ¬((H(d) ^ C(d)) → C(e))  (Frances's negated)

Case 1:  C(d).   (Suppose Dolly did it.)
              (7) cannot then be true as all 3 parts lead to a contradiction. 
             So Dolly is not the culprit.

( ¬(X → Y) true means X true and Y false.)
Case 2:  C(e) Suppose Ellen did it.  Then H(d) follows from(6) 
                                                        (remember ¬C(d) from Case 1);
              then (8) leads to contradiction.
              So Ellen is not the culprit.
Hence Frances was the culprit.  (See slides for other approaches.)

By (1) it must have been C(d), C(e) or C(f).
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A Solution to the Mathematical problem

(1)  a ο b = c
(2)  ο is an associative operator:x ο (y ο z) = (x ο y) ο z
(3)  x ο x = e
(4) x ο e = e ο x = x     (e is the identity of ο)

Show b ο a = c

(See slides  near the end of the course for other approaches.)

x  o (a o b) =   (x  o a) o b           (put y as a and z as b in (2))
x  o c = (x o a) o b                       (use a o b = c)
c o c = (c o a) o b                        (put x as c)
e = (c o a) o b                              (use (3) c o c = e)
e o b = e o b                               (property of =)
e o b = ((c o a) o b) o b               (use e = (c o a) o b)
b = ((c o a) o b) o b                    (use (4) e  o b = b)
b = (c o a) o (b o b)                    (use (2))
b = (c o a) o e                            ( use (3) b o b = e)
b = c o a                                     (use (4) (c o a) o e = c o a)

1hiv


