AUTOMATED REASONING

SLIDES 3-6 Proofs and Things
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NOTE: ALL OPTIONAL MATERIAL
Proof of Soundness of Resolution

Proof of Skolemisation Theorem
Proof of “subfree” subsumption property
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Some Useful Proofs Ala

The slides Appendix1 (Al) contain various proofs about resolution. The theorems
and Alc are important as they give the basis for the soundness of the resolution
The Skolemisation theorem on Alci means that it is sound to consider the clausal
representation of a problem, rather than the general first order representation whe
refutation as a proof technique to show (un)satisfiability. (This was called (**) on
Optional Slide 4di.) The theorem on Albi means that when proving theorems abol
resolution id is allowed to restrict them to Herbrand interpretations and models as
opposed to arbitrary models and interpretations, which is usually much easier. (Tt
called Useful theorem (*) on Slide 4bii.) There is also a proof of the property Subfr
mentioned in Optional part of Slides 6.

Some of lhe information on unifiers should be familtaryou from Prolog. But notice
that Prolog doegot test for theoccurs check condition: the check, for equation xi=ti,
that xi is not in ti. This is done for efficiency, but it can lead to unsoundness (of Pr
The traditional counterexample to this unsoundness is succeeding to show that

OxCyP(X,y) |: OyOxP(x,y) (which isincorrect ). The (Skolemised) clausal form of the
Data+negated conclusion (i.e 0k[yP(x,y) andJy[x-P(x,y)) comprises the two
clauses P(x,f(x)) and =P(g(y),y). (Remember that éaghantifier must give rise to
different Skolem functions.) These two literals do not unify as the occurs check fai
unification algorithm first gives x=g(y) and f(x)=y, and then x==g(y) and f(g(y))=y, |
the latter fails the occurs check. However, if you try the Prolog query P(g(y),y), wit
data P(x,f(x)) it succeeds. If you try to write the answer out - well, try it!

Soundness of a single Resolution step Albi
Recall from Slides 4 that the Soundness proof of resolution requires only to consider He
models and to show that clauses SR(C1,C2), where C1 and C2 are in S and R(C1,C2) i

their resolvent. i.e. if M is an H-model of S then M is an H-model of S+R(C1,C2). (Note
R(C1,C2) does not introduce any terms not already occurring in the language of S.)

Theorem (Single step Soundness): Let C1 =0[GOH], C2 =0[-EOF], R =0[(HOF)6] and
G6 = B9 and mgu(G,E) #. (Here, G and E are atoms, F and H are clauses anditidécates
universal quantification over variables in the clause.) Then,

if M is a H-model dfi[GOH] andO[-ECF], then M is a H-model dfl[(HF)0]
Proof:
* Variables in C1 andC2 can be renamed so that C1 and C2 are "standardised apart”
(i.e. have no variables in common).
» The implicit universal quantifiers can be drawn out into a prefix to yield
gicioce?) |:H O[cieocae) ()
OGoOH)eO(-E OFB] = O(-H - G)6 O(E- F) 6]
O(-H6 - GB)O(EB - FB)] |:D[(—|H6 - F9)] =0[(HOF)#]

The step (**) is the crucial one. It says that if M is a H-modél[@f1 [IC2] then M is also &
H-model of J[C16 [OC26]. This follows from the fact that B is the mgu of the step then it
only uses terms in Sig(C1,C2), though it may use variables too. (DIY! An outline proof
shown on Albii. )

Note that the contrapositive of Single Step Soundness statesfj@id (1IC20] has no H-
model therJ[C1 [OC2] has no H-model.

Soundness of a single Resolution step (continued) Albii
Theorem: Let 6 be a substitution for variables in C using terms constructed from a giv¢
signaturez and possibly some new variables. THiéhFH 0ce.

Proof: To show thafJC8 is true, show that €holds for every substitution of ground ternm
from X to the variables in € Letp be such a substitution. Without loss of generality, let
variables in C be x1, ..., xn afds the substitution {xi==ti}, where the ti may be the sam
Xi in case no substitution is made ®for xi. Otherwise, each ti is either a ground terrx in
or a term involving new variables. Let the variables @b€ yi, ..., ym ang = {yi==gi},
where gi are ground terms usiBgThen C6p) = (CB)p by definition of composition of
substitutions (See Slide 3aviii). Her@gis a ground substitution of C and sifd¢€ is true
by the premise, ®p) is true also. Therefore, sinpés arbitrary, (®)p is true.

The Single step soundness theomaiffices to show Resolution Soundness which also rel
on the following Useful Theorem (*)

Useful Theorem (*)
Corresponding to any model M of S there is a Herbrand model HM of S.

or equivalently, If S has no Herbrand models then S has no models.
So when showing S has no models, it is sufficient to show S has no H-models.

(Notealso: If S has no models it clearly has no Hmodels, so with the above theorem
have the property that S has no models iff S has no Hmodels.)

(The idea of the proof of this theorem is on Albiii. You can find more details if interes
Chapter 1 of notes at www/doc.ic.ac.uk/~kb)




Soundness of a single Resolution step (continued) Albiii
The proof idea of (*) is given next.

Let S be a set of clauses using signakurgtarting from a model | of S construct HM, a
model of S as follows. Each atom in the HB is assigned a truth value in HM given by
P(t1, ..., tn) = I(P)(I(t1), ..., I(tn)).

Let C be a clause in C and suppose C is assigned true by I. Then for each substitutit
domain values for variables in C, some literal in C is assigned true by I. Without loss
generality, consider one substitutiorior C and suppose that after the substitution | ma
literal L in C true. In case literal L is positive in C (and = P(g1, ..., gn)), then by the
definition of HM above the assignment in HM makes true all atoms P(t1, ..., tn) such
for all i, I(ti) = gi. These atoms will be ground instances of L. (Similar considerations
for negative L, or if C is false in I). C is true in HM, since the substitutiaras arbitrary.

Theorem: (Soundness of Resolution) If SO *[] then S has no models

The proof uses induction on the length of the refutation of S.

Base Case: k=0. S must contain the empty clause and is clearly unsatisfiable.

Case k>0. Assume as induction hypothesis (IH) that for refutations of length k{1 #{]S
then S has no H-models. Such a refutation has the form (for some C1 and CZin S)
S+R(C1,C2)1 * []; i.e. after the initial step none or more resolution steps lead to the
clause. By (IH) (S+R(C1,C2)) has no H-models ==> S has no H-models (by the
contrapositive of Single step soundness) ==> S has no models (by Useful Theorem

It is not difficult to extend the Soundness of Resolution proof to include factoring.
i.e. to show that S|+, where C is in S and F is a factor of C, and show thaflif*§] by
derivations using resolution and factoring then S has no models.

Skolemisation Theorem Alci
The Skolemisation part of conversion to clausal form can be implemented by the fu
Sk1 below. Then we can show (see also below) that
OV Sk1(E,V) has a model ifflvV E has a model, for free variables V in &)

Skolem(A) = Sk1(AJ])
Sk1(A,V)= A, if Ais a literal
Sk1(A op B,V) = SKk1(A,V) op Sk1(B,V), where "op"is/ O
Sk1@x.A, V) = Ox.SK1(AV O{x})
Sk1(X.AV) = IX.SK1(AX/f(V)LV),

where f is a unique functiom)V', V' occur in A
No other cases are necessary as negations are adjacent to atoms.
Requiredto show: Skolem(E) has a model iff E has a model.
Since E is a sentence it has no free variables and the property (*) will yield t
result immediately. We prove the property (*) by induction on the structure ¢
Assume as Induction Hypothesis that property (*) holds for immediate subterms of
Next we show the property holds for E.
CaseEisaliteral:
M is a model of1V .Sk1(E,V) iff M is a model of}V.E (defn. of Sk1)

CaseEisAopB:
M is a model of 1V .Sk1(A op B,V)

iff M is a model of 0V [ Sk1(A,V) op Sk1(B,V)] (defn. of Sk1)

iff M is a model ofdV [ Sk1(A,V)] ‘op’ M is a model ofdV [ Sk1(B,V)
iff M is a model of 0V A ‘op’ M is a model of0V B (Ind. Hyp.)

iff M is a model of dV [A op B]

CaseEis [X.A:
M is a model of IV.Sk1([Dx.A,V) iff M is a model of 0V, x.Sk1(A,VO{x}) (defn. Sk1)
iff M is a model of 0V, x.A (Ind. Hyp.) iff M is a model of1V.(Ox. A) (Equiv.)

CaseEis [X. A
M is a model of1V.Sk1(x.A,V) iff M is a model of OV.Sk1(AIx/(f(V")],V) (defn. Sk1)
iff M is a model of OV.A[x/f(V")] (Ind. Hyp.) iff M is a model ofOV.[k.A (below)

proved next. The notation x/f(V') means x is replaced by f(V"):

Suppose M is a model dflV.[x .A. To give a model forlV. A[x/f(V")], we need to
extend M so it includes an interpretation for f.

For each vector D', of elements from the domain oftM,A[V'/D',x] is true (since
OV.Ix .A), so interpret f by : f(D') = some z: A[V'/D', x/z] is true.
Then A[V'/D', x/f[D")] is true in M and M is a model &fV. A[x/f(V")]

Suppose now that M is a model@¥. Ax/f(V")].
Then for each vector D' of elements from the domain of M, A[V'/D', x/f(D")] is true.
Hencelx .A [V'/D'] is true and s@IVIXx .A is true too.

The details of the other parts are easier and are left as an exercise.

Alcii

The very last step in the case fae A is the one that does the Skolemisation and it is




. Aldi
About Subsumption:

Slides 6 discussed how using subsumed clauses leads to redundancy in a proof and info
introduced the Property Subfree:

Property SubFree: Let S be a set of unsatisfiable clauses. Then, there is a refutation Ref
such that for each clause Ck at depth knd used in Ref to derive a clause at depth >k, Ck
subsumed by any different clause derived at dgkpth

In other words, no resolvent in the refutation R is subsumed by a clause in S or by a prev
generated clause

The proof of Property SubFree uses this fact (illustrated on slides 6biv/bv):
if C subsumes D and a step in a refutation uses D (resolving with K) to derive R,
then either C subsumes R,
or resolving C and K leads to resolvent R' that subsumes R.
The proof of this fact is not difficult and is left as an exercise.

Here we show that th@roperty SubFree holds for refutations formed using saturation searc
The proof uses the notion wiaximum depth of a refutation, which is the stage in the generatic
of resolvents in a refutation by saturation search at which the empty clause is formed. A
resolvent R iglerived in a refutation at depth k if k is the stage in the saturation search at wh
R is derived. A given clause derived at depth 0. The inductive proof constructs a subsumpti
free refutation in stages from an arbitrary refutation.

Throughout this section assume that any factoring is combined with the resolution ste
uses the factor. e.g. if CL2[0C is resolved with -L3D, where L1,L2,L.3 unify with mg@
and C and D are clauses, then the resolventi®) as if first is made a factor step
between L1 and L2 and then a resolution step using -L3. This simplifies the proof by
avoiding the restriction to strict subsumption. . Also assume that by subsumption is al
meant9subsumption.

Proof of Property SubFree: Let S be a set of unsatisfiable clauses and let Ref be sor
refutation starting from clauses S with maximum depth m. If Ref already possesses F
SubFree there is nothing to prove. Otherwise, let the last violation of Property SubFre
in Ref at depthml. The proof uses induction on n.

Case n=mSome clause at depth n (=m) is the empty clause, formed by resolving two
D1 and D2. If a clause C subsumes D1 then C will resolve with D2 also to form the el
clause. Similarly if C subsumes D2. Hence D1 (D2) can be removed from its use to d
at depth m of the refutation. Ref will then possess Property SubFree as there are no |
violations in Ref.

Induction step (n<m). Assume as Induction Hypothesis (IH) that for any refutation of

clauses from S of maximum deptm and such that the last violation of Property SubFrt
occurs at depth k, where k<n, a refutation Ref satisfying Property SubFree can be fol
R1 at depth n<m be derived from clauses D1 and D2 such that a clause C subsume:
where D1, D2 and C are all derived at depth < n. Assume that if several clauses subs
C is selected to be minimal in the subsumption order amongst these clauses.  A1dii

Continued from Aldii Aldiii
By the aforementioned fact, either C subsumes R1 or C resolves with D1 to form R1
subsumes R1. A new refutation is constructed from Ref as follows.

Clauses in Ref at depth <n remain the same. Clause R1 is replaced by C if C subsu
otherwise it is replaced by the resolvent R1’ of C with D1. In both cases the replacel
clause subsumes R1. In steps at depths >n, a similar replacement is made using the
subsuming clause C, until either depth m is reached, the empty clause is formed at ¢
<m, or the new resolvent is unchanged from the resolvent in Ref. There are a finite r
of such replacements as the maximum depth m cannot be increased by using subsu
clauses, it can only be decreased. In effect, these replacements allow for new subst
by R1’ to be propagated through the remainder of the refutation Ref'.

After repeating such replacements as necessary for all clauses derived at depth n, tt
resulting refutation Ref will have maximal deptin (in case [] was reached earlier tha
depth m), possibly with some duplicated clauses. Moreover, the last violation of Prog
SubFree, if any, is now at depth <n, due to the minimality of C (you should try to sho
this). Hence by the induction hypothesis a refutation can be found from Ref' that dos
violate Property SubFree. In applying the hypothesis, some clauses may be made r
(if they are no longer used), and duplicated clauses are finally removed.

(Exercise: If interested in proofs, you might like to construct a (simple) example of a
refutation that violates the Property and then to follow the construction to obtain a re
that does satisfy it.)




