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7ai

Example: S= (1) ¬Ha,  (2) Fx ∨Hx,  (3) ¬Gz ∨¬Fb,  (4) ¬Fx ∨¬Hb,  (5) Gx ∨¬Fx
                           Stage 0
Order predicates as G <H <F.   i.e. resolve on an F literal only if no H or G literals  
                                                        and resolve on an H literal only  if no G literals.                                             

9   (6,7)   Fb            (subsumes clause 7)         10  (8,9) []                       Stage 2

Exercise:
(1) Identify forwards and backwards subsumption steps in an alternative Stage 2
(2) Try a different ordering.

The Predicate Ordering Syntactic Refinement (ppt) 

6   (1,2)  Fa                                                        7   (2,4)   Fb ∨¬Fx
8   (3,5)   ¬Fb ∨¬Fx  (factors to ¬Fb - safe factoring as ¬Fb subsumes           
                ¬Fb ∨¬Fx which can be removed. Also subsumes clause 3.)       Stage 1

Predicate Ordering Strategy:  
• Give each predicate a value (called an index) from some (partial) order
                   (usually use positive integers as indices)
• Resolve only on a predicate in a clause that is minimal in the order
• Within the strategy perform a saturation search.

       

If some predicates are  regarded as being "more important" than others and the 
problem involves several different predicates, predicate ordering can be useful. 

eg In a resolution derivation every literal from the used instances of given clauses 
must eventually be resolved upon and eliminated. In the schematic example 
below assume factoring occurs within a resolution step (when required).

7aii
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If the literal "%" is one which it is 
considered might not easily be 
resolved away, it may be better to 
know this early in a derivation 
attempt; so give it an index near 
minimal in the order. If it is one 
which can very likely be resolved 
away then can give it a low 
priority) i.e. its index should come 
near maximal in the order).

Is Predicate Ordering a good strategy?  (ppt)

Generally, make higher priority predicates come early in the order 
(i.e. high priority predicates are "<" low priority predicates); 
think of this as the strategy "preferentially choose high priority predicates".



Is the strategy SOUND ?   (When it yields a refutation, is that "correct".)
YES  - WHY? 

The reason is typical of refinements that restrict the resolvents that may be 
made in a resolution derivation, but always perform correct steps.

7aiiiProperties of the Predicate Ordering  Strategy

Is the strategy COMPLETE ? 

(Does it yield a refutation whenever one is possible?)      YES

To show completeness can modify the semantic tree argument. 

Consider atoms in the tree according to their order: those highest in the 
order (or least preferred) go first (i.e. at the top)  and those lowest  (or most 
preferred) go at the end, with the rest in order in between. 

i.e. if G<F then F atoms are put above G atoms.

Question: Why will this show completeness? 
(Hint: think about how a semantic tree is reduced to produce a refutation)

7aiv

Most completeness proofs for resolution strategies  have two parts:

(i)  show that a ground refutation of the right kind exists for some finite subset        
       of the ground instances of the given clauses (eg see 5ai), and then 

(ii)  transform such a ground refutation to a general refutation (also of the right 
kind) (called Lifting).

To show (i) there are 3 possible methods:

(a) show that some refutation exists and transform it to one of the right kind; 
(useful for restrictions of resolution to control the search space), or

(b)  show a refutation of the right structure exists by induction on a suitable metric 
(e.g. number of atoms, size of clauses), or

(c)  give a prescription for directly constructing a resolution refutation of the right 
structure (eg using a semantic tree)

Proving Completeness of Resolution Refinements

For Predicate ordering we used (c) adapting the method of semantic trees.
For Locking (next) we'll use (b).

7avStrategies for Controlling resolution:
The  control strategies in Slides 7 make use of a syntactic criterion on atoms to order literals 
in clauses. Literals are selected in order (<), lowest in order first. The strategies are quite 
simple, but  in some circumstances can have a dramatic effect on the search space.

In all the strategies we assume that subsumption occurs; 
however, as the examples on 7biii show, for the locking refinement subsumption may be a 
problem; furthermore, although factoring can probably be restricted to safe factoring, and be 
applied at any time,  I am not aware that this has been proved formally. Here, it is assumed 
that when factoring (whatever kind) occurs in locking, the factored literals that are retained  
are the ones least in the order. e.g. if some factoring substitution unifies three literals with 
indices 1, 5, 7 and two other literals with indices 4 and 10, then the indices on the retained 
literals are 1 and 4.

Exercise: 
In which situations would predicate ordering  be useless? When might it be useful? 
When might locking not be very effective? When could it prove useful? 

The atom ordering strategy ( in the optional material) is the most fine-grained (and complex)  
This strategy orders atoms by taking into account their arguments as well as their predicate. 

NOTE for resolution applications: It is usually required to find just one refutation of [] 
(cf logic programming where all refutations of the goal clause may be required – this is 
usually applicable only if the "goal clause" is identified. Unless otherwise stated, backwards 
subsumption will be applied, even though some “proofs” may be lost – see slide 6biv.)



Example: (We'll omit the "∨" symbol in clauses in what follows)
(locks are indicated in brackets after each literal and the lowest is underlined)
 1.  ¬Ha                           2.  { Fx (3), Hx(8)} 
 3.   {¬Gz(5), ¬Fb (2)}      4.  {¬ Fx(6),¬ Hb (4)}          5.   {Gx(1), ¬ Fx(7)}

6.    (2,3)   {Hb (8), ¬Gz(5)}                        
7.    (5,6)   {¬Fz(7), Hb(8)}
8.    (2,7)   {Hz(8), Hb(8)}  factors to Hb  which subsumes 6 and 7
9.    (8,4)   ¬Fx   subsumes 3,4 and 5
10.  (9,2)   Hx   subsumes 2 and 8           
11.  (10,1) []

7bi

A different kind of literal ordering is Locking,  invented by BOYER (1973)  
Each literal in a clause is assigned a numeric index (not necessarily unique) 
Literals in a clause are ordered by index, lowest first

The  Locking Refinement  (ppt)

Locking Strategy:

1. Assign arbitrary indices (called locks) to literals in given clauses.
2. Only resolve on a literal with lowest lock in its clause.
Note:There is no need for indices on unit clauses. 
3. Resolvent literals inherit indices from the parents

7bii

Locking can be used in applications to restrict the use of clauses. eg. 

•   some clauses are more suited to 'top-down' use;   (Horn clauses ?)         
eg a clause A ∧B → C might only be useful in the  context of the goal C

•   some clauses are better suited to 'bottom-up' use   (security access ?)    
eg a clause A∧B → C may have originated from A →(B → C) 
and the B → C part should only be made available when A is known to be 
true; ie perhaps A might be a more  important condition than B.

•  Locking can simulate predicate ordering - HOW?

Locking is COMPLETE. 
(An inductive proof of this is given on Slide 7bvi)

Use of Locking

(ii) Problem with Subsumption:
Question:  Does  {A(8), B(6)} subsume {A(3), B(5), C(7)}?
Although it does so without the locks, could it be that removing the longer 
clause will prevent a locking refutation, since the first clause allows only to 
resolve on B, whereas the second allows only to resolve on A?  

7biv gives an example of forward subsumption causing a problem of this sort.

Example
{P(1),Q(2)},    {P(13),¬Q(5)},     {¬P(9), Q(6)},      {¬P(3),¬Q(8)}

The only resolvents are tautologies; e.g. {P(13), ¬P(9)} (match ¬Q(5) and Q(6))

Some Unexpected Problems:

(i) Problem with Tautologies:
In most resolution refinements a tautology is redundant, so is never generated
In the locking refinement it is sometimes necessary to generate tautologies  

7biiiProperties of the Locking Refinement



5. (1+4) {Q(2), ¬Q(8)} a tautology  (can safely be deleted)       
6. (2+3) {¬P(9), P(13)} another tautology  (cannot safely be deleted)     
7. (5+2) {¬Q(8),P(13)}  ``subsumed’’ by 2
8. (1+6) {Q(2), P(13)}   ``subsumed’’ by {P(1), Q(2)}   MUST KEEP

If the subsumed 8 is removed  there is no way to derive the empty clause,
      even if  all of 1-7 are kept. 

If {Q(2),P(13)} (i.e. clause 8) is retained, the refutation continues: 

9. (8+2)  P(13),   10. (4+9) ¬Q(8),   11. (3+10) ¬P(9),  12. (9+11)   [ ]

(Indices on unit clauses are retained here to show  the origin of the literals.)

1. {P(1),Q(2)},   2. {P(13),¬Q(5)},   3. {¬P(9), Q(6)},   4. {¬P(3),¬Q(8)}

7biv

Continued on 7bv .......

Example of the locking subsumption problem

Factoring in refinements using literal ordering

In all literal ordering refinements non-safe factoring should involve one literal 
lowest in the ordering.  Of the factored literals the lowest is retained. Other  
factoring steps can be delayed as they won't affect the refutations that can be 
found.
On the other hand safe factoring can occur at any time (*)

In Locking (*) is not immediately obvious due to the subsumption problem
Exercise: Is the statement (*) true for locking? (I believe it is!)

In the example the two clauses that subsume each other were
                8.    {Q(2), P(13)}    and   1.  {P(1), Q(2)}

A backward subsumption step that kept 8. and removed 1. admitted a solution 

But a forward subsumption step that removed  8. and kept 1. did not 

Moreover, in case of backward subsumption, if the subsumed clause 1. had 
not been used in all ways, deleting it too soon might also prove problematic.

Although locking is a good refinement, it shows how careful one must be 
regarding completeness. However, in general, locking does work well.

7bvWhat went wrong  .... on 7biv?

7bviProof that Locking for ground clauses is a Complete Refinement

The proof uses induction on the number of excess literals in a set of clauses
         excess literals = total number of literals - total number of clauses 

The IDEA:    (See diagram on 7bvii)
Assume S is unsatisfiable set of ground clauses with k≥0 excess literals.
Assume as induction hypothesis (IH) that for unsatisfiable set of ground clauses 
with <k excess literals there is a locking refutation from S
Case 1: (k = 0) All clauses  unit clauses, so as unsatisfiable must exist A and ¬A

Case 2: (k>0)
• Select literal L with highest lock, from a non-unit clause C = L∨C', and temporarily 
remove it from C.
• Divide  S into two sets S1=S-{C}+{L} and S2=S-{C}+{C'}; by IH refutations exist
• Add  L back into S2 and combine the resulting refutation of L with that of S1. 
• (The details are on Slide 7bviii) 
This proof is an example of approach (b) on Slide 7aiv. It still has to be lifted to the 
general case, but that is not difficult.

7bviiStructure of Locking derivation used in completeness 

{ ........ , C'LS = }

{ ........ , LS1 = } { ........ , C'S2 = }

L has highest lock in S

[ ] [ ]

replace L

L (or [ ])

L
L

[ ]

A lock 
refutation
from S1

X

X

  – derived from S
  – if L, use X, else done

A lock 
refutation
from S2

Question:
Why does the proof show 
that whatever locks are 
chosen there is always an 
available step?



7bviii

Let set of ground clauses S be unsatisfiable. We show by induction on the excess literal count 
(k) that there is a locking refutation from S.

Assume as induction hypothesis (IH) that for any unsatisfiable clause set S' with excess literal 
count <k there is a lock refutation.

Case 1 (k=0). Every clause in S must be a unit clause and as S is unsatisfiable there must be 
A and ¬A for some A which can be resolved to give [ ].

Case 2 (k>0)  Select the literal L in S with highest lock (it must be in a non-unit clause 
C=L∨C') and form S1=S-{C}+{L} and S2=S-{C}+{C'}. Both are still unsatisfiable: for if 
either had a model that model would satisfy L or C', as well as S-{C}, and hence also S. Both 
have an excess literal count <k as C' and L are both smaller than C. Therefore,  IH can be 
used to find a lock refutation of both. In the case of S2, adding back L gives either a 
derivation of L from S or of [ ] from S, in case L merges with a literal of lower lock index.  

In the second of these we are done. In the first case, use the derived clause L wherever L was 
used in the refutation from S1 to derive [ ].

More details of Proof that Locking for ground clauses is complete:

It is instructive to follow the construction for an example, say for the one on Slide 7bi. If 
you do so, you should find it constructs exactly the proof given.

Notice also that since locking is complete, for any ground clauses S and any set of locks 
there must always exist a first step.

7ciSummary of Slides 7
1. Resolution derivations need to be controlled to avoid the search space 
exploding, even when tautology deletion, subsumption deletion and 
factoring are applied.

2. Syntactic methods that restrict particular literals in a clause can be used. 
Two methods were considered: Predicate Ordering and Locking.

3. Locking orders literal occurrences in a given set of clauses. Literals in 
resolvents inherit their locks from the corresponding literals in the parent 
clauses. (For recursive clauses this might be a problem - can you see 
why? - and an extension is to use dynamic locking, whereby locks are 
globally reset during a proof.)  

4. There are problems with subsumption and tautolgy deletion in the 
Locking strategy - completeness may be lost if unrestricted tautology 
deletion and subsumption is allowed.

5. Locking can simulate Predicate Ordering. That is, suitable  locks can be 
found, or a suitable atom ordering can be found, such that applying the 
strategy of Locking  generates the same search space as using the 
strategy of predicte ordering.
(Exercise: Suggest suitable locks/atom ordering for the simulations.

SSSTTTAAARRRTTT   ooofff   OOOPPPTTTIIIOOONNNAAALLL   MMMAAATTTEEERRRIIIAAALLL
(((SSSLLLIIIDDDEEESSS   777)))

Atom Ordering



7diThe Atom Ordering Strategy (continued on 7dii):

In the atom ordering strategy, shown in Slides 7e as an optional Case Study, atoms are 
ordered by taking into account their arguments as well as their predicate. 

For example, a ground atom might be given a weight according to the symbols 
(predicate, function and constant) that occur in it. Each symbol is given a weight ≥0 
and the atomic weight of atom A is the sum of the weights of the symbols occurring in 
A. Such an ordering is called a weight ordering (a particular kind of atom ordering). 
Assuming the signature is finite then a set of ground atoms may be partially-ordered by 
their weight. (See slide 7dvi for details.) If no two symbols have the same weight, then 
the ordering on 7dvi will be total. (Find an example of a non-total ordering if this 
condition is false.)

Example:
Sig = <{H,G, F}, {}, {a, b}> and Clauses (from slide 7ai)
(1) ¬Ha,  (2) Fx ∨Hx,  (3) ¬Gz ∨¬Fb,  (4) ¬Fx ∨¬Hb,  (5) Gx  ∨¬Fx
Assign symbols a weight according to their order in the signature ( H=1, b=5 ); 
the weights of ground literals are then: Ha:5, Hb:6, Ga:6, Gb:7, Fa:7, Fb:8.  Then Hb and 
Ga would be ordered Hb<Ga, for example, since the weights are equal, but wt(H)<wt(G).
The weights of literals with variables will depend on the bindings to the variables. In 
each clause the literal with lowest weight is (1): ¬ Ha, (2): Hx, (3): ¬Gz, (4): ¬Hb, (5): 
Gx.   In clause (2), whatever the binding to x, Hx always has lower weight than Fx. In 
clause (3), Gz is always smaller than Fb, whatever the binding to z. 

Atom Orderings continued:
A derivation using the ordering on 7ei is:  
(6=1+2): Fa,     (7=2+4):  Fb ∨¬ Fx,     (8=6+7): Fb,  (note literals in 7 are not comparable)
(9=3+5): ¬Fx ∨ ¬Fb, which  safe factors to ¬Fb, which subsumes (3),     
(10=8+9):[ ]

The weights could have been differently assigned; e.g. a=1, b=2, F=3, G=4, H=5;
In this case Fb has weight 5 and Gz has weight either 5 or 6 depending on the binding to z. 
Therefore, in clause (3) Fb and Gz are not comparable, since in one case ¬Fb must be 
selected and in the other case either ¬Fb or ¬Gz could be selected. Thus both are deemed 
(potentially) minimal in clause (3) and either can be selected. 

A refutation using this weight ordering is:
(6=2+3): Hb ∨¬Gz, (7=2+4): Hx ∨ ¬Hb, (8=2+5): Hx ∨Gx, 
(9=6+8): Hb∨ Hx, which safe factors to Hb and then subsumes (6), 
(10=1+7): Hx, (11=1+10):  []

Other kinds of orderings have been investigated; 
e.g. we might ignore variables, so Fx is assigned a weight depending only on F, etc. 
In this case, literals that are not ground are preferred over ground literals with a similar 
structure (e.g. Fx <Fa). 
The derivation according to this ordering is: (6=1+2): Fa,     (7=4+6): ¬ Hb, 
(8=3+5): ¬ Fb ∨¬ Fx, which safely factors to ¬Fb,     (9=2+7): Fb,    (10=8+9): [ ]

The atom ordering strategy can simulate predicate ordering but not locking.
Locking can simulate predicate ordering and sometimes atom ordering.

7dii

7diii

An extension of predicate ordering is to order ground literals according to all 
of their symbols, not just the predicate. 

Example of atom order 1:  
          P(a) < P(b) < P(f(a)) < … < Q(a,a)<Q(a,b)< ...< R(a)  etc. 
(i.e. A<B if A is lexicographically before B when A and B are written as lists )
This ordering is used in the example on slide 7cvi.

Atom ordering (1) (A case study)

An ordering on ground atoms can be partially extended to non-ground 
atoms as long as it respects instantiation:
           i.e.  A ≤ B iff Aθ ≤ Bθ for every θ.
(A ≤B if A < B or A=B)
This is called a stable ordering.

Atom Ordering Strategy:    
Literal L is minimal  in clause C if not(∃K in C  s.t. K<L) . 
Select for resolution only literals that are minimal  in a clause.  
Notice that a non-empty clause always has at least one such literal.

Can you think of a problem when all symbols are considered?

Examples:  These all use the lexicographic ordering

In the clause P(a) ∨ P(b),     P(a) < P(b)

In  P(a) ∨ P(x) ∨ R(x), P(a) ≤ P(x)θ for all substitutions θ hence P(a) ≤ P(x) < R(x) 

In P(b) ∨ P(x)  ∨ R(x),  P(b) and P(x) are incomparable
        (it depends whether x≥b or not), so can select either 

In P(x) ∨ P(y) ∨ Q(x,y) 
        if  x==a, y==b, then P(x) is the minimal literal    
        if x==b and y==a then P(y) is the minimal literal

In  Q(x, y) ∨ ¬Q(y, x), is Q(x,y) < Q(y,x) ? 
        It depends on the bindings to x  and y, so  Q(x,y) and ¬Q(y,x) are not 
        comparable in the clause and  both are minimal.

7divAtom ordering (2)
Unfortunately for general clauses an atom order is not a total order
           (given two atoms X and Y, it may not hold that X<Y or that Y<X



 (1)  Px ∨ Ry ∨ ¬Qxy      (2) ¬Sz ∨ ¬Rz        (3)  Pu ∨ Qf(v)v      
 (4)  Sa                       (5)   Sb                   (6) ¬Pf(a) ∨ ¬P(f(b)

7dv

Use Lexicographic 
ordering as in
Example 1 on 7div

(7)   (1+6)   Ry ∨ ¬Qf(a)y ∨ ¬ Pf(b)
(8)   (3+6)    Qf(v)v ∨ ¬Pf(b)

(9)   {1+7)   Ry ∨ ¬Qf(a)y ∨ ¬Qf(b)y1 ∨ Ry1
(10)  (3+7)  Ry ∨  ¬Qf(a)y ∨ Qf(v)v       
(11)  (1+8)  Ry ∨  ¬Qf(b)y ∨ Qf(v)v
(12)  (3+8)  Qf(v)v  (after factoring)
(12) subsumes (3), (8), (10), (11) 

(13)  (9+12) Ra ∨ ¬Qf(b)y1 ∨ Ry1    

(14) (12+13) Ra ∨ Rb

(15) (14+2) ¬Sa ∨ Rb

(16) (15+2) ¬Sa ∨ ¬Sb

(17) (16+4) ¬Sb
(18) (17+5)  []

} Note 2 minimal literals

Example of a refutation using Atom ordering 7dvi

(Sig = ({P,Q,R,S}, {f}, {a,b});        
give each symbol a weight (e.g. P:1, a: 1, Q:2, b: 2, R:3, f: 3, S:4);
define wt(atom / term) = sum of wts of symbols in atom / term; wt(¬A)=wt(A)

For ground atoms or terms A and B, we say  A < B if
   either  wt(A ) <  wt(B),   
   or  wt(A) = wt(B) & wt(argj(A)) < wt(argj(B))  
                                                 & wt(argi(A)) = wt(argi(B)) , for all i<j

(Note: we count the predicate symbol of an atom, or functor of a term, as 
arg0.)

For the above weights:
     Pa<Pb<P(f(a))<P(f(b))<P(f(f(a)))…;  
     P(x) < Q(x,a) < R(x) < S(x) for any x; 
     Qaa<Qab<Qba<Qbb<Qaf(a) <Qf(a)a<Qbf(a)<…;  
     P(f(a))<Q(a,b)<...

If no two predicate symbols or functors (including constants) have the same 
weight, then the order on ground terms is total. i.e. given 2 ground atoms A 
and B then either A<B or B<A. (Easy exercise: Show this.)

The Weight Atom Ordering

(Assume:  a>+,      b>+,       c>– 

If A>+ and B>+ there is no 
problem as we will be able to find 
the required step corresponding 
to the step taken at ground level.
Could +>A?
No - because of stability; it would 
force +>a, contradicting 
assumption.
It could be that both A and + were 
minimal, so the step resolving 
between + and – would still be 
allowed.
Analogously for B,C and –. 

A +B – C

a b c

– ca b +

take
instance

of

resolve
general clauses (unify +/–)

A B C

resolve
ground clauses (match +/–)

Is Atom Ordering Complete?

Can employ the semantic tree method as for predicate ordering to show that an 
atom ordered refutation exists for any set of ground unsatisfiable clauses. 

7dviiFeatures of Atom Ordering (1)

Lifting to general case (Proof, see 7eix)

7dviii

A possible improvement? 
Do not resolve on an atom if the mgu would make it non-minimal in its clause. 

e.g. In Px ∨ Pb, don’t resolve on Px if x becomes bound by the mgu to c>b.

Do you see any problems with this suggestion?

Questions: 
Suggest a simple ordering of atoms that enables atom ordering to simulate 
predicate ordering. 

Explain why locking can simulate atom ordering for ground clauses.

Explain why locking cannot usually simulate atom ordering for general 
clauses?     (Hint: consider the example on slide 7dv)

Can atom ordering  simulate locking for ground clauses?
(Hint: locks can be arbitrary)

Features of Atom Ordering (2)



Consider lifting a step (at ground level) involving a minimal literal L and its 
complement to the general level; then either:
•     all instances Lθ of the general literal L used for resolving respect the ordering in 
the clause - i.e. L is minimal in the clause so no problem, or
•      some instances do not respect the ordering; then L would be incomparable with 
other literals in the clause and so still be available by the strategy;   thus no proofs are 
lost.

7dixLifting an Atom Ordering Derivation - proof of completeness
Assume the atom ordering is stable and that a ground refutation exists

Notice that no other literal M in the clause would satisfy M <L;
Proof: Assume for contradiction there is such a literal M, M<L.
Then by stability Mθ ≤ Lθ   for all ground substitutions θ;
this includes the ground instance of L used in the given ground refutation 
contradicting its minimality. 
Hence L is minimal (possibly by incomparability).

7ei

Summary of Optional Material in Slides 7
1. Atom Ordering orders atoms according to some syntactic criteria, such as 
weight ordering, or lexicographic weight ordering.

2. An order is stable  iff, 
       A<B in a clause C implies Aθ ≤ Bθ in Cθ, for any instance Cθ of C.

3. In Locking, the order of a literal in a clause depends solely on its lock 
relative to other literals and does not vary with instance. Thus the locking 
order is stable: if A<B in a clause C then the lock on A is < the lock on B and 
similarly Aθ < Bθ in Cθ, for any instance Cθ of C.

4. Atom Orderings are not necessarily stable. (Exercise: make up an 
example of a non-stable atom ordering). If C is a clause in which literals A 
and B may be ordered A<B or B<A, depending on the particular instance of 
C, then A and B are not comparable. If there is no literal definitely < A,  then 
A is minimal in the clause and may be selected for resolution.

5. Atom Ordering cannot simulate Locking, nor can Locking simulate Atom 
ordering (in general).


