
AUTOMATED REASONING

SLIDES 8:

HYPER-RESOLUTION
 Hyper-resolution Refinement
 The Otter Theorem Prover
 Negative Hyper-resolution

KB - AR - 13

8ai

Hyper-resolution generalises ``bottom-
up’’ reasoning and combines several
resolution steps into one big step.

Hyper-resolution is the strategy employed
in the widely used Otter family of provers.

Hyper-resolution Strategy:

Clauses are divided into
 nucleii (those with ≥1 negative literals),
 electrons (those with no negative literals).

Resolution occurs between 1 or more
electrons and 1 nucleus. There is 1 electron
clause used for each negative literal in the
nucleus.

Hyper-Resolution

¬Px ∨ ¬Qx ∨ Rx Qa ∨ C

¬Pa ∨ Ra ∨ C
Pa ∨ D

Ra ∨ C ∨ D

(nucleus)

(electron)

(hyper-resolvent
another electron)

(intermediate
resolvent
discarded)

(electron)

A hyper-resolution step

8aiiHyper-Resolution Example (ppt) (M(x,y,z) means z=x∗y)

(N)1. M(x,y,z) ∨ ¬M(y,x,z) Commutativity of times (x∗y=z if y+x=z)
(E)2. M(x,x,s(x)) x_squared=x∗x
(N)3. D(x,y) ∨ ¬M(x,z,y) y=x∗z → x divides y
(N)4. ¬P(x) ∨ ¬D(x,u) ∨ ¬M(y,z,u) ∨ D(x,y) ∨ D(x,z)
 (x is prime ∧x divides u ∧ u=y*z→ x divides y ∨ x divides z)
(E)5. M(a,s(c),s(b)) (E)6. P(a) (N)7. ¬D(a,b)

8. (1,5) M(s(c),a,s(b)) 9. (2,3) D(x,s(x)) 10. (3,5) D(a,s(b))
 ((1+2) gives M(u,u,s(u)) which is subsumed by 2

Goal is to show:
∀x[x is prime ∧ b_squared=x∗c_squared → x divides b] ≡
(when negated) ¬∀x[P(x) ∧M(x,s(c),s(b))→D(x,b)]
(which Skolemises to) P(a), M(a,s(c),s(b)), ¬D(a,b) (a is Skolem constant)

Nucleii: 1,3,4,7;
Electrons: 2,5,6

11. (8,3) D(s(c),s(b)) 12. (4,6,8,10) D(a,s(c)) ∨ D(a,a)
13. (4,6,9,2) D(a,a) ∨ D(a,a) factors to D(a,a) and subsumes 12
14. (4,6,10,2) D(a,b) ∨ D(a,b) factors to D(a,b)
15. (14,7) []

Note: only electrons are formed as
final resolvents. In this refutation they
happen to be facts, but need not be.
(See clause 12 on 8aii.)

Tautologies can initially be deleted;
they are never derived - WHY?

Although nucleii are never derived,
given nucleii may be deleted through
subsumption by derived electrons.

Safe-factoring of Nucleii can be made
initially. Electrons can be factored
whenever they are formed.

8aiiiThe derivation as a tree

[]

D(a,b)∨D(a,b)==>D(a,b)
¬D(a,b)

D(a,s(b))

 ¬P(x)∨¬D(x,u)∨¬M(y,z,u)∨D(x,,y)∨D(x,z)

P(a)M(x,x,s(x))

D(x,y)∨ ¬M(x,z,y)

M(a,s(c),s(b))

Exercise : Show that, if a tautology is derived part way into forming a new
electron, the final electron will be subsumed.

Questions : Is the factor of a nucleus still a nucleus?
Is it useful to factor nucleii (other than safe-factoring)?

8aivProperties of Hyper-Resolution
Hyper-resolution is Complete:
An inductive proof is considered in the problem sheets so is not given here.

Hyper-resolution can be combined with both predicate ordering and locking:

Predicate ordering :
Only need to use ordering in electrons (Why?)
Only resolve on minimal atoms from an electron.
 eg if R<Q<P then from P(a,x)∨Q(x,y) can only use Q(x,y)

Locking :
Lock negative literals lowest of all literals to force their use
Locks on positive literals in electrons and nucleii must be > than any negative lock
eg Given ¬P(a)∨¬Q(x)∨R(x)5, P(a), Q(b)4∨Q(c)7 can derive R(b)5∨Q(c)7

Notice that intermediate nucleii can only be used to derive electrons. They cannot
resolve with each other as the lowest locked literals in two nucleii are both negative.

If all positive literals are locked at 1, and all negative literals are locked at 0, then
locking effectively simulates hyper-resolution.
Exercise: Justify the above statement.

8av
Hyper-Resolution:

Hyper-resolution forms the basis of a family of theorem provers originally from Argonne.
OTTER (which you'll use in the lab) was the first, and is best for beginners; its most recent
descendant is called Prover9. In hyper-resolution each ''step'' is actually one or more
resolution steps, made according to a simple syntactic principle: only (final) resolvents with
positive literals (called electrons) are allowed to be derived. To form them, a clause with one
or more negative literals (called a nucleus) is sequentially resolved with electrons, each time
removing 1 negative literal, until an electron is produced. If the nucleus has 5 negative literals
there would be 5 intermediate steps. Note that a particular electron may be used in more than
1 intermediate step, but for each use a fresh copy is taken. As each hyper-resolution step is
generally more than one resolution step there are fewer possible steps overall, so the search
space is reduced (compared with that for binary resolution).

Initially, the clauses are divided into nucleii and electrons. If the clauses in S are unsatisfiable
then there will always be at least one nucleus and at least one electron – why must this be so
if S are unsatisfiable?

Generally, a saturation search process can be applied, whereby each nucleus is used to find all
hyper-resolvents from the current electrons. At the end of all the processing, and after
applying subsumption, if there is at least one new electron then the process is repeated.

[By the way, the answer to the question above is that if all clauses are electrons, then they
have a model - just assign T to all atoms. If no clause is an electron, then again the given
clauses have a model - assign F to all atoms. For an unsatisfiable set of clauses S neither can
happen, so S must contain at least one each of an electron and nucleus.]

8bi

• For a given problem the clauses are divided into two sets, the SOS (set-of-
support) and the rest.
• Resolvents may be formed only if at least one clause contributing to the
resolution step is from the SOS, or is derived from such a clause (i.e. it has an
SOS clause as an ancestor).

Set of Support Strategy

As a consequence, note that
two clauses not initially in
SOS will never be resolved
with each other.

Therefore, if C and D are initial
clauses and C is to be resolved
with D, then at least one of them
must be in SOS.

Such clauses behave a little like
the nucleii in Hyper-resolution.

√√√√

x

In SOS or
derived from
SOS

Not in SOS and
not derived from
SOS

√√√√

8biiSet of Support Strategy (2)

Why is the Set of Support strategy a good one?

• The clauses not in SOS are often satisfiable. e.g. the clauses in a Horn clause
program could be the complement of the SOS. Resolving between the satisfiable
non-SOS clauses may give interesting results, but not results that are useful for
the problem in hand.

Why? (Hint: The aim is to derive a contradiction)

• Often, some clauses are known to be required for contradiction and they are
put into the SOS.

The Set of Support strategy is used by Otter and combined with hyper-resolution

Questions:
(1) What happens in this strategy if SOS is initially empty?

(2) Prolog uses the SOS strategy. What is its SOS?

8biii

Otter is a very versatile theorem prover with a simple interface. The successor
is Prover9, but Otter is used in class as it gives single step and user interaction.

Otter makes use of 2 main lists: sos and usable (non-sos clauses).
The main loop is:

While sos is not empty and empty clause is not derived
 select given from sos (various criteria for selection)
 generate resolvents using usable clauses and given
 (various inference rules are allowed and restrictions can be imposed)
 move given to usable
 process new clauses and put kept ones into sos (various criteria for retention)
End

Selection criteria include number of literals, number of variables, weight of
terms, most recent addition, oldest clause, etc.

Inference rules include resolution, hyper-resolution, and others.

Retention criteria include measures as above, plus factoring, subsumption.

The OTTER Theorem Prover

Otter forms resolvents using the SOS restriction strategy, and processes them
according to user defined settings until the empty clause is deduced.

8bivThe OTTER Theorem Prover Main Loop (ppt)

USABLE

SOS

GIVEN RESOLVENTS
ACCORDING

TO
STRATEGY

NEW USABLE
AFTER

PROCESSING

NEW SOS
AFTER

PROCESSING

KEPT
RESOLVENTS
ACCORDING

TO
CRITERIA

USABLE

SOS

STOP IF []

STOP IF
SOS EMPTY

8bv

Example1: (All examples use hyper-resolution, for/back subsumption, no factoring)
usable: 1: ¬Ha 2: ¬Gz ∨¬Fb 3: ¬Fx ∨¬Hb 4: Gx ∨¬Fx
sos: 5: Fx ∨Hx
Select 5 as given.
Compute resolvents: (5+1= 6): Fa, (5+4=8): Gx ∨Hx (5+5+3=7): Hx ∨Fb
(Remember, use Hyper-resolution, and since only 1 electron (5) cannot use (2))
sos is now 6, 7, 8 and usable is 1- 5.

Select 6. Compute hyper-resolvents: (6+5+3=9): Fb (subsumes 7), (6+4=10): Ga.
sos = 8, 9,10 and usable = 1- 6.

Select 10. Compute hyper-resolvents: (10+2+5=11): Hb.
sos = 8, 9,11 and usable = 1 - 6, 10.

Select 11. Compute hyper-resolvents: (11+3+6=12):[], (11+3+5=13): Hx.
Stop , as empty clause is deduced.

Example 2 usable = 1 - 5; sos = empty. Stops immediately!

Example 3 usable = 1: H ∨¬G 2: G sos = 3: ¬H
Select 3. No hyper-resolvents possible using only 3 and usable.
sos = empty, usable = 1 - 3. Stop! even though refutation possible.

Examples (see ppt) The Otter Theorem Prover 8bvi
Otter is a resolution theorem prover developed at Argonne. It is based on the set of
support principle. The user can control its deduction cycle in many ways by setting
numerous flags and parameters.

Otter has a single main loop that forms resolvents and processes them until either the
empty clause is deduced or the resources are used up. Otter keeps the clausal data in
two main lists called the usable list and sos list. Resolvents are produced using one
clause selected from the sos list and one or more clauses taken from the usable list. Its
main operating loop is shown on Slide 8biii.

Criteria for selecting the given clause are measures such as number of literals, number
of variables, weight of terms in the clause, etc. These can be controlled by the user. The
inference rules can be resolution or hyper-resolution, as well as several others (see the
on-line manual). Derived clauses are subject to various processing, such as factor
forming, subsumption tests, etc. Again, the user can control which tests are carried out.

For example, the user can set a flag so that resolvents that have more than a set number
of variables or literals are not kept. Although this will make the search space
incomplete, it may keep it within reasonable bounds.

Otter allows user interaction which is helpful for beginners. However, a replacement
called Prover9 (See http://www.cs.unm.edu/~mccune/mace4/) is recommended for
serious work.

More about Otter
There is a third list used by Otter called the passive list. Clauses in this list are not used to
form resolvents unless they can be used to derive the empty clause immediately in one step.
For instance, perhaps we would like to know if an intermediate literal L is ever derived. In
that case, we can put the negation of L into the passive list. If L is ever derived, the empty
clause is immediately generated and Otter stops.

The clauses in the passive list can also be used to remove subsumed clauses. For example,
suppose we know that clauses with a literal of the form P(f(f(f(x)))), for any x, will be
useless. Otter uses the passive list to detect additional subsumed clauses: if P(f(f(f(x)))) is
put into the passive list and the subsumption flag is set, then all clauses of this form will be
subsumed and removed.

Initially, the user puts each initial clause either into the sos-list or into the usable-list. The
sos-list acts as a set of support facility. All resolvents will be formed using a clause in the
initial sos-list or from a resolvent having at least one ancestor from the initial sos-list. Note
therefore, that if the sos-list is initially empty no processing can occur as there is no clause
to be the first given-clause. It is possible for the user to interact with Otter to tell it which
should be the next given-clause. Otter will find all proofs of the empty clause within the
parameters set by the user, who can also constrain Otter to find just one proof. As an
experiment, run Otter on the three clauses
 -p(u,v) | -p(v,u), p(x,f(x)), p(f(y),y)
with various combinations of initial assignments of clauses to the sos-list and usable-list.

You will have a chance to try Otter on some simple problems. For instance, you could try
the three problems from Slides 0 (Otter includes reasoning with equality). You are
expected to have used Otter and be familiar with the basic flags as part of the course.

8bvii 8ci

• Let I be an H-interpretation in which all atoms are False , so all negative
literals are True . A nucleus will be True in I and an electron False in I.
• A hyper-resolvent (an electron) is False in I.

Hyper-resolution has an interesting feature (1)

• Resolution occurs between one clause which is True in I (the nucleus) and
other clauses (electrons) that are False in I.
• Hyper-resolution can be generalised for any H-interpretation I that splits a
given set of clauses S into non-empty S1 and S2 s.t.
 • S1 = clauses which are True in I (still called nucleii)
 • S2 = clauses which are False in I (still called electrons).
• The strategy is still to resolve between 1 nucleus and ≥1 electrons.

T T F1 F2

- - + +

F3 F4 F5

+ + +

F6 F7

+ +

F1 F2 F4 F5 F7

+ + + + +⇒

8cii

• In the 'standard' hyper-resolution method it is easy to distinguish between
nucleii and electrons:

• the syntax helps to distinguish between nucleii and electrons
• every instance of an electron clause is an electron
• every instance of a nucleus clause is a nucleus
• for each nucleus literal, either all instances are true, or all instances are false

• Hence a clause is always either a nucleus or an electron .

Any H- interpretation I that satisfies these criteria is called a uniform H-
interpretation and can easily be used to form nucleii and electrons.

Hyper-resolution has an interesting feature (2)

We'll look at a second uniform H-interpretation that assigns True to every atom.
In this case, HR is called Negative Hyper-resolution (Neg-HR)
(See 8civ and 8cv)

Generalising Hyper-resolution.
As Slides 8ci/8cii argue, hyper-resolution can be generalised. One interesting and simple
generalisation is to exchange the roles of positive and negative literals (shown on 8civ/8cv
and often called neg-HR). We'll call a clause with only negative literals an N-electron and a
clause with at least one positive literal an N-nucleus. Then all positive literals in an N-
nucleus are resolved with N-electrons in an N-hyper-resolution step. A special case of this
occurs for Horn clauses – all N-nucleii will have just one positive literal, so each step is a
single resolution step and the result is, in effect, a simulation of a logic programming system.
Exercise: Show that this is the case. Slide 8cv shows the relation between hyper-resolution
and Neg-HR.

It's easy to show that any proof found using Neg-HR is isomorphic to an ordinary hyper-
resolution proof, and so Neg-HR is complete too. Here's how.

Remember that in Neg-HR the interpretation I sets all atoms True. Rename each atom L as
¬L' for some new L'; i.e. take a new signature in which the predicates are now primed and
each occurrence of the literal ¬L is replaced by L' and each occurrence of L is replaced by
¬L'. Consider an interpretation I' for the primed signature, which makes all atoms False.
Hence all instances of L' will be false in I'. In effect, L' is equivalent to ¬L, so the
interpretation I' will induce the same nucleii and electrons in the primed signature as I did in
the original signature. Standard HR on the primed clauses will be isomorphic to neg-HR on
the unprimed clauses. This is illustrated for an example on 8cv.

NOTE: Optional material in 8e consider more complex examples of uniform and non-
uniform interpretations.

8ciii 8civ

Suppose I makes all atoms TRUE

What do electrons and nucleii look like?

Nuclei are TRUE - at least 1 positive
literal - resolve on true (positive) literals
Electrons are FALSE - no positive
literals

Negative Hyper-resolution (Neg-HR)

 F1 T T

- + +

F2 F3

- -

F4 F5

- -

F1 F3 F5

- ---⇒

If restricted to Horn clauses (maximum of 1 positive literal) HR and Neg-HR
simulate well-known reasoning mechanisms.

FACT: for Horn clauses
standard Hyper-resolution is just forward reasoning by 'Modus Ponens',
whereas neg-HR can simulate "top down" refutations (as in Prolog).

Exercise: Confirm the FACT is true

An example is on 8cv

8cvNeg-HR - a Uniform Interpretation in Hyper-resolution (ppt)

We can turn a Neg-HR refutation into a standard HR refutation by renaming:
Rename each atom A as ¬A' (I makes A true ==> ¬A' is true ==> A' false) ==>
(1) ¬P'∨ Q' ∨R' (N) (2) ¬Q' (N) (3) ¬R' ∨ Q' (N) (4) P' (E)
Now use standard hyper-resolution - proof is same as above

EG Given the (Horn) clauses and using the interpretation making atoms TRUE:
(1) P∨¬Q ∨¬R (N) (2) Q (N) (3) R ∨¬Q (N) (4) ¬P (E)
(Remember - electrons are FALSE, nucleii are TRUE)

A neg-HR refuation (using I) can resolve (N) on underlined literals:
(1+4=5) ¬Q ∨¬R (5+2=6) ¬R (6+3=7) ¬Q (2+7=8) []
(Do you notice any pattern? HINT: Think of a logic programming trace)

NOTE: Renaming can be used to show completeness for any uniform
interpretation I. (See OPTIONAL slides 8e)

8diSummary of Slides 8
1. Hyper-resolution is a refinement in which each step consists of one or more
linked resolution steps made according to a specific restriction.

2. Each clause is classified either as an Electron (no negative literal) or as a
Nucleus (at least one negative literal). Each step is made by resolving one
nucleus clause with one or more electron clauses in turn, until the resolvent is
an electron. Only electrons are generated by hyper-resolution.

3. Otter is one of a famous family of theorem provers which uses the Hyper-
resolution strategy, together with the set-of-support strategy. In searching for
Hyper-resolvents, at least one clause in the linked resolutions making up a
hyper-resolution step must be derived from the so-called SOS.

4. The SOS strategy allows a user to prevent the theorem prover making
potentially non-useful steps by resolving clauses from some satisfiable theory.

5. Standard hyper-resolution is complete . One proof uses an induction proof
(see solutions to Problems), although there are others.

6. Standard hyper-resolution is based on the H-Interpretation which assigns
False to every ground atom. Nucleii are true in this interpretation and
electrons are false.

7. Neg-HR uses the uniform interpretation that assigns all atoms True.
Nucleii have at least one positive literal and are true, and electrons have no
positive literals and are false.

8. Predicate Ordering can be combined easily with Hyper-resolution. Each
electron is restricted in its use to resolving on the lowest atom in the order.

9. Locking also can be combined with hyper-resolution. Both extensions, of
Predicate ordering and locking, can be shown to be complete by choosing
a suitable set of indices for literals so that a locking refutation produces a
simulated hyper-resolution refutation. There is no need to index negative
literals as they muct be resolved in each step anyway. (See Problems for
examples and discussion.)

8dii

SSSTTTAAARRRTTT ooofff OOOPPPTTTIIIOOONNNAAALLL MMMAAATTTEEERRRIIIAAALLL
(((SSSLLLIIIDDDEEESSS 888)))

Generalised Hyper-resolution
Outline Hyper-resolution in Prolog

Suppose I is a uniform interpretation that makes R, P True and Q false, and
given: (1) P∨Q (N) (2) ¬P∨R (N) (3) ¬Q∨R (N) (4) ¬R (E)
A refutation using this uniform interpretation (true literals underlined) is
(4+2 =5): ¬P (5+1=6): Q (6+3+4): []
Notice all electrons and resolvents are false in I.

8eiGeneral Uniform Interpretations in Hyper-resolution

Remember: electons are false in an interpretation I and nucleii are true.

We now rename literals in the original clauses so that under the standard
interpretation (when all atoms false) electrons are false and nucleii are true.

Rename P to ¬P' and R to ¬R'. Since I makes P and R true it makes P' and R'
false, and it still makes Q false. (¬P becomes P' and ¬R becomes R')

Then: (1) ¬P' ∨ Q (N) (2) P' ∨ ¬R' (N) (3) ¬Q ∨ ¬R' (N) (4) R' (E)
A standard HR-refutation is (4+2 =5): P' (5+1=6): Q (6+3+4): []
which is exactly the same as the original refutation after renaming.

SUMMARY: For each atom that I makes false - do nothing;
For each atom A that I makes true rename A as ¬A' (so I makes A' false)
Then can use standard hyper-resolution 8eii

How might a suitable uniform interpretation I be found?

• If clauses T are a theory about something or other, they will be satisfiable
and have a model M. With respect to M, the clauses in T are nucleii.

• Suppose a conclusion C, when negated, yields clauses G.
If T |= C then T+ ¬C is inconsistent, and the clauses T+G are not satisfiable.
That is, any model M of T must make at least one clause in G false and that
clause would be an electron with respect to M.

• So we look for a uniform I such that (if possible)
 • nucleii = clauses in T (I makes clauses in T True)
 • electrons = clauses in G (I makes clauses in G False)

then hyper-resolution allows resolution between a clause in T and clauses in
G or derived from G, but never between two clauses in T.

It is unlikely this can be achieved exactly; for any selected I, usually at least
some clauses in G are nucleii or some clauses in T are electrons, but the
idea is good - divide clauses into 2 sets, called the major and minor sets,
such that resolvents must be formed using at least one clause derived from
the major set and clauses in the minor set are never resolved together.

• The set-of-support strategy considered earlier is the result.

Example Show ∀xy[(x<y∨x=y) ∧ y<c→x<c] (Use E for = and L for <)

1. Exx x=x 2. {¬Exy,¬Eyz,Exz} x=y ∧y= z →x=z
3. {¬Exy,Eyx} x=y → y=x 4. {¬Lxy,¬Lyz,Lxz} x<y ∧ y<z → x<z
5. {¬Lxy,¬Lyx} x <y → ¬y<x 6. {Lxy,Exy,Lyx} x<y ∨ y<x ∨ x=y
7. {¬Exy,¬Lxy} x=y → ¬x<y
8. {Lab,Eab} 9. Lbc 10. ¬Lac

8eiii

Let I = {Exy all True, Lxy all false.}; (a uniform interpretation)
Then all except 9 are nucleii with True literals positive E or negative L.
9 is the only electron. Electrons have negative E and positive L literals

The True literals in nucleii for resolving are underlined - all the resolvents are
electrons so no true literals.

 negated goal is ≡ ∃xy[(x<y ∨ x=y) ∧ y<c ∧¬x<c]
 which becomes after Skolemising (a < b ∨ a=b) ∧ b < c ∧ ¬a < c (i.e. 8,9,10)

11. (7+9). ¬Ebc
12. (2+11). {¬Eby, ¬Eyc}
13. (12 +6). {Lyc, Lcy, ¬Eby}
14. (13+10) {Lca, ¬Eba}
15. (14+4+9) {Lba, ¬Eba}

16. (7+15). ¬Eba
17. (3+16). ¬Eab
18. (8+17). Lab
19. (18+4+9). Lac
20. (19+10) []

Generalising Hyper-resolution.

Slide 8eiii shows a more complex example of a uniform interpretation.

On the other hand, a non-uniform interpretation for the clauses on 8eiii is the following:
 Lxx = false, Lab=Lbc=Lca=true and Lba=Lcb=Lac=False.
 Exx = true and Exy = false if x≠y.

In fact, non-uniform interpretations are not often considered because there are some
problems in detecting nucleii/electrons for general clauses. For example, consider the non-
uniform interpretation above and the clauses on 8eiii.

Clause 3 (¬Exy ∨ Eyx) is a nucleus because ¬Exy is true, except if x=y. In that case it
becomes a tautology, which is perhaps not too bad. Clause 5 (¬Lxy ∨ ¬Lyx) is also a
nucleus, but when x/a, y/b, the literal ¬Lyx is true, whereas when x/b and y/a , then ¬Lxy is
true. So sometimes this nucleus should be used by resolving on ¬Lxy and sometimes on
¬Lyx. But if resolving with Luv (say) how can you tell which to use? Perhaps this too is a
special case as it is a symmetric clause. Finally, look at Clause 4 (¬Lxy ∨ ¬Lyz ∨ Lxz). The
instance ¬Lab ∨ ¬Lbc ∨ Lac is an electron, as it is false, but the instance ¬Lab ∨ ¬Lba ∨ Laa
is a nucleus, with ¬Lba (from ¬Lyz) the true literal.

8eiv

Relation between Standard Hyper-resolution and using any Uniform Interpretation.
If you were to attempt hyper-resolution for the clauses on Slide 8eiii using the non-uniform
interpretation suggested on slide 8eiv, it would be difficult. You might resolve on a literal in
an electron only to find later that the implicit instance used was a nucleus! It is for this reason
that uniform interpretations are the best. Even then, they may not be so efficient for humans
or machines to process as the standard interpretation.

A uniform interpretation may appear to be a useful generalisation, but in fact, any proof found
using it is isomorphic to an ordinary hyper-resolution proof, and so the generalised version
using uniform interpretations is complete too. This is shown next by adapting the argument
given for Neg-HR.

In a uniform interpretation, for any literal occurring in a clause either all its instances will be
true or all its instances will be false. Thus each literal in a clause can be given a label t or f
and it can be determined whether a clause is an electron or a nucleus, and, in the latter case,
which literals are true. (In the standard interpretation, where all atoms are assigned false, each
negative literal is true and each positive literal is false.) Let I be a uniform interpretation. We
can rename each atom L, such that L is true in I, as ¬L' for some new L', which will be false
in I, and hence all instances of ¬L' will be true. That is, L' is equivalent to ¬L and for the
renamed atoms, each occurrence of the literal ¬L will be replaced by L' and each occurrence
of L will be replaced by ¬L'. Atoms that are already false in I are not affected. I now makes
all atoms false (the unaffected ones were already false and the renamed L' type of atoms were
constructed to be false). The clauses that were nucleii are still nucleii (but now in the usual
sense) and the same literals are true in them. For example, if C was a nucleus and included
atom S, which was true in I, then S will be replaced by ¬S', where S' is false in I. Similarly,
the clauses that were electrons are still electrons (now in the usual sense). See Slides 8ei for
an example. (Continued on Slide 8evi.) 8ev 8evi

(Continued from Slide 8ev).
Each step in the original derivation (using the original uniform interpretation) corresponds
exactly to a step in the renamed version (made using the standard rules).

On the other hand, after the transformation the standard hyper-resolution strategy can be
used to find a refutation, always possible since the standard strategy is complete. Since only
syntactic changes have been made, a refutation from the original clauses respecting the
original interpretation, if desired, can be recovered from the standard one that is found using
the transformed clauses. (See Slide 8ei again.)

In the particular case of Neg-HR, when the interpretation makes every atom true, all literals
must be renamed, as we saw. Any Horn clause with one positive literal now becomes a
nucleus with one negative literal, and any negative clause with no positive literals becomes
an electron. Since only one negative clause is necessary for a Horn clause refutation, the
resulting electron may be the only one.

There is at least one class of problems when a non-uniform interpretation can be useful. It is
when the clauses represent a problem with a sorted Herbrand universe. That is, the terms are
divided into disjoint subsets (called sorts). For example, a predicate A(x,y) may occur in
two kinds of places - those in which x and y would both be bound to elements of one sort, or
those in which x and y would both be bound to elements of another sort. It may also be the
case that when x and y were of different sorts A(x,y) would never participate in a successful
refutation. Then, we might be tempted to divide the clauses containing A(x,y) or its
instances into those in which x and y belong to the first sort and those in which x and y
belong to the second sort and to ignore the others. Then, if required, A(x,y) could be made
true for the first sort and false for the second, or vice versa. An example of this idea is
described on 8evii.

8eviiExample of a non-uniform interpretation making use of a sorted universe.

Let the signature = <{A,B,C}, {g}, {a,b,c,k,m}> and A and B be of arity 1, and C be of
arity 2. Also, let g, of arity 1, return sort 1, whatever its argument, a and b be of sort 1,
and c, k, m be of sort 2. Assume arguments of A, B and C can be of either sort.

Consider an interpretation in which A(x) is assigned true iff x is of sort 1 and B(x) is
assigned true iff x is of sort 2 and suppose an assumption is made that the only useful
instances of the clause ¬A(x)∨¬B(y) ∨ C(x,y) are when x is of sort1 and y is of sort 2. In
this clause C(x,y) instances can be assumed to be of the kind C(sort1, sort2) and all these
can be given the same truth value. On the other hand, in ¬A(x)∨¬A(y) ∨ C(x,y) perhaps
the useful instances can be assumed to be of kind C(sort1 ,sort1), which can also all be
given the same truth value. but not necessarily the same one as was given to the
C(sort1,sort2) instances. Thus in transforming from the non-standard interpretation to
the standard interpretation by renaming, as explained on Slide 8evi, C(x,y) might be
renamed in one clause (say the first one), but not in another.

If the predicates A and B were not explicitly in the sorted signature the singleton clause
C(x,y) could still be split into two clauses as above, by implicitly introducing the
predicates A and B in order to control the sorts of the arguments in the clause. Applying
this approach to the so-called “Steam-roller” problem, makes it quite easy, whereas
otherwise it appears hard for theorem provers. See more about this in Problem Sheet.

8fiOutline PROLOG program for Hyper-resolution
hyper(Ns, OldN,Es,Num):- member(empty,Es).
hyper([],OldN,Es,0):- writenl(['fail']), fail.
hyper([],OldN,Es,Num):- Num>0, not member(empty,Es),
 hyper(OldN,[],Es,0).
hyper([N|RestN],OldN,Es,Num):-N_is_subsumed_by_Es(N,Es),
 hyper(RestN,OldN,Es,Num).
hyper([N|RestN],OldN,Es,Num):-
 hyperresolve(N,Es,NewEs,Es1),
 append(NewEs,Es1,E2,Count),Num1 is Num +Count,
 hyper(RestN,[N|OldN],E2, Num1).
Initial call: hyper(N,[],E,0).

hyper(A,B,C,D) holds if Nucleii A and B and electrons C yield the empty
clause. D is a flag to indicate no new resolvents can be formed.
append(A,B,C,D) appends A and B to give C and D=length(A).

hyperresolve(N,E,NewE,RestE) holds if nucleus N yields non
subsumed hyper-reolvents NewE , no clauses in RestE , a subset of E, are
subsumed, clauses in E-RestE are subsumed (by clauses in NewE).

The 2nd and 4th args of hyper are used to maintain fairness. The nucleii are
processed again and again, unless there are no new electrons, in which case there
is failure.

8fii

Outline Prolog program for Hyper-Resolution:

Recall that in hyper-resolution each ''step'' is actually one or more resolution steps,
made according to a simple syntactic principle: only (final) resolvents with positive
literals (called electrons) are allowed to be derived. To form them, a clause with one or
more negative literals (called a nucleus) is sequentially resolved with electrons, each
time removing 1 negative literal, until an electron is produced.

The outline Prolog program on Slide 8fi performs a saturation search to find the empty
clause by hyper-resolution. Initially, the clauses are divided into nucleii and electrons.
Remember from slide 8av that for an unsatisfiable set of clauses there are some of each.

At the end of all the processing, and after applying subsumption, the number of new
electrons produced is recorded. If there is at least one, then the process is repeated on
the list of (non-subsumed) nucleii, otherwise there is failure. If the empty clause (an
electron) is produced there will be success. All the hard work is performed by Hyper-
resolve .

8giSummary of OPTIONAL Slides 8
1. Recall that standard Hyper-resolution is based on the H-interpretation that
assigns false to every atom, and Neg-HR is based on the H-interpretation that
assigns true to every atom.

Other uniform interpretations can assign either true or false to atoms, restricted
so that, for each literal occurring in the given clauses, all instances are assigned
the same value. Nucleii are clauses that are True under the uniform
interpretation and electrons are clauses which are false. Uniform interpretations
with at least 1 each of a nucleus and electron can always be found for refutable
sets of clauses, but not always for satisfiable sets of clauses. (Why?)

Hyper-resolution is still complete for any uniform interpretation.

2. Non-uniform interpretations are rarely used.

3. The intuition for the set-of-support strategy can be justified by looking for a
uniform interpretation that exactly sets the given data as (true) nucleii and
clauses derived from the conclusion as (false) electrons.

4. An outline Prolog program for Hyper-resolution was shown.

