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Proof Method :  By Refutation.   Show by construction that no model can exist for 
given sentences .  i.e.  all potential models are contradictory.  Do this by following 
the consequences of the data and showing that they all lead to a contradiction.

Theorem Proving with Semantic Tableaux

Non - splitting   (α rules):
Splitting    ( β rules):

Development Rules:
1.  Start from the givens in a single initial branch
2.  A tree is developed s.t. sentences in each branch give a partial model
3.  Two types of branch extension using Non-splitting and Splitting rules:

 ¬(A → B )

A
¬B

 A ∧ B 

A
B

 ¬(A ∨ B )

¬A
¬B

¬¬A

A

(¬(A ↔B)  ≡ ¬A ↔B )

A B

A ∨ B

¬A ¬B

¬ ( A ∧ B)

¬ A B

 A → B

A
B

¬A
¬B

A ↔B

4.  Rules may be applied in any order and 
branches  developed in any order.  All 
sentences in a branch must eventually be 
developed unless they lead to contradiction.

9aii
Example (see ppt) :

¬¬e
e

¬ (a ∧ w ) p

¬ a ¬ w

i a ¬ ¬ w
m

¬ e  ¬ i∧ ¬ m 
¬ i
¬ m

¬ e  ¬ i∧ ¬ m 
¬ i
¬ m

¬¬e
e

¬ e

 ¬ i∧ ¬ m 
¬ i
¬ m

i a

¬¬ w

m
p¬ (a ∧ w )

¬ a ¬w

Givens

a ∧ w → p   
i ∨ a
¬ w →m
¬ p
e → ¬ i∧ ¬ m  

a ∧ w → p   
i ∨ a
¬ w →m
¬ p
e → ¬ i∧ ¬ m  

Givens

9aiii

Example : There is a model of Givens

The branch ending in w does not close. 
All data has been processed in the branch. 
(It is called saturated.)

The assumption that a model of Givens exists 
is not contradicted; the branch is consistent 
and called open.

In fact, a model (valuation) can be read from 
the literals in an open branch. Each positive 
atom that occurs is assigned true  and each 
atom that occurs negated is assigned false . 
Atoms that don't occur in the branch can be 
assigned arbitrarily, usually  false.

Here:  a, e, p, w =True and i, m=False.

Question: Why can no atom occur both 
positively and negatively in an open branch? 

What if  the Givens are consistent?

¬¬e
e

¬ e

 ¬ i∧ ¬ m 
¬ i
¬ m

i a

¬¬ w

m
p¬ (a ∧ w )

¬ a ¬w w

a ∧ w → p   
i ∨ a
¬ w →m
e → ¬ i∧ ¬ m  

Givens



9aivSemantic Tableaux  Introduction (1)

Brief History: Semantic tableaux were introduced in 1954 by Beth. Both the standard method and 
free variable methods were automated in 1985.  A clausal form of the free variable method (see 
Slides 10) called  Model Elimination, is based on earlier work of Kowalski and Loveland in 1970. 
They developed Model Elimination as a  resolution refinement not a tableau method, but it was 
later related  to tableau methods from 1990 onwards. The TABLEAUX Workshops (now part of 
IJCAR) are devoted to tableaux and their extended forms and  related theorem proving methods. 

The initial branch of a semantic tableau contains the given sentences that are to be refuted.  Note 
that the sentences do not need to be translated into clausal form. Because the tableau method is 
refutation based, to show some data D implies conclusion C one needs to negate the conclusion 
and derive a contradiction from the union of D and ¬C. 

Reasoning progresses by making assertions about the satisfiability of sub-formulas based on the 
satisfiability of the larger formulas of which they are a part.  For instance, the α-rules (slide 9ai) 
can be read as "if α is in a branch and there is a model of the sentences in the branch, then there is 
a model of the sentences in the branch extended by α1 and α2" and the β-rules as "if β is in a 
branch and there is a model of the sentences in the branch, then there is a model of either the 
sentences in the branch extended by β1, or the sentences in the branch extended by β2", where α1, 
α2/β1, β2 are the two sub-formulae of the rules. 

If X and ¬X are in the branch then the sentences in the branch are clearly inconsistent and the 
branch is said to be closed. If all branches in a tableau are closed (when the tableau is also said to 
be closed), then there are no possible consistent derivations of sub-formulas from the initially 
given sentences, and these sentences are unsatisfiable.  

9av
Semantic Tableaux Introduction (2)

Two examples of  closed propositional tableaux are given on slide 9aii,  illustrating that 
there can be differently sized tableaux for the same set of initial sentences.  For 
propositional sentences the development of a tableau will always terminate as there is 
no need  to develop a sentence in a branch more than once – to do so would  duplicate 
one or more sub-formulas or atoms in that branch, which adds no information to the 
branch. However, every sentence in a branch must be developed in it. 

A fully developed (or completed) branch is called open if it is not closed, and similarly 
the  tableau.  A fully developed open branch  will yield a model of the initial data.  See 
slide 9aiii for an example of a fully developed propositional tableau with an open 
brnach and the corresponding model and 9evi for a proof that a model can be found.

9biThe invariant property SATISFY:

•    Each tableau extension rule maintains  satisfiability:

The property SATISFY is used to show Soundness of the tableau method (see 
Slides 9e).

Informally, suppose the givens were satisfiable, then by SATISFY at each step 
one branch will remain satisfiable. But if the tableau closes, then all branches 
are unsatisfiable, so can conclude that givens cannot be satisfiable.

e.g. If M is a model of a branch including i ∨ a, then M must assign true to at 
least one of i or a. Hence at least one of the two extended branches is still 
satisfied by M.

•    A branch that contains both X and ¬ X is unsatisfiable and can be 
closed  by the closure rule .

if the sentences in a branch are satisfiable and a rule is applied, then 
the new sentences in at least one descendant branch are satisfiable

9biiSoundness and Completeness Statements for Tableaux:

The soundness  theorem for tableaux states that “if a set of sentences S is consistent, 
then the tableau developed from S will not (fully) close”.  Or, equivalently, "if the 
tableau developed from sentences S closes, then S is inconsistent". 

The completenss theorem for tableaux states that “if a set of sentences S is 
unsatisfiable, then it is possible to find a fully closed tableau derived from them”. 

The soundness theorem is a consequence of the property (SATISFY), which 
guarantees that the development rules maintain consistency in at least one descendant 
branch. Informally, therefore, if the original sentences are satisfiable, not all branches 
can close. Proofs of both  properties are in Slides 9e. 

First Order Tableaux  (Standard Version)

There are two kinds of quantifier rules for tableaux; the standard  rules for universal-
type quantifiers (either  ∀ or ¬∃ ) are similar to the usual ∀−elimination rule for 
natural deduction. That is, occurrences of the bound variable in the scope of the 
quantifier may be replaced by any term in the language, including terms involving 
other universally bound variables at the same outer level as (and hence in the scope 
of) the quantifier being eliminated. e.g.∀x∀y.P(x,y) could become ∀y.P(f(a),y)  or 
even ∀y. P(y,y). The problem with this form of the rule is that the substitutions have 
to be guessed. (See example on 9cii.) These rules are not often used in theorem 
provers (although they may be used in proofs about tableau provers). Instead,  free 
variable rules are used.   (Notes continued on 9div.)



9ci

In this standard  version of the γ rules, each ∀ sentence in an open branch B 
should eventually  be used for every term that can be constructed from 
constants and functors appearing in the branch
Question: So you forsee any problems with these rules?

Example from 9cii:     from   ¬∃y (pr(y)∧div(y,n))    obtain
¬(pr(n) ∧div(n,n))     Substitute constant n for variable y, or
¬(pr(f(g(n))) ∧div(f(g(n)),n))   Substitute term f(g(n)) for variable y
Two different instances are used, but it could be many more

Rules for universal quantifiers 
There are two versions of rules for dealing with ∀  (called γ rules):  
Standard version (mostly used only in proofs of tableau properties)
Free variable version  (see slide 9ciii)

Standard Universal Rules
∀x P[x]        ¬∃x P[x]
      |                    |
   P[t1]            ¬ P[t1]

where t1 is a ground term from the 
language of the branch.

e.g. ∀x P(x,f(x) ) is in a branch B
⇒  P(s,f(s) ) and also
⇒  P(g(s),f(g(s)) )

where s is a constant and g is a 
functor used in B

(1)  div(x,x),     (2)  less(1,n),     (3)  div(u,w) ∧ div(w,z) → div(u,z) 
(4)  ¬(div(g(x),x) ∧ less(1,g(x)) ∧ less(g(x),x) ) → pr(x)
(5)  less(1,x)∧less(x,n)→div(f(x),x)∧pr(f(x))        (6)   ¬∃y (pr(y)∧div(y,n))

9cii

div(n,n)

¬less(1,g(n)

(6)   ¬(pr(n) ∧div(n,n))        (guess n is a good value for y)

(4)
¬¬(div(g(n)n) ∧ less(1,g(n)) ∧ less(g(n),n))
 div(g(n)n),  less(1,g(n)),   less(g(n),n) pr(n)

div(f(g(n)), g(n))
pr(f(g(n))
¬ (pr(f(g(n)) ∧div(f(g(n)),n))

¬ div(f(g(n)),n)

¬(less(1,g(n)
∧ less(g(n),n))

¬pr(f(g(n))

(5)

(6)

¬less(g(n),n)

(Use (3) next)

¬pr(n)
¬div(n,n)

(1)

Guess f(g(n)) is 
a good value 
for y in (6)

A closed tableau using 
the Standard  γγγγ rules :
variables are x,u,w,z and 
universally  quantified; 
1, n are constants

Example (see ppt)

9ciii

•  In a free variable tableau the CHOICE of substitution in a γ-rule application is 
delayed until closure. 

•  The closure rule applies unification to the matching formulas to find a 
substitution of free variables to achieve complementarity.  The bindings are 
then applied to all occurrences of the free variables in the tableau

•  May apply the rule to a sentence many times (each with a fresh free variable)

REMEMBER: Wherever a free variable (x1 say) occurs in the tableau, it must  
be bound to the same term (if it is bound at all). 

Free Variable Rules for Universal Quantifiers
Standard tableau rules for universal quantifiers have one main problem:

• guessing what to substitute for bound variables (of universal type)

In clausal reasoning resolution replaced guessing substitutions. 
Free variable rules improve on standard rules by delaying γ rule substitutions.

Free variable γγγγ     rules

  ∀x P[x]        ¬∃x P[x]
      |                  |
   P[x1]            ¬ P[x1]

where x1 is a new free 
variable in the tableau 

e.g. ∀x P(x,f(x) ) ⇒  P(x1,f(x1) ) 
                   (x1 is new to tableau)

(1)  div(x,x),    (2)  less(1,n),      (3)  div(u,w) ∧ div(w,z) → div(u,z)
(4)  ¬(div(g(x),x) ∧ less(1,g(x)) ∧ less(g(x),x) ) → pr(x)
(5)  less(1,x)∧less(x,n)→div(f(x),x)∧pr(f(x))        (6) ¬∃y (pr(y)∧div(y,n))

9civ

¬(pr(y1) ∧div(y1,n))⇒¬(pr(f(g(n)))∧div(f(g(n)),n))

div(g(x1),x1) ∧ less(1,g(x1)) ∧ less(g(x1),x1)
⇒div(g(n),n) ∧ less(1,g(x1)) ∧ less(g(n),n) pr(x1)⇒pr(n)

div(f(x2), x2)⇒div(f(g(x1),g(x1))
pr(f(x2))       ⇒pr(f(g(x1))
⇒div(f(g(n),g(n))
    pr(f(g(n))

¬ less(x2,n)
⇒ ¬less(g(x1),n)

¬ less(1,x2)

x2==g(x1)

¬ pr(y2) ¬ div(y2,n)
⇒¬div(n,n)

y2==n

x3==n

div(x3,x3)

Example using Free Variable Universal quantifier rules (ppt)

x1==n

y1==f(g(n))

¬ pr(y1)
¬ div(y1,n)
⇒¬div(f(g(n),n)

div(u1,z1)
⇒div(f(g(n)),n)

¬div(w1,z1)
⇒¬div(g(n),z1)¬ div(u1,w1)

u1==f(g(n))
w1==g(n) z1==n



9di

Standard ( ∃∃∃∃))))  Quantifier rules  (δ rules):

  ∃xP[x]        ¬∀xP[x]
       |                 |
  P[a]              ¬P[a]

where a is a new constant 
symbol not occurring in 
the tableau (*) (also called 
a parameter). 

e.g.   ∀y ∃xP(x,y,y)   ⇒ ∃xP(x,b,b)  (by ∀ rule)  
(say b occurs already in the tableau) 

  ⇒ P(c,b,b)   (by ∃ rule)      (where c is new to the tableau) 

Standard Rules for Existential Quantifiers

(*) – in fact, the parameter only needs to be new to the branch).

Note : the result of using the standard quantifier rules (both γ and δ)
          is always a sentence - all variables are bound by a quantifier

Think of the rule as 
"giving a name  to the x that maks P[x] true" (eg c in the example)

It has to be new, as all that is known about the object c is that P[c} holds.

It turns out that with the proviso on the new name the δ-rules obey SATISFY

9diiFree variable Rules for Existential Quantifiers

Free variable δδδδ  rules

  ∃xP[x]        ¬∀xP[x]
       |                 |
  P[a]              ¬P[a]

where "a" is a term new to the tableau. It is 
dependent on the free variables occurring in ¬∀xP[x] 
or ∃xP[x] and is a functor of those variables. 

If no free variables occur in ¬∀xP[x] or ∃xP[x] then 
"a" is a new constant, just as in the standard δ-rules.  

e.g. ∃xP(x,a) ⇒  P(d,a)  (no free variables in ∃xP(x,a) so replace by a constant)

∀y,w ∃xP(x,y,w) ⇒   ∃xP(x, y1,w1)  (by ∀ rule)   (free variables y1,w1)
                           ⇒ P(f(y1,w1), y1,w1)  (by ∃ rule)   (x is dependent on y1, w1)
    (functor f is new to the tableau)

Can still think of this rule as giving a name to the x that makes  P(x, y1,w1) true -
but because y1 and w1 could take any value, the name should be different for each 
combination of values for y1 and w1.

eg if y1==a / w1==b, the name for x is f(a,b); if y1==b /w1==a  the name for x is f(b,a)
It is a uniform structure for the name replacing x, whatever y1 and w1 are bound to.

It turns out that with the proviso on the new name the γ-rules obey SATISFY
The rules are sometimes called "run-time Skolemisation" (see notes in 9div/v)

(2)  (∀v[Qxv → Rxg(v)]) → Px
(3)  Sx → ¬Tg(x)f(y)         
(4)  (Txy → Rxy) → Kxy
(5)  Qf(z)y ∧ Kzx → Rxg(y)   
(1)  Sa                                  
(6)  ∀w ¬Pw  

9diii
Sa

¬Pw1⇒¬Pf(z3) ⇒¬Pf(g(x4) )  ⇒ ¬Pf(g(a) )

¬(Tx1y1 → Rx1y1)
⇓

¬(Tz3f(z3) → Rz3f(z3))
Tz3f(z3)

¬Rz3f(z3)

Kx1y1

Px2
x2==w1

¬∀y[Qx2y → Rx2g(y)]
⇓

¬∀v[Qw1v → Rw1g(v)]
∃v[Qw1v ∧ ¬Rw1g(v)]

Qw1h(w1)
¬Rw1g(h(w1))

Rx3g(y3)
x3==w1
y3==h(w1)

¬Qf(z3)y3  
        ⇓
¬Qf(z3)h(w1)

w1==f(z3)

¬Kz3x3
        ⇓
¬Kz3w1
        ⇓
¬Kz3f(z3)

x1==z3
y1==f(z3)

¬Sx4

¬Tg(x4)f(y4)

z3==g(x4)
y4==z3

x4==a

Example using free variable rules (see ppt)

Variables x,y,z in 
(2)-(6) are 
universally 
quantified. 
a is a constant.

Work from L to R.

Imagine guessing the binding for w1:    w1==f(z3)==f(g(x4))==f(g(a))

Free Variable First Order Tableaux 

When  free-variable  rules are used for  dealing with ∀ sentences, the substituted term is a 
fresh variable - think of it as a place-holder until a suitable term can be decided. (For this 
reason, free variables are also sometimes called Unknowns.) A global binding environment 
for a tableau is maintained, which records eventual bindings to free variables. This is 
analogous to the procedure in Prolog execution (which can, in fact, be viewed as a 
particular free-variable tableaux development for Horn clauses). It is as though each 
universal sentence is replaced by one or more potential instances, where the exact 
substitutions are still to be decided.

Use of the free variable  ∀ rule applied to ∀x∀y.P(x,y) yields P(x1, y1), where x1 and y1 
are (fresh) free variables (note there is still the freedom for x1 to be bound to the same term 
as y1).  The occurs check is used when unifying at closure to prevent, for example, x1 
subsequently being bound to f(x1), as this would lead to infinite terms. An example of this 
is a branch containing the pair of literals P(x1,f(x1)) and ¬P(f(x2),x2). Unification to close 
the branch would require to  unify {x1=f(x2),  f(x1)=x2}, but the unification algorithm will 
fail, as after setting the substitution x1==f(x2) the second equation becomes f(f(x2))=x2, 
which will fail the occurs check.

Existential-type quantifiers are treated to a Skolemisation process (see slides 9di/ii). For the 
standard rules the existential rule results in a  new constant being introduced,  for the free-
variable rules it may result in a new (Skolem)  function term whose arguments are the free 
variables in the sentence in the scope of the  ∃.

9div



1) It is often easier to initially Skolemise sentences and thus eliminate existential-type quantifiers 
from the data. (See optional slides 3 for more information. ) The free variable existential rules are 
sometimes called "run-time Skolemisation" as their effect is similar to Skolemisating at the start.

2) Each existential-type sentence in a branch B is developed once in each branch below B.

eg in clause (4) in 9cv "g" is a Skolem term
Original sentence:   ∀x ∃y [¬(div(y,x) ∧ less(1,y) ∧ less(y,x) ) → pr(x)]

becomes                   ∀x [¬(div(g(x),x) ∧ less(1,g(x)) ∧ less(g(x),x) ) → pr(x)]

9dvSome observations about the Tableaux quantifier rules

2) To develop tableaux systematically, branches are expanded up to a maximum  number of 
applications of γ-rules. If there is no closure and more steps available then the limit is increased. 

1) When using the standard rules, for each ∀-type sentence there should be one instance in each 
(open) branch in which it occurs for each substitution of terms constructed from functors and 
constants in the branch. Every instance has no unbound variable occurrences and is a sentence.

3) In order to maintain the property of a single binding to any free variable throughout the 
tableau, bindings are propagated as they are found by unification using the closure rule.

γγγγ-rules:

δδδδ-rules:

There is a potentially infinite number of instances if a functor occurs in the branch. When using free 
variable rules, can often improve on this requirement - a completely unbound instance of a ∀-type 
sentence captures many potential instances. Note the variables are called "free" because until they 
are bound they can have any value in a possible interpretation.

9dviStrategies for Developing Tableaux

Systematic:    Apply α rules and δ rules

Apply γ rules up to a limit

Apply splitting rulesWhy do we 
need a limit?

Apply closure 
where possible
or
at fixed intervals

For standard ∀rules the limit is usually either 
i) the total number of applications, or
ii) the size of the substituted terms (eg "a" is 1, "f(a)" is 2, "f(a,b)" is 3 etc. 

For free variable ∀rules the limit may be either
i) the total number of free variables introduced, or
ii) the total number of γ−rule applications, or
iii) a limit on the number of γ−rule applications for each sentence in a branch 

9dviiHeuristic s for Developing Tableaux

Extend the rules for A ∧/∨ B to deal with more than one operator of the same kind

eg ¬on(x1,z1) ∨ g(x1) ∨ ¬g(z1) gives 3 branches by using the β-rule for ∨

¬ P(a)

∀x[P(x) ∨ Q(x)]

P(a) Q(a)

Combine ∀ rule with a 
splitting rule and 
possibly closure

∀ + "∨" splitting + 
closure + choosing  'a' 
to substitute for the 
bound variable x.

Use splitting rules that will close more than one branch (reduces branching)

eg If a branch contained on(a,b) and ¬g(a) then using 
  ¬on(x1,z1) ∨ g(x1) ∨ ¬g(z1) leads to one open branch containing ¬g(b)

This can work for standard or 
free variable tableaux

9dviiiConstructing Free Variable Tableaux
When deciding on closures in a free variable tableau, you may do it in one of two extreme ways, 
which could be called "unify as you go", or "unify at the end".  All free-variable tableaux on Slides 9 
-11 are constructed using unify-as-you-go. In this kind of construction, whenever a closure is made 
that requires a binding to be made to one or more free variables,  the substitution is applied to all 
occurrences in the tableau of those newly bound variables. This guarantees consistency of the 
bindings during tableau  construction as it enforces the requirement that only one binding may be 
made to any free variable.  The propagation is shown on the slides by an arrow (⇒ or ⇓).  This 
approach is useful for most applications, especially those using data structures, when it may be 
necessary for a piece of data to be used many times. It has given rise to many different refinements 
for clausal data. See Slides 10/11. Branches of a tableau may be developed in any order, although 
usually we use left to right which allows some useful heuristics to be applied; different development 
orders result in different propagation orders and often a different tableau.

In this kind of construction it can be shown that it is unnecessary to put  two unconstrained unbound 
variants of a universal sentence  in a branch. However, as soon as such a variant is (even partially) 
bound, then there is scope for a second variant.  eg after applying the ∀ rule to ∀x[P(f(x)) ∨ Q(x)], 
consider the branch including P(f(x1)); there is no need to use the sentence again as it would result in 
P(f(x2)), with both x1 and x2 unbound. If later P(f(x1)) happened to be used in closure, binding x1 
to a (say), then  sibling branches  beneath P(f(x1))⇒P(f(a)) could use a second instance P(f(x2)), 
where the binding of x2 could be constrained to be different from a. This is analogous in not 
requiring development of a ground sentence in a branch more than once.

The alternative method of unify-at-the-end is shown and briefly discussed in the OPTIONAL 
Appendix 2. In this construction, it is noted when a branch can close and what the corresponding 
binding is, but no propagation takes place. When every branch is potentially closed the possible 
substitutions are combined. If they do not successfully combine then alternative closures in one or 
more branches are sought. The approach is useful if it is known that one (or only a few) occurrences 
of a piece of data will be needed. 



9eiThe  Standard Tableau Method  is Sound
A closed tableau for S implies that S is unsatisfiable

• First show  that each tableau extension rule maintains  SATISFY:
      if the sentences in a branch are satisfiable and a rule is applied, 
      then the new sentences in at least one descendant  branch are satisfiable.

•  eg: the rule for →:   If A → B is in a branch X and  there is a model for the 
sentences in X, then this model at least makes A false or B true. Hence the same 
model will ensure satisfiability in one of the two extension branches.

•  eg: the rule for ∀:   
Suppose ∀x P[x] occurs in a branch B and  M is a model for sentences in B. 
Then if P[t] is added and t is aready interpreted in M then M is still a model; 
otherwise, M can be extended by interpreting t as some domain element and still 
remain a model.  (If data is Skolemised at the start then Sig(S) is known and the 
first case always applies.)

•  Other cases are similar (see 9eii).

•  (SATISFY) implies that satisfiable initial sentences can never lead to a fully 
closed tableau, as there is always a branch with a model which must be open. 
(Formally use an induction argument on depth of the tableau.)

•  Therefore a fully closed tableau indicates unsatisfiability of the initial sentences.

9eiiProving the Soundness of Tableau:
The tableau soundness proof relies on the SATISFY property on Slide 9bv. The cases for 
boolean operators are all simple and similar to the case given on Slide 9ei. 

For the  standard  ∀ case, the argument on 9ei is justified as follows. As in resolution, it 
is simplest to assume the domain is non-empty (else there are complications).  Therefore, 
assume the domain of M is non-empty. The assignment for t will either already be made 
in M, or, if t is new and no assignment for t is yet made in M, then t can be any domain 
element. Either way M will remain a model since, in M, P[x] is true for every x in the 
domain.  

In case x is captured by another universal quantifier, as in ∀x,u. P(x,u) becoming 
∀u.P(u,u), then since ∀u. P(x,u) is true in M for every domain element substituted for x, 
in particular, for any domain element substituted for x it follows that P(x,x) is true in M, 
which is what ∀u P(u,u) is true means.

For the  standard  ∃ case, one can either include in the signature additional parameters to 
be used as needed (and which are similar to Skolem  constants), or introduce new names 
as the need arises. In both cases it is  assumed that M does not have an assignment for the 
name t introduced by the rule. Since ∃x.P[x] is true, P[a] must be true for some element a  
in the domain of M. The assignment for  the new name t can be the witness a. The cases 
for the free variable ∀ and ∃ rules are considered on  9evii.

The proof uses the following notion:  A branch is saturated if all possible development 
rules have been applied to the sentences in the branch. e.g. for a β-rule, if β1 op β2 
belongs to the branch then either β1 or β2 belongs to the branch.

Proof of Tableau Soundness
To show: If a closed tableau is developed from S then S is unsatisfiable.
The proof uses induction on the completed depth of a tableau (defined next).

A tableau is completed up to depth n if each branch is either closed (after ≤ n steps), saturated 
and open (after ≤n steps), or neither and of length = n steps.
(Note that a branch that becomes closed at the nth step was not satisfiable at the n-1th step, as it 
must include two complementary formulas.)

Lemma: Let S be a satisfiable set of sentences. Forall n≥≥≥≥0, P(n) holds, where P(n) states 
that if a tableau T is completed up to depth n using S then T has at least one satisfiable 
and open branch. 

Proof (by induction on completed depth):  
Assume that S is satisfiable. Then S does not contain a sentence A and its negation ¬A.
Base Case (n=0). S is satisfiable. Hence the initial branch after no steps is open and P(0) holds. 

Induction Step (n>0).  Assume as induction hypothesis (IH) that if a tableau is developed from a 
satisfiable set of sentences S, and every branch is completed up to depth k, 0≤k<n, then that 
tableau has at least one satisfiable and open branch. Let T be a tableau developed from S and 
completed up to depth n.  Either: (i) all branches are closed (not possible by assumption of IH as 
it would require all branches to be consistent after n-1 steps), or saturated at depth n-1, whence 
the Lemma holds, or (ii) consider the reduced tableau T ', formed by undoing any step that 
lengthened a branch to depth n, which is therefore completed up to depth n-1.   By (IH) T ' must 
have some open and satisfiable branch that has been developed to form T. Consider that branch. 
According to SATISFY at least one branch resulting from that step is open, leading to an open 
branch in T.  Hence by induction we conclude P(n). Finally, if S leads to a closed tableau, then 
we conclude S is not satisfiable, since a closed tableau has no open branch.

9eiii

The standard tableau method  is Complete
For unsatisfiable S a closed tableau for S exists.

9eiv

• Assume S is unsatisfiable and uses language L augmented with a set ∆ of 
parameters for use in δ rule applications.

•  Apply  rules in a systematic and fair way (possibly by contemplating γ−rule 
applications for an  "infinite" number of times), to obtain a maximally developed 
saturated tableau, in which all possible applications of the α, β, δ, γ rules are made 
in all branches. 

For any branch, all applications of the ∀ rule for terms using L and parameters 
used in the branch should be made. 

e.g. can interleave the  α, β, δ rules with a finite number of applications of the γγγγ-
rule, as on slide 9dii
         eg if p ∧ q is in a branch B then both p and q are also in B

•  Suppose such a maximal tableau doesn't close, then at least one (possibly 
infinite) branch B is open (ie it does not contain X and ¬X) and a model of the 
sentences in B can be constructed based on the literals occurring in B. (See 
slides 9ev to 9evii.)

• Therefore, if S is unsatisfiable and hence has no model, the assumption is 
false and applying the tableau rules to S leads to a closed tableau.



9evExample of a Saturated Tableau (ppt)   

Given: b(c)   ∃y.on(c,y)   ¬b(x)∨¬g(x)        ¬on(x,z)∨g(x)∨ ¬g(z) 

Extensions by any other 
instances (4 possibilities in all) 
duplicate at least one literal in 
the remaining open branch. Such 
extensions are unnecessary.
Exercise : Check this is the case.

∃y.on(c,y)
b(c)
on(c,d)

¬b(c) ¬g(c)

g(c) ¬g(d)
¬on(c,d)

• Domain of H-model in the open 
branch = {c,d}

• The atoms are on(c,d), b(c), so 
these are True.

• All other atoms are false:
on(c,c), on(d,d), on(d,c), b(d), g(c), 
g(d).

Check:
• Clearly b(c) and ∃y.on(c,d) are true.
• For each x, g(x) is false so 
¬b(x)∨¬g(x) is true.
• For z = c, ¬on(x,z)∨g(x)∨ ¬g(z)   is 
true as g(c) is false.
• Similarly for z=d.

(Variables x,z are universally quantified and parameter is d)

Constructing a Model from an open branch in a
Saturated Tableau

9evi

•  A H-interpretation  is constructed with domain the set of terms built from 
symbols occurring in L+∆', such that atoms in B are assigned true and all other 
atoms are assigned false. ∆' is the subset of ∆ occurring in sentences in B

• Let S be the set of initial sentences using language L and parameters  ∆.
•  Suppose a standard tableau has been fully developed from initial sentences 
S, as described on Slide 9eiv, and that there is a saturated open branch B.

•  Let T be the set of sentences in B and M be a first order H-interpretation of 
T with  domain terms built from symbols in T and constructed as follows:
          Each atom in T is true in M; all other atoms are false in M.

•  We show M is a model of T. 
•  Suppose not: then some sentence in T is false in M.
•  Let X be the smallest sized sentence in T s.t.  M makes X false.
•  Whatever type of sentence X is, its being false leads to a contradiction:
(See next slide ....)

9evii

Constructing a Model from an open branch in a Saturated Tableau (contd)

•  Let T be the set of sentences in B and M be a first order H-interpretation of T 
with  domain terms built from symbols in T and constructed as follows:
          Each atom in T is true in M; all other atoms are false in M.

•  Let X be the smallest sized sentence in T s.t.  M makes X false.

•   X cannot be an atom, by construction.

•  eg: case X is ¬ Y  (Y atom) :  If ¬Y is false in M, then Y is true. But then Y 
occurs in T and closure would have occurred.

•  eg: case X is A ∨ B :  If A ∨ B  is false in M then both A and B are false in M 
and smaller than A ∨ B; but at least one of A or B is in T, contradicting that X is 
the smallest false sentence in T.

•  eg: case X is ∀xP[x] :  If ∀xP[x] is false in M then P[t] is false for some domain 
element t.  But by construction P[t] occurs in T and is smaller than ∀xP[x] 
(assume size is depth of parse tree of X).

•  Other cases are similar.

Soundness:

When a free variable tableau closes, there may be free variables in it not yet 
bound. These can be bound (consistently) to any  ground term yielding a 
ground tableau, which will still close. Then use Soundness of a standard 
tableau.

Completeness (outline):

A closed  standard  tableau may  be lifted to a tableau using free variables:  

Each use of the standard ∀-rule is made into a use of the γ -rule, with a fresh 
set of variables, and each closure then becomes one or more equations to be 
solved by unification.  

Since the tableau is closed, a unifier satisfying the set of equations derived in 
this way  exists and hence a  most general unifier (mgu) exists also. 

This mgu can be obtained by the unification algorithm in one attempt ("unify at 
the end")  or in a distributed attempt, corresponding to the different branch 
closures ("unify as you go"). 9eviii

Soundness and Completeness of free variable tableaux



9fi

•  Uses the original structure of knowledge - no need to convert to clausal 
form and so no exponential expansion in presence of ↔ sentences;

•  Extends to non-classical logics very easily - most non-classical automated 
techniques use tableaux as they can mimic the semantics closely;

•  Lends itself to linear reasoning - at each extension step made to a leaf L 
use a sentence that closes one branch using L.  
eg Logic Programming can be seen as tableau development;

•  Can incorporate equality - we will see  later how tableau incorporate 
equality quite naturally 

•  Free variable tableaux  may  terminate without closure for satisfiable 
sentences,  when standard tableaux would be infinite; 

•  There are many refinements for free variable tableau using clausal data, 
which are often derived from resolution refinements. 

In Slides 10 we'll look at Model Elimination, the basis for many  of them.

Benefits of  the Tableau Approach 9fiiSummary of Slides  9
1. Semantic Tableau methods provide an alternative to resolution for theorem 
proving.  They are also based on refutation and for a given set of sentences S 
attempt to demonstrate that S can have no models. 

2. In the ``standard'' tableau method, rules for dealing with universal (∀) 
sentences require substitution of ground terms for the bound variable. This is 
avoided in the ``free variable'' tableau method; instead fresh variables are 
substituted for bound variables, which are bound on branch closure using 
unification. 

3. In the ``unify-as-you-go'' development strategy  (the only strategy covered 
here) the bindings of free variables are immediately propagated to all 
occurrences of the variables in the tableau. An alternative is the ``unify-at-the-
end'' development strategy, in which  potential bindings for free variables are 
recorded and on (potential) closure of all branches in the tableau  are combined. 
In effect, the difference between the two strategies is whether to combine 
unifiers as they are generated, or to wait until all have been generated. 

4.The tableau method is sound and complete. The free variable soundness and 
completeness properties are derived from those of the standard tableau method. 

9fiii5. The soundness property of tableau depends on the SATISFY property, 
which states that, for a consistent branch, the tableau rules maintain 
consistency in at least one descendant branch.

6. The completeness property depends on the notion of saturation, the 
development of a tableau to include all possible  applications of each rule in 
every branch.

7. The tableau method has several benefits, including: it uses the original 
structure of the data, can be extended to many logics such as modal/temporal 
logic, can easily incorporate equality, and linear and many other refinements  
can be defined for the tableau method.

8. If a tableau terminates finitely without closing every branch, then a model 
can be found for any  remaining open branches (possibly a different one for 
each open branch). The slides showed how to construct the model for 
standard tableaux. It is also possible to do so for free variable tableaux.

9. (OPTIONAL) There are several implementations of the tableau method. The 
LeanTap approach uses Prolog and results in a very compact program. It 
exploits Prolog's use of variables to implement the unfication and propagation 
of free variables.
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List of Non-resolution Proving Techniques 
The LeanTap Theorem Prover

9gi

Various different techniques have been considered as suitable  alternatives to 
resolution and clausal form for automated reasoning. These include:
•    Relax adherence to clausal form:
          Non-clausal resolution   (Murray, Manna and Waldinger)
          Semantic tableau /Natural deduction but with unification  ( Hahlne,     
                    Manna and Waldinger,  Reeves, Broda, Dawson, Letz, 
                    Baumgartner, Hahlne, Beckert and many others)
•   Relax  restriction to first order classical logic: Modal logics, resource logics
                    (Constable, Bundy,Wallen , D'Agostino, McRobbie,)
         Add sorts    (Walther, Cohn, Schmidt Schauss)
         Higher order logics  (Miller, Paulson)
         Temporal logic with time parameters  (Reichgeldt, Hahlne, Gore)
         Labelled deduction   (Gabbay,   D'Agostino, Russo, Broda}
•   Heuristics and Metalevel reasoning:
         Use metalevel rules to guide theorem provers - includes rewriting,
              paramodulation  (Bundy, Dershowitz, Hsiang, Rusinowitz, Bachmair)
          Abstractions  (Plaistead)
          Procedural rules for natural deduction (Gabbay)
          Unification for assoc.+commut. operators (Stickel)
          Use models / analogy  (Gerlenter, Bundy)
          Inductive proofs, proof plans  (Boyer and Moore, Bundy et al)
          Tacticals / interactive proof / proof checkers, Isabelle   (Paulson)

Considered in Part II (weeks 5-9 of the course) are Tableaux methods and rewriting for 
equality. 

Non-Resolution Theorem Proving

9giiLeanTap: A Free Variable Tableau Theorem Prover
%prove(currentFormula,todo,branchLits,freevars,maxvars)
%Conjunction case (alpha rule)
prove((A,B),UE,Ls,FV,V) :- !, prove(A,[B|UE],Ls,FV,V).
%Disjunction case - split (beta rule)    
prove((A;B),UE,Ls,FV,V) :- !, prove(A,UE,Ls,FV,V),

                          prove(B,UE,Ls,FV,V).   
%Universal case - keep data all(X,Fm)
prove(all(X,Fm),UE,Ls,FV,V) :- !,

\+ length(FV,V),copy_term((X,Fm,FV),(X1,Fm1,FV)),
append(UE,[all(X,Fm)],UE1),
prove(Fm1,UE1,Ls,[X1|FV],V).

%Closure case
prove(Lit,_,[L|Ls],_,_) :-

(Lit = -Neg; -Lit = Neg) ->
(unify_with_occurs_check(Neg,L); prove(Lit,[],Ls,_,_)).

%Literal not matching case
prove(Lit,[N|UE],Ls,FV,V) :-prove(N,UE,[Lit|Ls],FV,V).

Formulas are in Skolemised negated normal form (negations next to atoms).

nnf(-(-(p=>q)=>(q=>p)), ((p,-q),(q,-p)))
nnf(-(((p=>q)=>p)=>p), (((p,-q);p),-p))
nnf(ex(Y,all(X,(f(Y)=>f(X)))), all(X,(-f(s);f(X))))
(The code generates all(X,(f(Y)=>f(X))) as Skolem term s) 

:- op(400,fy,-),op(500,xfy,&),op(600,xfy,v),      
op(650,xfy,=>),  op(700,xfy,<=>). 
nnf(Fml,NNF) :- nnf(Fml,[],NNF).
nnf(Fm,FV,NNF) :- 

(Fm = -(-A)      -> Fm1 = A;
 Fm = -all(X,F)  -> Fm1 = ex(X,-F);
 Fm = -ex(X,F)   -> Fm1 = all(X,-F);
 Fm = -(A v B)   -> Fm1 = -A & -B;
 Fm = -(A & B)   -> Fm1 = -A v -B;
 Fm = (A => B)   -> Fm1 = -A v B;
 Fm = -(A => B)  -> Fm1 = A & -B;
 Fm = (A <=> B)  -> Fm1 = (A & B) v (-A & -B);
 Fm = -(A <=> B) -> Fm1 = (A & -B) v (-A & B)),!,
nnf(Fm1,FV,NNF).

nnf(all(X,F),FV,all(X,NNF)) :- !, nnf(F,[X|FV],NNF).
nnf(ex(X,Fm),FV,NNF) :- !,

copy_term((X,Fm,FV),(Fm,Fm1,FV)), nnf(Fm1,FV,NNF).
nnf(A & B,FV,(NNF1,NNF2)) :- !,
   nnf(A,FV,NNF1), nnf(B,FV,NNF2).
nnf(A v B,FV,(NNF1;NNF2)) :- !,

nnf(A,FV,NNF1),nnf(B,FV,NNF2).
nnf(Lit,_,Lit). 9giii



9givLeanTap Prover

The LeanTap theorem prover was developed by  Bernard Beckert, Joachim Possega 
and Reiner Hahlne. It was the first ``Lean'' theorem prover, meaning a  ``very small 
Prolog program'' that exploits Prolog unification in clever ways to implement a 
theorem prover for first order logic. A different prover, but equally good, prover is 
given in the optional part of Slides 10. It is called LeanCop, and both LeanTap and 
LeanCop belong to the family of Lean provers. It is always impressive to see how 
compact a theorem prover in Prolog can be.

For simplicity, LeanTap  uses formulas in Skolemised Negation Normal Form 
(NNF). This means that before trying to develop a tableau existential type quantifiers 
are replaced by Skolem functions and negations are pushed inwards so they are next 
to atoms; however, no distribution of ∧ over ∨, or ∨ over ∧,  is applied. This sentence 
structure allows to simplify  the top level of LeanTap, so only conjunctions and 
disjunctions,  universal quantifers and literals need be considered.  (LeanCop uses 
clausal form, which is a sub-case of NNF – ie distribution of ∨ over ∧ is performed. ) 

Closure is checked for literals only.  The Skolemisation step in `nnf' uses the name of 
the formula being Skolemised as the new Skolem constant.

There are several websites covering LeanTap - just type it into Google and see!

9gv

Example queries to run:

F= (-h(a), all(X,(f(X);h(X))),all(Z,(-g(Z);-f(b))),
     all(Y,(-f(Y);-h(b))),all(X,(g(X);-f(X)))),
      prove(F,[],[],[],4)

nnf(-(-e)&(a & w =>p)&(i v a)& -p&(e =>-i & -m)&(-w =>m), F),
      prove(F,[],[],0)

1. Add write instructions so that information about the structure of the tableau is printed 
out, including closure. 

2. Explain details of universal and closure cases of prove and existential case of nnf.

3. Run other examples covered in slides and exercises.

What  improvements could be made? 
a) add a loop check.  Note that (for example)  h(X) and h(Y) do not form a loop - so must 
be careful to match terms identically.
b) add a  higher level predicate prove1 that calls prove recursively, each time increasing 
the freevars limit by 1. 
c) limit the depth of each branch instead of the number of freevars.

9gviMore Notes about LeanTap

The interesting cases in the program are for universal quantifiers and literals.

i) Case all(X,Fm): Note first that a limit is put on the total number of free variables 
used in the tableau (argument maxvars). If this is not reached then a copy of the 
formula Fm is made in which the current free variables are not copied, so they are 
preserved across the tableau. Bound variable X occurrences are copied throughout.

ii) Case Lit in Fm: Either the literal causes closure by unification (with the occurs 
check in place)  with a complementary literal in branchLits, or it does not. In the 
latter case the Lit is added to branchLits.

Conversion to NNF is carried out recursively as on Slide 9giii. The existential case  
ex(X,Fm) introduces a Skolem term in a clever way. It instantiates X with the 
formula Fm. Thus each unique exists term introduces a different Skolem formula, 
which is dependent on the free variables in the formula Fm.


