
AUTOMATED REASONING

SLIDES 9

SEMANTIC TABLEAUX
 Standard Tableaux
 Free Variable Tableaux
 Soundness and Completeness
 Different strategies

KB - AR - 13

9ai

Proof Method : By Refutation. Show by construction that no model can exist for
given sentences . i.e. all potential models are contradictory. Do this by following
the consequences of the data and showing that they all lead to a contradiction.

Theorem Proving with Semantic Tableaux

Non - splitting (α rules):
Splitting (β rules):

Development Rules:
1. Start from the givens in a single initial branch
2. A tree is developed s.t. sentences in each branch give a partial model
3. Two types of branch extension using Non-splitting and Splitting rules:

 ¬(A → B)

A
¬B

 A ∧ B

A
B

 ¬(A ∨ B)

¬A
¬B

¬¬A

A

(¬(A ↔B) ≡ ¬A ↔B)

A B

A ∨ B

¬A ¬B

¬ (A ∧ B)

¬ A B

 A → B

A
B

¬A
¬B

A ↔B

4. Rules may be applied in any order and
branches developed in any order. All
sentences in a branch must eventually be
developed unless they lead to contradiction.

9aii
Example (see ppt) :

¬¬e
e

¬ (a ∧ w) p

¬ a ¬ w

i a ¬ ¬ w
m

¬ e ¬ i∧ ¬ m
¬ i
¬ m

¬ e ¬ i∧ ¬ m
¬ i
¬ m

¬¬e
e

¬ e

 ¬ i∧ ¬ m
¬ i
¬ m

i a

¬¬ w

m
p¬ (a ∧ w)

¬ a ¬w

Givens

a ∧ w → p
i ∨ a
¬ w →m
¬ p
e → ¬ i∧ ¬ m

a ∧ w → p
i ∨ a
¬ w →m
¬ p
e → ¬ i∧ ¬ m

Givens

9aiii

Example : There is a model of Givens

The branch ending in w does not close.
All data has been processed in the branch.
(It is called saturated.)

The assumption that a model of Givens exists
is not contradicted; the branch is consistent
and called open.

In fact, a model (valuation) can be read from
the literals in an open branch. Each positive
atom that occurs is assigned true and each
atom that occurs negated is assigned false .
Atoms that don't occur in the branch can be
assigned arbitrarily, usually false.

Here: a, e, p, w =True and i, m=False.

Question: Why can no atom occur both
positively and negatively in an open branch?

What if the Givens are consistent?

¬¬e
e

¬ e

 ¬ i∧ ¬ m
¬ i
¬ m

i a

¬¬ w

m
p¬ (a ∧ w)

¬ a ¬w w

a ∧ w → p
i ∨ a
¬ w →m
e → ¬ i∧ ¬ m

Givens

9aivSemantic Tableaux Introduction (1)

Brief History: Semantic tableaux were introduced in 1954 by Beth. Both the standard method and
free variable methods were automated in 1985. A clausal form of the free variable method (see
Slides 10) called Model Elimination, is based on earlier work of Kowalski and Loveland in 1970.
They developed Model Elimination as a resolution refinement not a tableau method, but it was
later related to tableau methods from 1990 onwards. The TABLEAUX Workshops (now part of
IJCAR) are devoted to tableaux and their extended forms and related theorem proving methods.

The initial branch of a semantic tableau contains the given sentences that are to be refuted. Note
that the sentences do not need to be translated into clausal form. Because the tableau method is
refutation based, to show some data D implies conclusion C one needs to negate the conclusion
and derive a contradiction from the union of D and ¬C.

Reasoning progresses by making assertions about the satisfiability of sub-formulas based on the
satisfiability of the larger formulas of which they are a part. For instance, the α-rules (slide 9ai)
can be read as "if α is in a branch and there is a model of the sentences in the branch, then there is
a model of the sentences in the branch extended by α1 and α2" and the β-rules as "if β is in a
branch and there is a model of the sentences in the branch, then there is a model of either the
sentences in the branch extended by β1, or the sentences in the branch extended by β2", where α1,
α2/β1, β2 are the two sub-formulae of the rules.

If X and ¬X are in the branch then the sentences in the branch are clearly inconsistent and the
branch is said to be closed. If all branches in a tableau are closed (when the tableau is also said to
be closed), then there are no possible consistent derivations of sub-formulas from the initially
given sentences, and these sentences are unsatisfiable.

9av
Semantic Tableaux Introduction (2)

Two examples of closed propositional tableaux are given on slide 9aii, illustrating that
there can be differently sized tableaux for the same set of initial sentences. For
propositional sentences the development of a tableau will always terminate as there is
no need to develop a sentence in a branch more than once – to do so would duplicate
one or more sub-formulas or atoms in that branch, which adds no information to the
branch. However, every sentence in a branch must be developed in it.

A fully developed (or completed) branch is called open if it is not closed, and similarly
the tableau. A fully developed open branch will yield a model of the initial data. See
slide 9aiii for an example of a fully developed propositional tableau with an open
brnach and the corresponding model and 9evi for a proof that a model can be found.

9biThe invariant property SATISFY:

• Each tableau extension rule maintains satisfiability:

The property SATISFY is used to show Soundness of the tableau method (see
Slides 9e).

Informally, suppose the givens were satisfiable, then by SATISFY at each step
one branch will remain satisfiable. But if the tableau closes, then all branches
are unsatisfiable, so can conclude that givens cannot be satisfiable.

e.g. If M is a model of a branch including i ∨ a, then M must assign true to at
least one of i or a. Hence at least one of the two extended branches is still
satisfied by M.

• A branch that contains both X and ¬ X is unsatisfiable and can be
closed by the closure rule .

if the sentences in a branch are satisfiable and a rule is applied, then
the new sentences in at least one descendant branch are satisfiable

9biiSoundness and Completeness Statements for Tableaux:

The soundness theorem for tableaux states that “if a set of sentences S is consistent,
then the tableau developed from S will not (fully) close”. Or, equivalently, "if the
tableau developed from sentences S closes, then S is inconsistent".

The completenss theorem for tableaux states that “if a set of sentences S is
unsatisfiable, then it is possible to find a fully closed tableau derived from them”.

The soundness theorem is a consequence of the property (SATISFY), which
guarantees that the development rules maintain consistency in at least one descendant
branch. Informally, therefore, if the original sentences are satisfiable, not all branches
can close. Proofs of both properties are in Slides 9e.

First Order Tableaux (Standard Version)

There are two kinds of quantifier rules for tableaux; the standard rules for universal-
type quantifiers (either ∀ or ¬∃) are similar to the usual ∀−elimination rule for
natural deduction. That is, occurrences of the bound variable in the scope of the
quantifier may be replaced by any term in the language, including terms involving
other universally bound variables at the same outer level as (and hence in the scope
of) the quantifier being eliminated. e.g.∀x∀y.P(x,y) could become ∀y.P(f(a),y) or
even ∀y. P(y,y). The problem with this form of the rule is that the substitutions have
to be guessed. (See example on 9cii.) These rules are not often used in theorem
provers (although they may be used in proofs about tableau provers). Instead, free
variable rules are used. (Notes continued on 9div.)

9ci

In this standard version of the γ rules, each ∀ sentence in an open branch B
should eventually be used for every term that can be constructed from
constants and functors appearing in the branch
Question: So you forsee any problems with these rules?

Example from 9cii: from ¬∃y (pr(y)∧div(y,n)) obtain
¬(pr(n) ∧div(n,n)) Substitute constant n for variable y, or
¬(pr(f(g(n))) ∧div(f(g(n)),n)) Substitute term f(g(n)) for variable y
Two different instances are used, but it could be many more

Rules for universal quantifiers
There are two versions of rules for dealing with ∀ (called γ rules):
Standard version (mostly used only in proofs of tableau properties)
Free variable version (see slide 9ciii)

Standard Universal Rules
∀x P[x] ¬∃x P[x]
 | |
 P[t1] ¬ P[t1]

where t1 is a ground term from the
language of the branch.

e.g. ∀x P(x,f(x)) is in a branch B
⇒ P(s,f(s)) and also
⇒ P(g(s),f(g(s)))

where s is a constant and g is a
functor used in B

(1) div(x,x), (2) less(1,n), (3) div(u,w) ∧ div(w,z) → div(u,z)
(4) ¬(div(g(x),x) ∧ less(1,g(x)) ∧ less(g(x),x)) → pr(x)
(5) less(1,x)∧less(x,n)→div(f(x),x)∧pr(f(x)) (6) ¬∃y (pr(y)∧div(y,n))

9cii

div(n,n)

¬less(1,g(n)

(6) ¬(pr(n) ∧div(n,n)) (guess n is a good value for y)

(4)
¬¬(div(g(n)n) ∧ less(1,g(n)) ∧ less(g(n),n))
 div(g(n)n), less(1,g(n)), less(g(n),n) pr(n)

div(f(g(n)), g(n))
pr(f(g(n))
¬ (pr(f(g(n)) ∧div(f(g(n)),n))

¬ div(f(g(n)),n)

¬(less(1,g(n)
∧ less(g(n),n))

¬pr(f(g(n))

(5)

(6)

¬less(g(n),n)

(Use (3) next)

¬pr(n)
¬div(n,n)

(1)

Guess f(g(n)) is
a good value
for y in (6)

A closed tableau using
the Standard γγγγ rules :
variables are x,u,w,z and
universally quantified;
1, n are constants

Example (see ppt)

9ciii

• In a free variable tableau the CHOICE of substitution in a γ-rule application is
delayed until closure.

• The closure rule applies unification to the matching formulas to find a
substitution of free variables to achieve complementarity. The bindings are
then applied to all occurrences of the free variables in the tableau

• May apply the rule to a sentence many times (each with a fresh free variable)

REMEMBER: Wherever a free variable (x1 say) occurs in the tableau, it must
be bound to the same term (if it is bound at all).

Free Variable Rules for Universal Quantifiers
Standard tableau rules for universal quantifiers have one main problem:

• guessing what to substitute for bound variables (of universal type)

In clausal reasoning resolution replaced guessing substitutions.
Free variable rules improve on standard rules by delaying γ rule substitutions.

Free variable γγγγ rules

 ∀x P[x] ¬∃x P[x]
 | |
 P[x1] ¬ P[x1]

where x1 is a new free
variable in the tableau

e.g. ∀x P(x,f(x)) ⇒ P(x1,f(x1))
 (x1 is new to tableau)

(1) div(x,x), (2) less(1,n), (3) div(u,w) ∧ div(w,z) → div(u,z)
(4) ¬(div(g(x),x) ∧ less(1,g(x)) ∧ less(g(x),x)) → pr(x)
(5) less(1,x)∧less(x,n)→div(f(x),x)∧pr(f(x)) (6) ¬∃y (pr(y)∧div(y,n))

9civ

¬(pr(y1) ∧div(y1,n))⇒¬(pr(f(g(n)))∧div(f(g(n)),n))

div(g(x1),x1) ∧ less(1,g(x1)) ∧ less(g(x1),x1)
⇒div(g(n),n) ∧ less(1,g(x1)) ∧ less(g(n),n) pr(x1)⇒pr(n)

div(f(x2), x2)⇒div(f(g(x1),g(x1))
pr(f(x2)) ⇒pr(f(g(x1))
⇒div(f(g(n),g(n))
 pr(f(g(n))

¬ less(x2,n)
⇒ ¬less(g(x1),n)

¬ less(1,x2)

x2==g(x1)

¬ pr(y2) ¬ div(y2,n)
⇒¬div(n,n)

y2==n

x3==n

div(x3,x3)

Example using Free Variable Universal quantifier rules (ppt)

x1==n

y1==f(g(n))

¬ pr(y1)
¬ div(y1,n)
⇒¬div(f(g(n),n)

div(u1,z1)
⇒div(f(g(n)),n)

¬div(w1,z1)
⇒¬div(g(n),z1)¬ div(u1,w1)

u1==f(g(n))
w1==g(n) z1==n

9di

Standard (∃∃∃∃)))) Quantifier rules (δ rules):

 ∃xP[x] ¬∀xP[x]
 | |
 P[a] ¬P[a]

where a is a new constant
symbol not occurring in
the tableau (*) (also called
a parameter).

e.g. ∀y ∃xP(x,y,y) ⇒ ∃xP(x,b,b) (by ∀ rule)
(say b occurs already in the tableau)

 ⇒ P(c,b,b) (by ∃ rule) (where c is new to the tableau)

Standard Rules for Existential Quantifiers

(*) – in fact, the parameter only needs to be new to the branch).

Note : the result of using the standard quantifier rules (both γ and δ)
 is always a sentence - all variables are bound by a quantifier

Think of the rule as
"giving a name to the x that maks P[x] true" (eg c in the example)

It has to be new, as all that is known about the object c is that P[c} holds.

It turns out that with the proviso on the new name the δ-rules obey SATISFY

9diiFree variable Rules for Existential Quantifiers

Free variable δδδδ rules

 ∃xP[x] ¬∀xP[x]
 | |
 P[a] ¬P[a]

where "a" is a term new to the tableau. It is
dependent on the free variables occurring in ¬∀xP[x]
or ∃xP[x] and is a functor of those variables.

If no free variables occur in ¬∀xP[x] or ∃xP[x] then
"a" is a new constant, just as in the standard δ-rules.

e.g. ∃xP(x,a) ⇒ P(d,a) (no free variables in ∃xP(x,a) so replace by a constant)

∀y,w ∃xP(x,y,w) ⇒ ∃xP(x, y1,w1) (by ∀ rule) (free variables y1,w1)
 ⇒ P(f(y1,w1), y1,w1) (by ∃ rule) (x is dependent on y1, w1)
 (functor f is new to the tableau)

Can still think of this rule as giving a name to the x that makes P(x, y1,w1) true -
but because y1 and w1 could take any value, the name should be different for each
combination of values for y1 and w1.

eg if y1==a / w1==b, the name for x is f(a,b); if y1==b /w1==a the name for x is f(b,a)
It is a uniform structure for the name replacing x, whatever y1 and w1 are bound to.

It turns out that with the proviso on the new name the γ-rules obey SATISFY
The rules are sometimes called "run-time Skolemisation" (see notes in 9div/v)

(2) (∀v[Qxv → Rxg(v)]) → Px
(3) Sx → ¬Tg(x)f(y)
(4) (Txy → Rxy) → Kxy
(5) Qf(z)y ∧ Kzx → Rxg(y)
(1) Sa
(6) ∀w ¬Pw

9diii
Sa

¬Pw1⇒¬Pf(z3) ⇒¬Pf(g(x4)) ⇒ ¬Pf(g(a))

¬(Tx1y1 → Rx1y1)
⇓

¬(Tz3f(z3) → Rz3f(z3))
Tz3f(z3)

¬Rz3f(z3)

Kx1y1

Px2
x2==w1

¬∀y[Qx2y → Rx2g(y)]
⇓

¬∀v[Qw1v → Rw1g(v)]
∃v[Qw1v ∧ ¬Rw1g(v)]

Qw1h(w1)
¬Rw1g(h(w1))

Rx3g(y3)
x3==w1
y3==h(w1)

¬Qf(z3)y3
 ⇓
¬Qf(z3)h(w1)

w1==f(z3)

¬Kz3x3
 ⇓
¬Kz3w1
 ⇓
¬Kz3f(z3)

x1==z3
y1==f(z3)

¬Sx4

¬Tg(x4)f(y4)

z3==g(x4)
y4==z3

x4==a

Example using free variable rules (see ppt)

Variables x,y,z in
(2)-(6) are
universally
quantified.
a is a constant.

Work from L to R.

Imagine guessing the binding for w1: w1==f(z3)==f(g(x4))==f(g(a))

Free Variable First Order Tableaux

When free-variable rules are used for dealing with ∀ sentences, the substituted term is a
fresh variable - think of it as a place-holder until a suitable term can be decided. (For this
reason, free variables are also sometimes called Unknowns.) A global binding environment
for a tableau is maintained, which records eventual bindings to free variables. This is
analogous to the procedure in Prolog execution (which can, in fact, be viewed as a
particular free-variable tableaux development for Horn clauses). It is as though each
universal sentence is replaced by one or more potential instances, where the exact
substitutions are still to be decided.

Use of the free variable ∀ rule applied to ∀x∀y.P(x,y) yields P(x1, y1), where x1 and y1
are (fresh) free variables (note there is still the freedom for x1 to be bound to the same term
as y1). The occurs check is used when unifying at closure to prevent, for example, x1
subsequently being bound to f(x1), as this would lead to infinite terms. An example of this
is a branch containing the pair of literals P(x1,f(x1)) and ¬P(f(x2),x2). Unification to close
the branch would require to unify {x1=f(x2), f(x1)=x2}, but the unification algorithm will
fail, as after setting the substitution x1==f(x2) the second equation becomes f(f(x2))=x2,
which will fail the occurs check.

Existential-type quantifiers are treated to a Skolemisation process (see slides 9di/ii). For the
standard rules the existential rule results in a new constant being introduced, for the free-
variable rules it may result in a new (Skolem) function term whose arguments are the free
variables in the sentence in the scope of the ∃.

9div

1) It is often easier to initially Skolemise sentences and thus eliminate existential-type quantifiers
from the data. (See optional slides 3 for more information.) The free variable existential rules are
sometimes called "run-time Skolemisation" as their effect is similar to Skolemisating at the start.

2) Each existential-type sentence in a branch B is developed once in each branch below B.

eg in clause (4) in 9cv "g" is a Skolem term
Original sentence: ∀x ∃y [¬(div(y,x) ∧ less(1,y) ∧ less(y,x)) → pr(x)]

becomes ∀x [¬(div(g(x),x) ∧ less(1,g(x)) ∧ less(g(x),x)) → pr(x)]

9dvSome observations about the Tableaux quantifier rules

2) To develop tableaux systematically, branches are expanded up to a maximum number of
applications of γ-rules. If there is no closure and more steps available then the limit is increased.

1) When using the standard rules, for each ∀-type sentence there should be one instance in each
(open) branch in which it occurs for each substitution of terms constructed from functors and
constants in the branch. Every instance has no unbound variable occurrences and is a sentence.

3) In order to maintain the property of a single binding to any free variable throughout the
tableau, bindings are propagated as they are found by unification using the closure rule.

γγγγ-rules:

δδδδ-rules:

There is a potentially infinite number of instances if a functor occurs in the branch. When using free
variable rules, can often improve on this requirement - a completely unbound instance of a ∀-type
sentence captures many potential instances. Note the variables are called "free" because until they
are bound they can have any value in a possible interpretation.

9dviStrategies for Developing Tableaux

Systematic: Apply α rules and δ rules

Apply γ rules up to a limit

Apply splitting rulesWhy do we
need a limit?

Apply closure
where possible
or
at fixed intervals

For standard ∀rules the limit is usually either
i) the total number of applications, or
ii) the size of the substituted terms (eg "a" is 1, "f(a)" is 2, "f(a,b)" is 3 etc.

For free variable ∀rules the limit may be either
i) the total number of free variables introduced, or
ii) the total number of γ−rule applications, or
iii) a limit on the number of γ−rule applications for each sentence in a branch

9dviiHeuristic s for Developing Tableaux

Extend the rules for A ∧/∨ B to deal with more than one operator of the same kind

eg ¬on(x1,z1) ∨ g(x1) ∨ ¬g(z1) gives 3 branches by using the β-rule for ∨

¬ P(a)

∀x[P(x) ∨ Q(x)]

P(a) Q(a)

Combine ∀ rule with a
splitting rule and
possibly closure

∀ + "∨" splitting +
closure + choosing 'a'
to substitute for the
bound variable x.

Use splitting rules that will close more than one branch (reduces branching)

eg If a branch contained on(a,b) and ¬g(a) then using
 ¬on(x1,z1) ∨ g(x1) ∨ ¬g(z1) leads to one open branch containing ¬g(b)

This can work for standard or
free variable tableaux

9dviiiConstructing Free Variable Tableaux
When deciding on closures in a free variable tableau, you may do it in one of two extreme ways,
which could be called "unify as you go", or "unify at the end". All free-variable tableaux on Slides 9
-11 are constructed using unify-as-you-go. In this kind of construction, whenever a closure is made
that requires a binding to be made to one or more free variables, the substitution is applied to all
occurrences in the tableau of those newly bound variables. This guarantees consistency of the
bindings during tableau construction as it enforces the requirement that only one binding may be
made to any free variable. The propagation is shown on the slides by an arrow (⇒ or ⇓). This
approach is useful for most applications, especially those using data structures, when it may be
necessary for a piece of data to be used many times. It has given rise to many different refinements
for clausal data. See Slides 10/11. Branches of a tableau may be developed in any order, although
usually we use left to right which allows some useful heuristics to be applied; different development
orders result in different propagation orders and often a different tableau.

In this kind of construction it can be shown that it is unnecessary to put two unconstrained unbound
variants of a universal sentence in a branch. However, as soon as such a variant is (even partially)
bound, then there is scope for a second variant. eg after applying the ∀ rule to ∀x[P(f(x)) ∨ Q(x)],
consider the branch including P(f(x1)); there is no need to use the sentence again as it would result in
P(f(x2)), with both x1 and x2 unbound. If later P(f(x1)) happened to be used in closure, binding x1
to a (say), then sibling branches beneath P(f(x1))⇒P(f(a)) could use a second instance P(f(x2)),
where the binding of x2 could be constrained to be different from a. This is analogous in not
requiring development of a ground sentence in a branch more than once.

The alternative method of unify-at-the-end is shown and briefly discussed in the OPTIONAL
Appendix 2. In this construction, it is noted when a branch can close and what the corresponding
binding is, but no propagation takes place. When every branch is potentially closed the possible
substitutions are combined. If they do not successfully combine then alternative closures in one or
more branches are sought. The approach is useful if it is known that one (or only a few) occurrences
of a piece of data will be needed.

9eiThe Standard Tableau Method is Sound
A closed tableau for S implies that S is unsatisfiable

• First show that each tableau extension rule maintains SATISFY:
 if the sentences in a branch are satisfiable and a rule is applied,
 then the new sentences in at least one descendant branch are satisfiable.

• eg: the rule for →: If A → B is in a branch X and there is a model for the
sentences in X, then this model at least makes A false or B true. Hence the same
model will ensure satisfiability in one of the two extension branches.

• eg: the rule for ∀:
Suppose ∀x P[x] occurs in a branch B and M is a model for sentences in B.
Then if P[t] is added and t is aready interpreted in M then M is still a model;
otherwise, M can be extended by interpreting t as some domain element and still
remain a model. (If data is Skolemised at the start then Sig(S) is known and the
first case always applies.)

• Other cases are similar (see 9eii).

• (SATISFY) implies that satisfiable initial sentences can never lead to a fully
closed tableau, as there is always a branch with a model which must be open.
(Formally use an induction argument on depth of the tableau.)

• Therefore a fully closed tableau indicates unsatisfiability of the initial sentences.

9eiiProving the Soundness of Tableau:
The tableau soundness proof relies on the SATISFY property on Slide 9bv. The cases for
boolean operators are all simple and similar to the case given on Slide 9ei.

For the standard ∀ case, the argument on 9ei is justified as follows. As in resolution, it
is simplest to assume the domain is non-empty (else there are complications). Therefore,
assume the domain of M is non-empty. The assignment for t will either already be made
in M, or, if t is new and no assignment for t is yet made in M, then t can be any domain
element. Either way M will remain a model since, in M, P[x] is true for every x in the
domain.

In case x is captured by another universal quantifier, as in ∀x,u. P(x,u) becoming
∀u.P(u,u), then since ∀u. P(x,u) is true in M for every domain element substituted for x,
in particular, for any domain element substituted for x it follows that P(x,x) is true in M,
which is what ∀u P(u,u) is true means.

For the standard ∃ case, one can either include in the signature additional parameters to
be used as needed (and which are similar to Skolem constants), or introduce new names
as the need arises. In both cases it is assumed that M does not have an assignment for the
name t introduced by the rule. Since ∃x.P[x] is true, P[a] must be true for some element a
in the domain of M. The assignment for the new name t can be the witness a. The cases
for the free variable ∀ and ∃ rules are considered on 9evii.

The proof uses the following notion: A branch is saturated if all possible development
rules have been applied to the sentences in the branch. e.g. for a β-rule, if β1 op β2
belongs to the branch then either β1 or β2 belongs to the branch.

Proof of Tableau Soundness
To show: If a closed tableau is developed from S then S is unsatisfiable.
The proof uses induction on the completed depth of a tableau (defined next).

A tableau is completed up to depth n if each branch is either closed (after ≤ n steps), saturated
and open (after ≤n steps), or neither and of length = n steps.
(Note that a branch that becomes closed at the nth step was not satisfiable at the n-1th step, as it
must include two complementary formulas.)

Lemma: Let S be a satisfiable set of sentences. Forall n≥≥≥≥0, P(n) holds, where P(n) states
that if a tableau T is completed up to depth n using S then T has at least one satisfiable
and open branch.

Proof (by induction on completed depth):
Assume that S is satisfiable. Then S does not contain a sentence A and its negation ¬A.
Base Case (n=0). S is satisfiable. Hence the initial branch after no steps is open and P(0) holds.

Induction Step (n>0). Assume as induction hypothesis (IH) that if a tableau is developed from a
satisfiable set of sentences S, and every branch is completed up to depth k, 0≤k<n, then that
tableau has at least one satisfiable and open branch. Let T be a tableau developed from S and
completed up to depth n. Either: (i) all branches are closed (not possible by assumption of IH as
it would require all branches to be consistent after n-1 steps), or saturated at depth n-1, whence
the Lemma holds, or (ii) consider the reduced tableau T ', formed by undoing any step that
lengthened a branch to depth n, which is therefore completed up to depth n-1. By (IH) T ' must
have some open and satisfiable branch that has been developed to form T. Consider that branch.
According to SATISFY at least one branch resulting from that step is open, leading to an open
branch in T. Hence by induction we conclude P(n). Finally, if S leads to a closed tableau, then
we conclude S is not satisfiable, since a closed tableau has no open branch.

9eiii

The standard tableau method is Complete
For unsatisfiable S a closed tableau for S exists.

9eiv

• Assume S is unsatisfiable and uses language L augmented with a set ∆ of
parameters for use in δ rule applications.

• Apply rules in a systematic and fair way (possibly by contemplating γ−rule
applications for an "infinite" number of times), to obtain a maximally developed
saturated tableau, in which all possible applications of the α, β, δ, γ rules are made
in all branches.

For any branch, all applications of the ∀ rule for terms using L and parameters
used in the branch should be made.

e.g. can interleave the α, β, δ rules with a finite number of applications of the γγγγ-
rule, as on slide 9dii
 eg if p ∧ q is in a branch B then both p and q are also in B

• Suppose such a maximal tableau doesn't close, then at least one (possibly
infinite) branch B is open (ie it does not contain X and ¬X) and a model of the
sentences in B can be constructed based on the literals occurring in B. (See
slides 9ev to 9evii.)

• Therefore, if S is unsatisfiable and hence has no model, the assumption is
false and applying the tableau rules to S leads to a closed tableau.

9evExample of a Saturated Tableau (ppt)

Given: b(c) ∃y.on(c,y) ¬b(x)∨¬g(x) ¬on(x,z)∨g(x)∨ ¬g(z)

Extensions by any other
instances (4 possibilities in all)
duplicate at least one literal in
the remaining open branch. Such
extensions are unnecessary.
Exercise : Check this is the case.

∃y.on(c,y)
b(c)
on(c,d)

¬b(c) ¬g(c)

g(c) ¬g(d)
¬on(c,d)

• Domain of H-model in the open
branch = {c,d}

• The atoms are on(c,d), b(c), so
these are True.

• All other atoms are false:
on(c,c), on(d,d), on(d,c), b(d), g(c),
g(d).

Check:
• Clearly b(c) and ∃y.on(c,d) are true.
• For each x, g(x) is false so
¬b(x)∨¬g(x) is true.
• For z = c, ¬on(x,z)∨g(x)∨ ¬g(z) is
true as g(c) is false.
• Similarly for z=d.

(Variables x,z are universally quantified and parameter is d)

Constructing a Model from an open branch in a
Saturated Tableau

9evi

• A H-interpretation is constructed with domain the set of terms built from
symbols occurring in L+∆', such that atoms in B are assigned true and all other
atoms are assigned false. ∆' is the subset of ∆ occurring in sentences in B

• Let S be the set of initial sentences using language L and parameters ∆.
• Suppose a standard tableau has been fully developed from initial sentences
S, as described on Slide 9eiv, and that there is a saturated open branch B.

• Let T be the set of sentences in B and M be a first order H-interpretation of
T with domain terms built from symbols in T and constructed as follows:
 Each atom in T is true in M; all other atoms are false in M.

• We show M is a model of T.
• Suppose not: then some sentence in T is false in M.
• Let X be the smallest sized sentence in T s.t. M makes X false.
• Whatever type of sentence X is, its being false leads to a contradiction:
(See next slide)

9evii

Constructing a Model from an open branch in a Saturated Tableau (contd)

• Let T be the set of sentences in B and M be a first order H-interpretation of T
with domain terms built from symbols in T and constructed as follows:
 Each atom in T is true in M; all other atoms are false in M.

• Let X be the smallest sized sentence in T s.t. M makes X false.

• X cannot be an atom, by construction.

• eg: case X is ¬ Y (Y atom) : If ¬Y is false in M, then Y is true. But then Y
occurs in T and closure would have occurred.

• eg: case X is A ∨ B : If A ∨ B is false in M then both A and B are false in M
and smaller than A ∨ B; but at least one of A or B is in T, contradicting that X is
the smallest false sentence in T.

• eg: case X is ∀xP[x] : If ∀xP[x] is false in M then P[t] is false for some domain
element t. But by construction P[t] occurs in T and is smaller than ∀xP[x]
(assume size is depth of parse tree of X).

• Other cases are similar.

Soundness:

When a free variable tableau closes, there may be free variables in it not yet
bound. These can be bound (consistently) to any ground term yielding a
ground tableau, which will still close. Then use Soundness of a standard
tableau.

Completeness (outline):

A closed standard tableau may be lifted to a tableau using free variables:

Each use of the standard ∀-rule is made into a use of the γ -rule, with a fresh
set of variables, and each closure then becomes one or more equations to be
solved by unification.

Since the tableau is closed, a unifier satisfying the set of equations derived in
this way exists and hence a most general unifier (mgu) exists also.

This mgu can be obtained by the unification algorithm in one attempt ("unify at
the end") or in a distributed attempt, corresponding to the different branch
closures ("unify as you go"). 9eviii

Soundness and Completeness of free variable tableaux

9fi

• Uses the original structure of knowledge - no need to convert to clausal
form and so no exponential expansion in presence of ↔ sentences;

• Extends to non-classical logics very easily - most non-classical automated
techniques use tableaux as they can mimic the semantics closely;

• Lends itself to linear reasoning - at each extension step made to a leaf L
use a sentence that closes one branch using L.
eg Logic Programming can be seen as tableau development;

• Can incorporate equality - we will see later how tableau incorporate
equality quite naturally

• Free variable tableaux may terminate without closure for satisfiable
sentences, when standard tableaux would be infinite;

• There are many refinements for free variable tableau using clausal data,
which are often derived from resolution refinements.

In Slides 10 we'll look at Model Elimination, the basis for many of them.

Benefits of the Tableau Approach 9fiiSummary of Slides 9
1. Semantic Tableau methods provide an alternative to resolution for theorem
proving. They are also based on refutation and for a given set of sentences S
attempt to demonstrate that S can have no models.

2. In the ``standard'' tableau method, rules for dealing with universal (∀)
sentences require substitution of ground terms for the bound variable. This is
avoided in the ``free variable'' tableau method; instead fresh variables are
substituted for bound variables, which are bound on branch closure using
unification.

3. In the ``unify-as-you-go'' development strategy (the only strategy covered
here) the bindings of free variables are immediately propagated to all
occurrences of the variables in the tableau. An alternative is the ``unify-at-the-
end'' development strategy, in which potential bindings for free variables are
recorded and on (potential) closure of all branches in the tableau are combined.
In effect, the difference between the two strategies is whether to combine
unifiers as they are generated, or to wait until all have been generated.

4.The tableau method is sound and complete. The free variable soundness and
completeness properties are derived from those of the standard tableau method.

9fiii5. The soundness property of tableau depends on the SATISFY property,
which states that, for a consistent branch, the tableau rules maintain
consistency in at least one descendant branch.

6. The completeness property depends on the notion of saturation, the
development of a tableau to include all possible applications of each rule in
every branch.

7. The tableau method has several benefits, including: it uses the original
structure of the data, can be extended to many logics such as modal/temporal
logic, can easily incorporate equality, and linear and many other refinements
can be defined for the tableau method.

8. If a tableau terminates finitely without closing every branch, then a model
can be found for any remaining open branches (possibly a different one for
each open branch). The slides showed how to construct the model for
standard tableaux. It is also possible to do so for free variable tableaux.

9. (OPTIONAL) There are several implementations of the tableau method. The
LeanTap approach uses Prolog and results in a very compact program. It
exploits Prolog's use of variables to implement the unfication and propagation
of free variables.

SSSTTTAAARRRTTT ooofff OOOPPPTTTIIIOOONNNAAALLL MMMAAATTTEEERRRIIIAAALLL
(((SSSLLLIIIDDDEEESSS 999)))

List of Non-resolution Proving Techniques
The LeanTap Theorem Prover

9gi

Various different techniques have been considered as suitable alternatives to
resolution and clausal form for automated reasoning. These include:
• Relax adherence to clausal form:
 Non-clausal resolution (Murray, Manna and Waldinger)
 Semantic tableau /Natural deduction but with unification (Hahlne,
 Manna and Waldinger, Reeves, Broda, Dawson, Letz,
 Baumgartner, Hahlne, Beckert and many others)
• Relax restriction to first order classical logic: Modal logics, resource logics
 (Constable, Bundy,Wallen , D'Agostino, McRobbie,)
 Add sorts (Walther, Cohn, Schmidt Schauss)
 Higher order logics (Miller, Paulson)
 Temporal logic with time parameters (Reichgeldt, Hahlne, Gore)
 Labelled deduction (Gabbay, D'Agostino, Russo, Broda}
• Heuristics and Metalevel reasoning:
 Use metalevel rules to guide theorem provers - includes rewriting,
 paramodulation (Bundy, Dershowitz, Hsiang, Rusinowitz, Bachmair)
 Abstractions (Plaistead)
 Procedural rules for natural deduction (Gabbay)
 Unification for assoc.+commut. operators (Stickel)
 Use models / analogy (Gerlenter, Bundy)
 Inductive proofs, proof plans (Boyer and Moore, Bundy et al)
 Tacticals / interactive proof / proof checkers, Isabelle (Paulson)

Considered in Part II (weeks 5-9 of the course) are Tableaux methods and rewriting for
equality.

Non-Resolution Theorem Proving

9giiLeanTap: A Free Variable Tableau Theorem Prover
%prove(currentFormula,todo,branchLits,freevars,maxvars)
%Conjunction case (alpha rule)
prove((A,B),UE,Ls,FV,V) :- !, prove(A,[B|UE],Ls,FV,V).
%Disjunction case - split (beta rule)
prove((A;B),UE,Ls,FV,V) :- !, prove(A,UE,Ls,FV,V),

 prove(B,UE,Ls,FV,V).
%Universal case - keep data all(X,Fm)
prove(all(X,Fm),UE,Ls,FV,V) :- !,

\+ length(FV,V),copy_term((X,Fm,FV),(X1,Fm1,FV)),
append(UE,[all(X,Fm)],UE1),
prove(Fm1,UE1,Ls,[X1|FV],V).

%Closure case
prove(Lit,_,[L|Ls],_,_) :-

(Lit = -Neg; -Lit = Neg) ->
(unify_with_occurs_check(Neg,L); prove(Lit,[],Ls,_,_)).

%Literal not matching case
prove(Lit,[N|UE],Ls,FV,V) :-prove(N,UE,[Lit|Ls],FV,V).

Formulas are in Skolemised negated normal form (negations next to atoms).

nnf(-(-(p=>q)=>(q=>p)), ((p,-q),(q,-p)))
nnf(-(((p=>q)=>p)=>p), (((p,-q);p),-p))
nnf(ex(Y,all(X,(f(Y)=>f(X)))), all(X,(-f(s);f(X))))
(The code generates all(X,(f(Y)=>f(X))) as Skolem term s)

:- op(400,fy,-),op(500,xfy,&),op(600,xfy,v),
op(650,xfy,=>), op(700,xfy,<=>).
nnf(Fml,NNF) :- nnf(Fml,[],NNF).
nnf(Fm,FV,NNF) :-

(Fm = -(-A) -> Fm1 = A;
 Fm = -all(X,F) -> Fm1 = ex(X,-F);
 Fm = -ex(X,F) -> Fm1 = all(X,-F);
 Fm = -(A v B) -> Fm1 = -A & -B;
 Fm = -(A & B) -> Fm1 = -A v -B;
 Fm = (A => B) -> Fm1 = -A v B;
 Fm = -(A => B) -> Fm1 = A & -B;
 Fm = (A <=> B) -> Fm1 = (A & B) v (-A & -B);
 Fm = -(A <=> B) -> Fm1 = (A & -B) v (-A & B)),!,
nnf(Fm1,FV,NNF).

nnf(all(X,F),FV,all(X,NNF)) :- !, nnf(F,[X|FV],NNF).
nnf(ex(X,Fm),FV,NNF) :- !,

copy_term((X,Fm,FV),(Fm,Fm1,FV)), nnf(Fm1,FV,NNF).
nnf(A & B,FV,(NNF1,NNF2)) :- !,
 nnf(A,FV,NNF1), nnf(B,FV,NNF2).
nnf(A v B,FV,(NNF1;NNF2)) :- !,

nnf(A,FV,NNF1),nnf(B,FV,NNF2).
nnf(Lit,_,Lit). 9giii

9givLeanTap Prover

The LeanTap theorem prover was developed by Bernard Beckert, Joachim Possega
and Reiner Hahlne. It was the first ``Lean'' theorem prover, meaning a ``very small
Prolog program'' that exploits Prolog unification in clever ways to implement a
theorem prover for first order logic. A different prover, but equally good, prover is
given in the optional part of Slides 10. It is called LeanCop, and both LeanTap and
LeanCop belong to the family of Lean provers. It is always impressive to see how
compact a theorem prover in Prolog can be.

For simplicity, LeanTap uses formulas in Skolemised Negation Normal Form
(NNF). This means that before trying to develop a tableau existential type quantifiers
are replaced by Skolem functions and negations are pushed inwards so they are next
to atoms; however, no distribution of ∧ over ∨, or ∨ over ∧, is applied. This sentence
structure allows to simplify the top level of LeanTap, so only conjunctions and
disjunctions, universal quantifers and literals need be considered. (LeanCop uses
clausal form, which is a sub-case of NNF – ie distribution of ∨ over ∧ is performed.)

Closure is checked for literals only. The Skolemisation step in `nnf' uses the name of
the formula being Skolemised as the new Skolem constant.

There are several websites covering LeanTap - just type it into Google and see!

9gv

Example queries to run:

F= (-h(a), all(X,(f(X);h(X))),all(Z,(-g(Z);-f(b))),
 all(Y,(-f(Y);-h(b))),all(X,(g(X);-f(X)))),
 prove(F,[],[],[],4)

nnf(-(-e)&(a & w =>p)&(i v a)& -p&(e =>-i & -m)&(-w =>m), F),
 prove(F,[],[],0)

1. Add write instructions so that information about the structure of the tableau is printed
out, including closure.

2. Explain details of universal and closure cases of prove and existential case of nnf.

3. Run other examples covered in slides and exercises.

What improvements could be made?
a) add a loop check. Note that (for example) h(X) and h(Y) do not form a loop - so must
be careful to match terms identically.
b) add a higher level predicate prove1 that calls prove recursively, each time increasing
the freevars limit by 1.
c) limit the depth of each branch instead of the number of freevars.

9gviMore Notes about LeanTap

The interesting cases in the program are for universal quantifiers and literals.

i) Case all(X,Fm): Note first that a limit is put on the total number of free variables
used in the tableau (argument maxvars). If this is not reached then a copy of the
formula Fm is made in which the current free variables are not copied, so they are
preserved across the tableau. Bound variable X occurrences are copied throughout.

ii) Case Lit in Fm: Either the literal causes closure by unification (with the occurs
check in place) with a complementary literal in branchLits, or it does not. In the
latter case the Lit is added to branchLits.

Conversion to NNF is carried out recursively as on Slide 9giii. The existential case
ex(X,Fm) introduces a Skolem term in a clever way. It instantiates X with the
formula Fm. Thus each unique exists term introduces a different Skolem formula,
which is dependent on the free variables in the formula Fm.

