
AUTOMATED REASONING

OPTIONAL SLIDES Appendix A2
(Tableau Extras)

CASE STUDY 1 - KE tableau
CASE STUDY 2 - Intermediate Lemma Extension
Model Generation (propositional prover)
RELATIONS between RESOLUTION and TABLEAU
 Completeness of Resolution via tableaux
 A very useful notation (chain notation)
 Relation of ME with linear resolution
The UNIFY - AT - END tableau development
Brief look at Parallel Model Elimination

KB-AR - 13

A2ai

These slides cover various topics about the tableau method, for which there isn't time in the
lectures. They're included for interest and are completely OPTIONAL! They discuss:

i) Case Study 1: The KE tableau prover; this alternative tableau method has just one splitting
rule - either P or ¬P - and has some theoretical interest, in that it has better complexity than
standard tableaux. It has not been investigated as much as ME tableau, especially at first order
level. It has similarities with the DP method and could be viewed as a first order version of the
Davis Putnam Procedure;

ii) Case Study 2: A variant of ME is the Intermediate Lemma Extension. This has some
similarities with Neg-HR, and is a tableau version;

iii) There is a useful alternative to Davis Putnam for propositional logic called Model
Generation. It is related to tableau, which allows to give a simple prof of its correctness;

iv) an alternative proof of the completeness of resolution using tableau;

v) a discussion of the relation between linear resolution and ME tableaux. Linear resolution is
a refinement in which each new resolvent is formed by resolving the previous resolvent with
either a given clause or another resolvent. The first step resolves two given clauses. This is
related to the extension step of Model elimination;

vi) The constrained development of model elimination tableaux allows for a concise notation
to represent an ME tableau as a list of literals, which in turn allows a whole search space to be
depicted in the plane (Chain Notation);

vii) Also included are some slides on Unify-at-end and parallel development of tableaux.

Appendix A2 – Tableau Extras

A2biCase Study 1: The KE Tableau Method
A first order implementation exists by Tomas Chrien (2013) (MSc project) (There are still
many extensions and improvements - a good project!)

The KE tableau method is more recent than other techniques, having been introduced only in the
last 15 years or so. (See "The Taming of the Cut", D'Agostino and Mondadori, and also Endriss: A
Time Efficient KE Based Theorem prover.) In the first order case there has been very little work
on practical theorem provers, so the example here is illustrative only. The KE rules can be viewed
either as generalisations of the Davis Putnam steps or as variations of ordinary tableau rules, trying
to retain much of the ME method, but for arbitrary sentences. There is just one splitting rule, but it
is not restricted to atoms. The non-splitting rules are similar to the DP steps which prune atoms,
and for clauses they are exactly the same. KE is more efficient than standard tableau, unless Re-
use (see Slide 10ciii) is included in tableaux development. In that case (for clausal form) KE-
tableaux can be simulated by ordinary ME-tableau +Re-use.

In the first order example on Slide A2bv it is appropriate to draw the universal quantifiers into a
prefix, but more generally, this may not be so. Similar benefits to those provided by universal
variables might be obtained if universal quantifiers are distributed as much as possible, but this
remains to be investigated, as does the possibility of eliminating non-essential backtracking. In the
example on A2bv the first step uses the (¬∧) rule, together with the free variable ∀ elimination
rule to derive ¬pr(n) from (4) and div(x2,x2). The next step anticipates the use of the(→) rule and
sets this up by a PB application using ¬(div(g(x1),x1) ...). In the second branch of the PB the(→)
rule is used several times, in combination with free variables.

The KE method is quite human oriented in the ground case. But it is quite hard in the first order
case because of the various ways that the (∀) rule can be combined with other rules. It tends to
give rise to much less branching than ME tableau.

A2bii

Case Study 1: KE-TABLEAUX (D'Agostino, Mondadori, Pitt)

• KE generalises Davis Putnam to first order sentences
• There is only one splitting rule - called PB (Principle of Bivalence)

• Although quite a lot of theory for KE-tableaux has been developed, there is
rather less on theorem proving techniques for it.
• KE is similar to Davis-Putnam, but with a more general splitting rule.
• KE can be simulated by standard tableau if the PB rule is added to the
standard ruleset. This can easily be shown to be sound by extending the
SATISFY property.
• For clauses, Re-use rule in ME also allows to simulate KE
• KE can simulate standard tableau (for Skolemised sentences, at least).

Other non-
splitting rules
as in standard
tableau

A → B
¬B

¬A

 A ∨ B
¬A

B

¬(A ∧ B)
A

¬B

A → B
A

B

Non-splitting
rules:

¬ A A

for any ground sentence APB rule
(ground):

A2biii

Given data:
1. a ∧ w → p 2. i ∨ a 3. ¬ w →m, 4. ¬ p 5. e → ¬ i∧ ¬ m 6. e

¬p
e
¬ i ∧ ¬ m (5, →rule)
¬i (∧rule)
a (2, ∨rule)

 ¬ (a ∧ w)
(¬∧rule) ¬ w
(∧rule) ¬m
(3, →rule) m

 []

a ∧ w (PB)
p (1, →rule)

 []

KE seems to be good for
propositional
tableaux.

The amount of
branching is generally
lower than for standard
tableaux

Example of KE

The PB rule is often used to introduce the second premise for the non-
splitting rules. e.g. see the use of PB on a ∧ w above.

PB rule
(non-ground):

for new free variables x
in sentence A

¬ A[x] A[x]

• The ∃-rule and ∀-rule are the same as for ordinary free-variable tableau;
• One method to deal with quantifiers is to draw them into a prefix and use free
variable tableaux rules. These are often combined with one of the two-premise
rules. See example on next slide.
• Little investigation of heuristic techniques for first order KE have been made to
date, so far as I'm aware. (Tomas Chrien's MSc project 2013 made a start.)
• Soundness and Completeness have been shown for the ground case.
• The KE-approach has proved useful for modal logics as well.
• Clausal KE is quite similar to Davis Putnam, effectively providing a first order
version of it.

First Order KE rules

A2biv

A is any first order formula or literal

eg ∃x(Px ∨ Qx), R(x1,y1), etc.

Given : (1) ¬(div(g(x),x) ∧ less(1,g(x)) ∧ less(g(x),x)) → pr(x)
(2) div(u,w) ∧ div(w,z) → div(u,z) (3) less(1,x)∧less(x,n)→div(f(x),x)∧pr(f(x))
(4) ¬(pr(y)∧div(y,n)) (5) div(x,x) (6) less(1,n)

div(x2,x2) (∀) (5)
¬ pr(n) (∀, ¬∧) (4)

¬(div(g(x1),x1)∧less(1,g(x1))
∧ less(g(x1),x1))
pr(x1) (1, ∀→)

x1==n

div(g(x1),x1) ∧ less(1,g(x1)) ∧ less(g(x1),x1)
⇒div(g(n),n) ∧ less(1,g(n)) ∧ less(g(n),n)
div(g(n),n), less(1,g(n)) ∧ less(g(n),n) (∧)
div(f(g(n)), g(n)) ∧ pr(f(g(n))) (3, ∀→)
div(f(g(n)), g(n)), pr(f(g(n))) (∧)

A2bv

(u,w,x,y,z are universally quantified)

div(u1,w1)∧div(w1,z1)
div(u1,z1) (2, ∀→)
¬ pr(u1) (4, ∀¬ ∧) z1==n

u1==f(g(n))

¬(div(u1,w1)∧div(w1,z1)) ⇒
¬(div(f(g(n)),w1)∧div(w1,n))
¬div(g(n), n) (¬ ∧) w1==g(n)

First Order KE example

(PB)

(PB)

Soundness and Completeness for Ground KE (Outline)

The soundness of ground KE is simple to show; it is sufficient to show the property
SATISFY for the non-splitting rules and the PB rule. SATISFY is obviously true for an
application of the PB rule (say for the sentence A), since the model of the branch before the
rule must assign either T or F to A; if it assigns T then the branch below A will still be
satisfiable and if it assigns F then the branch below ¬A will still be satisfiable. For the other
rules, consider the exemplar A, ¬(A∧B) ==> ¬B. If a model M satisfies a branch containing
the formulas A, ¬(A∧B), then M will clearly satisfy ¬B, the conclusion of the rule.

It is also quite easy to show correctness (soundness and completeness) in a manner similar to
that used for DP on Slides 1. This is not a coincidence, since KE is very similar to DP,
especially if all sentences are clauses.

We define the α-rules to be those rules which are α-rules of ordinary tableau, and the β-rules
to be the remaining non-splitting rules (e.g. A and ¬(A∧B) ==> ¬B). The minor sentence in a
non-branching KE rule application of the β-kind is the smaller sentence (e.g. A in the above
example rule). There are then basically 5 cases: a contradiction between a sentence and its
negation, no sentences left to develop in a branch, an application of an α-rule, a sentence S
used as the minor sentence in a β-rule application, and a PB application.

However, the proof similar to that used for DP requires the KE derivation to make all
applications of a β-rule using the chosen minor sentence at once. Since this is not necessarily
the normal or best way to make a KE derivation we'll give a different proof for completeness
for ground KE. See A2bvii.

A2bvi

Completeness for Ground KE (Continued)

Each sentence that occurs as a (sub)formula in the given data is a potential candidate for a
β-rule application and is called a given sub-formula. (Note that atoms occurring in a given
sentence are counted as given sub-formulas.)

An open branch of a ground KE tableau is called fully developed if every given sub-
formula in the branch, or its negation, occurs at a node in the branch and no further rule
applications are possible. Clearly, there is no need to use PB for any given sub-formula
that already appears in a branch.

Let S be a given set of sentences and suppose a KE tableau is found with a fully
developed open branch B. From this branch a model for S can be found in a similar way
to that described for standard tableau and shown to satisfy the sentences in the branch.
The proof for satisfiability is by contradiction from the asumption that some smallest
sentence in B is false. For example, suppose such a smallest false sentence was of the
form X∨Y. Then both X is false and Y is false. Since B is fully developed either X or
¬X is in B. If it is X then this contradicts the assumption that X∨Y is a smallest false
sentence. If it is ¬X then the (∨) rule would have derived Y, again a contradiction. The
other cases are similar and full details are left as an exercise.

Therefore, if S is an unsatisfiable set of sentences, then no fully developed open branch
can exist and the KE tableau must close. For the first order case the method is essentially
similar.

A reasonable way to develop a KE tableau is thus to use the α-rules and β-rules as much
as possible, only using PB to introduce the minor sentence for a β-rule application. The
amount of splitting is then kept to a minimum.

A2bvii

A2ci

 Given ¬Paa, ¬Pf(a)a ∨¬Paf(a), Pf(a)a ∨¬Q ∨Paa, Paf(a) ∨ Paa, Q ∨R, ¬R

In a similar way can derive Paf(a) by
using Paf(a) ∨Paa instead of
Pf(a)a ∨¬Q ∨Paa
(Called Intermediate Lemmas)

Intermediate Lemma Extension:
1. Select a positive literal from each
non-Horn clause as the conclusion
literal of that clause. Other positive
literals are called lemma literals.
2. Proceed as in Prolog - begin from
an all-negative clause, match with
"conclusion" literals and ignore other
positive literals that arise unless they
match the immediate parent.

Case Study 2: Generalising Prolog to arbitrary clauses

Step 1 : choose (and underline)
conclusion literals
Step 2 : derive lemmas.

Can derive Pf(a)a ∨ R from
above tableau: add ¬(Pf(a)a ∨ R)
and derive a closed tableau.

If positive literals Pf(a)a and R are
ignored then tree is complete

¬Paa

Paa Pf(a)a

|– Pf(a)a ∨ R

¬Q

Q R

Ground clause example

Step 3: Find lemmas Pf(a)a ∨ R and Paf(a).

Step 4 : Use these lemmas to form lemma R

Step 2/3 : Find a refutation.

A2cii

3. Either - find a refutation - no lemma
literals left as leaves;
 Or - derive a lemma - only lemma literals
left as leaves; form a lemma from the
disjunction of all leaf literals.
4. Deal with the lemma as in 1, then can try
an alternative path in 2, using new lemma.

¬Pf(a)a ¬Paf(a)

Pf(a)a Paf(a)R

Form lemma R.

¬R

R

Can piece together the various tableaux used to obtain lemmas to form a
closed tableau - it will not be a regular nor a ME tableau. In the example, in the
final refutation, replace use of lemma R by tableau used to derive R, then
replace use of other lemmas by tableaux used to derive them. (See A2ciii.)

Intermediate Lemma Extension (contd.):
Given: ¬G, G ∨¬Pxy ∨¬Pyx, Pf(u)u ∨Pua, Pvf(v) ∨Pva A2ciii

¬G

G ¬Px1y1 ¬Py1x1

Px1a Pf(x1)x1
Paa

Pf(a)a

⇒ ¬Px1a ⇒ ¬Pax1

x1==a⇒ Pf(a)a

Tableau 1
finding
lemmas.

Pf(a)a∨ Pf(a)a
factors to Pf(a)a

If lemma is L∨M (open branches ending in L and
M) then can close tableau by placing ¬(L∨M) ≡≡≡≡
¬L∧¬M as an initial sentence in the tableau. So
L∨M really is a lemma. e.g. Pf(a)a is implied by
tableau 1 and Paf(a) is implied by tableau 2.

¬G

G ¬Px3y3 ¬Py3x3⇒ ¬Pax3

Px3a Px3f(x3) Paa Paf(a)
x3==ay3==a ⇒ Paf(a)

Paf(a) ∨ Paf(a)
factors to Paf(a)

Tableau 2
finding lemmas.

General clause example

A2civ

Example of a more general lemma: open branches ending in P(x) and Q(y,x)
lead to a lemma ∀xy [P(x) ∨ Q(y,x)]. Adding ¬ ∀xy [P(x) ∨ Q(y, x)] to the initial
set of sentences, which Skolemises to the two facts ¬P(a), ¬Q(b, a) for new a
and b, will enable the tableau to close.

The method seems to be fairly
efficient:

In effect, many
sub-tableau of small depth are
joined together to form a large
tableau. (When a lemma is
used the tableau which derived
it could be used instead.)

Because the individual search
spaces are small the total
search is reduced.

Given: ¬G, G ∨ ¬Pxy ∨ ¬Pyx, Pf(u)u ∨ Pua, Pvf(v) ∨ Pva,
Lemmas: Pf(a)a, Paf(a) (found as on 11diii)

Use lemma 2
(Paf(a))

¬G

G ¬Px2y2
¬Py2x2⇒ ¬Paf(a)

Pf(a)a

x2==f(a)
y2==a

Use lemma 1
(Pf(a)a)
beneath
¬Px2y2.

Tableau 3 using lemmas

Paf(a)

A2cvIntermediate Lemma Extension (1):
The Intermediate lemma extension on slides A2c is a hyper-resolution (or Prolog)-like extension
for tableaux. (Don't confuse with other ME-extensions called hyper-tableaux - see TABLEAUX
conferences.) In any clause with at least one positive literal, exactly one positive literal is marked
as the conclusion literal. Other positive literals (if any) are called lemma literals. (If a clause has
exactly one positive literal it is the conclusion.) Each clause with no positive literals is called a
goal clause and can be used as a top clause. For uniformity, a new literal "G" can be appended to
each goal clause (then all given clauses will have at least one positive literal). The top clause is
then a new clause, ¬G. A ME-tableau is constructed from the top clause, in which the lemma
literals are initially ignored – branches in which they occur as leaf literals are not pursued. (An
extension allows the lemma literals to close a branch (if possible) by matching some earlier
negative literal in the branch. This reduces the length of the eventual lemma.)

If a tableau closes and there are no ignored lemma literals then this indicates that a refutation has
been found. Otherwise, if a tableau closes and there are ignored lemma literals, the lemma
literals are put into a new clause (i.e. the new clause is the disjunction of the lemma leaf
literals), which is added to the data and called an intermediate lemma. This clause will have only
positive literals, and one is chosen as the conclusion literal. Only intermediate lemmas that are
not subsumed need be added. Clauses that are subsumed by the new intermediate lemma can also
be removed. In case an intermediate lemma is retained, a new attempt at a refutation from ¬G
(or a top clause) can be made using all given clauses and all non-subsumed intermediate lemmas.

Factoring can be incorporated in two different ways. Either: (i) clauses can be (safe-factored)
before being accepted (either as a given clause or as an intermediate lemma), or (ii), a positive
literal that would otherwise be ignored may be matched with its parent (if possible). I prefer the
first method, since it allows for all safe-factors to be found regardless of which positive literal
might be selected as a conclusion literal. The second method is more dependent on the selection
of conclusion literals to detect safe-factors. However, it is simpler to implement.

A2cviIntermediate lemma Extension (2):

The process of forming lemmas and refutations needs to be controlled in some way, analogous to
setting depth limits in the standard ME procedure. The simplest is the following: All possible
ways of closing a tableau descended from ¬G are formed and all intermediate lemmas formed,
both upto some initial fixed depth. Then the process is repeated, but making use of the new
clauses as well. If no further tableaux can be formed at the given depth and no refutation has
been found then the process is repeated but to a greater depth.

Unfortunately, the depth may need to be increased even though new intermediate lemmas can be
found at the current depth. e.g. initial clauses include ¬Q, P(a), Q∨¬P(x)∨P(f(x)). Together, if Q
is the conclusion literal in the third clause, these allow for the lemmas P(f(a)), P(f(f(a)), etc. to be
formed, all at depth 2, even though none of these lemmas may be the ones required for a
refutation. To overcome this problem make a lemma contribute more than 1 to the depth-count
when it is used in a refutation. e.g. make a lemma count exactly 1+number of lemmas used in its
derivation. This is consistent with giving an initial clause a count of 1, since it uses no lemmas in
its derivation. Hence, at a given depth there is a maximum number of lemmas that can be used
and a finite number of possible refutations that could be made.

Once a refutation has been found, a complete tableau can be constructed from the various
tableaux used to form the lemmas. Beginning with the last used lemma, the use of each lemma is
replaced by the tableau that derived it. All its leaves will match in the same way that the lemma
did. This substitution of tableaux can be repeated until all lemmas have been replaced.

In the tableau on A2ci/ii, first the tableau for R is used beneath ¬R. This tableau uses the clauses
Pf(a)a ∨R and Paf(a), which are also lemmas. They are replaced by the tableaux which derived
them, the leaf literals that formed the lemmas now matching where those of Pf(a)a ∨R or Paf(a)
did. See diagram on A2cvii.

A2cvii

Soundness and Completeness of the Intermediate lemma Extension:

Next we show that the method of the Intermediate Lemma Extension is both sound and
complete (at the ground level). The ground level tableau can then be lifted to give
completeness and soundness at the general level in a similar way to that used for free variable
tableau on slides 9.

To show soundness, note that each generated lemma is associated with a sub-tableau. These
various sub-tableaux can be used in place of the corresponding lemma, as described on A2cvi.
Each closure that was possible using the conclusion literal of the lemma is still possible using
the tableau. For the example on A2ci/ii the final closed tableau is shown above.

Intermediate Lemma Extension: Reconstructing a closed tableau from lemmas

Replace tableaux
deriving lemmas
Pf(a)a ∨R and
Paf(a)

¬R

¬Pf(a)a ¬Paf(a)

Pf(a)a Paf(a)
R(1)
(2)

(3)

¬Paa

Paa Pf(a)a ¬Q

Q R

¬R

¬Pf(a)a ¬Paf(a)

¬ Paa

Paa Paf(a)
(1)

(2)

(3)

In closed tableau from 11dii with top clause
¬R and closure with lemma R replace R
with the tableau on 11dii that derived it

Completeness of the Intermediate Lemma Extension:

The proof is by induction on the number of lemma literals in the given clauses. Let S be a
minimally unsatisfiable set of clauses with a total of k lemma literals. (i.e. if any clause is
removed from S then S would become satisfiable.)

If k=0 then the clauses are Horn clauses and since S is unsatisfiable there will be at least one
all-negative clause in the set-of-support. Then there is a standard ME tableau starting from this
all-negative top clause that will close (by completeness of ME). It is not hard to show the
structure of the closed tableau is of the right form (and simulates a Prolog derivation from S).

If k>0, suppose as induction hypothesis (IH) that, for 0≤m<k lemma literals, there is always a
set of sub-tableaux formed using the method, which can be pasted together to give a closed
and soundly formed tableau. Let C be a clause with a lemma literal L and let C'=C-{L}.
Form S'=S-{C}+{C'} and S''=S-{C}+{L}. Each may be made minimally unsatisfiable such
that, for the case of S', C' is needed to show unsatisfiability, and in the case of S'' {L} is
needed. (Show this by using the assumption that S is minimally unsatisfiable). Since in both S'
and S'' the number of lemma literals <k, by IH there is constructable a well-formed
Intermediate Lemma tableau from an all-negative clause for S' and for S''.

Now take the constructed tableau for S' and put back L into C', forming C again. The tableau
for S’ was closed but will now give rise to the lemma L: in the derivation of the tableau for S’,
use of C (where before C' was used) will include using L, multiple occurrences all being
factored to give the lemma L. In the well-formed tableau for S'', this tableau deriving lemma L
can now be used wherever originally the clause L was used.

A2cviii

A2cix

For the example on A2ci/ii the choices made for L are:
R from Q ∨R, Pf(a)a from Paa ∨Pf(a)a ∨¬Q and Paf(a) from Paa ∨ Paf(a); lemma atoms are
non-conclusion atoms. There are 3. (Conclusion atoms are underlined.)

Assume C1 is Paa ∨ Paf(a), giving C1'= Paa. S1'={Q ∨R, ¬R, Paa ∨Pf(a)a ∨¬Q, Paa, ¬Paa,
¬Pf(a)a ∨¬Paf(a)}, which reduces to minimally unsatisfiable {Paa, ¬Paa},
and S1''={Q ∨R, ¬R, Paa ∨Pf(a)a ∨¬Q, Paf(a), ¬Paa, ¬Pf(a)a ∨¬Paf(a)}.

In S1'' choose as C2 the clause Paa ∨Pf(a)a ∨¬Q, and use the IH to form tableaux from
S2'={Q ∨R, ¬R, Paa ∨¬Q, Paf(a), ¬Paa, ¬Pf(a)a ∨¬Paf(a)} and S2''={Q ∨R, ¬R, Pf(a)a,
Paf(a), ¬Paa, ¬Pf(a)a ∨¬Paf(a)}.

For S2' choose C3=Q ∨R and S3'={Q, ¬R,Paa ∨¬Q, Paf(a), ¬Paa, ¬Pf(a)a ∨¬Paf(a)} and
S3''={R, ¬R}. The tableaux for S3'', S2'', S1' are fairly obvious. Tableau (i) below is for S3'.
After re-inserting L3=R into S3' can use it in closure for S3'', as shown in (ii). Two more
constructions are needed to complete the full tableau according to the proof. These are left as
an exercise for you.

Paa ¬Q

(i) Q

¬Paa

¬Paa

Paa

(ii)

¬Q

Q R

¬R

An Assessment of the Intermediate Lemma Extension:

In 2010 MSc student Rosa Gutierrez Escudero implemented various refinements for the ILE
and performed a thorough set of benchmarking tests using the TPTP (Thousands of problems
for theorem provers) Database. It turned out that the method generally performs no better than
Model Elimination as implemented in the best standard version of LeanCop (with Re-Use but
no backtracking restrictions). The method was tested on problems including equality, and
using various ways to reason with equality. (However, recently she has made the code more
efficient, so there may be an update.)

In one variant the lemma literals were not restricted to be positive atoms. Instead, it was
allowed for a uniform translation to be applied to literals in the initial clauses. That is, certain
literals could be transformed into their complements. (This is similar to the transformation
described for generalising hyper-resolution.) For some problems this proved to be a good
improvement. Whereas the normal ILE method restricts lemma literals to be atoms,
transforming (say) all P literals into their complements will not affect unsatisfiability, but may
affect the syntactic structure of the clauses and lead to a simpler derivation.

The ILE method might be expected to perform well – in order to construct a derivation it
searches many small search spaces for the lemmas. However, many lemmas are derived more
than once and therefore subsumed and hence redundant; this appears to be one reason that ILE
is not as good as might be expected. e.g. suppose the lemma A ∨ B is found at depth 3. Then
when additional lemmas are sought using any newly found lemmas, A ∨ B will be found for a
second time. Subsumption is important though, as if A in A ∨ B is marked as conclusion, the
next lemma may well be B, subsuming the previous lemma. Secondly, non-essential
backtracking was less helpful – the restrictions on forming a tableau are quite strict in ILE, so
alternative derivations were often not allowed.

A2cx

A2di

Example . Given: ¬B ∨ ¬M, M ∨ ¬L, M ∨ L ∨ ¬B, B ∨ R, ¬R

A: Form a tableau such that
 no literal occurs twice in a branch, and
 every internal node is matched by a leaf node.

B: Each clause with
leaf nodes only can be
resolved with the literal
just above. e.g. clause
labelled (1).

¬B ¬M

B R M ¬L

¬R B R

M L ¬B
¬R

(1)

C: The tableau is
adjusted by removing
the resolved literals
from the two clauses
involved. e.g. ¬B from
(1) and B from B∨R.

The remaining literals
still match above and the
tableau still closes. e.g.
Simulates formation of
resolvent M∨L∨R.

NOTE:
M∨L∨¬B can be removed from
beneath ¬B as M does not
match below. Then M∨¬L can
be removed similarly.

¬B ¬M

M ¬L

M L ¬B

B R

¬R

Completeness of Resolution using Tableaux
A2dii

¬B ¬M

B

M

M
(4)

¬L

L(5)

¬M

M M

1: M∨L∨¬ B + B∨R
 ⇒M∨L∨R
2: ¬R + B∨R ⇒ B
3: ¬R + M∨L∨R ⇒ M∨L

4: B + ¬B∨ ¬M ⇒¬M
5: M∨L + M∨ ¬ L
 ⇒ M∨M ⇒M
6: ¬M + M ⇒[]

After each step, it is still the case that no literal occurs twice in a branch
and all internal nodes are matched by a leaf node.

Also, the tableau is properly closed still, but using (some of) the original
clauses as well as any new resolvent. It may be necessary to factor.
e.g. Before step (6) must factor M∨M to M.

¬B ¬M

B M ¬L

R

¬R

M L

(3)

R

¬R(2)

A2diiiAnother Proof of Completeness for Resolution:
The slides A2d give a constructive proof that refutation by ground resolution (and
factoring) is complete, but this time based on the completeness of tableau systems. The
idea is to build a closed (ground) tableau from the given clauses and then to transform it
in small steps, each step corresponding to a resolution step. In Stage A a closed ground
regular tableau is formed with the properties that (i) every non-leaf node is
complemented by a leaf node and (ii) no branch contains a literal more than once. (Note
that a ME tableau would satisfy (i) and (ii) initially, but so do some other tableau as
well.) In order to achieve this, if n is a non-leaf node in clause C that is not
complemented, then C is removed from the tableau and the sub-tableau beneath n can
descend directly from its parent since no closures use n. (See example.) If n is a node
occurring twice in a branch, then the clause containing the occurrence at greater depth
can be removed and the sub-tableau beneath n can descend directly from its parent as any
closures can use the remaining occurrence.

In Stage B clauses are removed from the tableau starting from all-leaf clauses. The parent
of such a clause C must match with at least one literal in C, given that property (i) of
Stage A is true. Thus C can be resolved (possibly with factoring of the matching literal)
with the clause D containing its parent. The resolvent replaces D in the tableau. The
properties (i) and (ii) of Stage A are maintained and the tableau still closes. If there were
an exception, it would contradict that the property held before the resolution step.
Exercise: show these 3 things.

After none or more resolvents have been formed, a tree occurs of the form X(¬X) at a
node m, with one or more occurrences of ¬X(X) at child nodes of m. The corresponding
resolution step (including factoring) results in the empty clause. Since every step removes
at least 1 closure, the process will terminate.

A2eiRelation between ME tableau and Linear resolution refinements (1)

ME-tableaux are closely related to the linear refinement of resolution. This refinement is
outlined below. It was introduced long before free-variable ME-tableaux, as were the various
restrictions of the refinement. However, there is one particular restriction, called SL-
resolution, which corresponds exactly to free-variable ME-tableau. When the generalised
closure rule is included, then more general linear resolution proofs can be simulated by
tableaux. The relationship between the two systems is detailed further in the chapter notes on
clausal tableaux on my website, if you're interested.

Strategy of Linear resolution
First select an initial clause called top in the set of support of set of clauses S:
The set of support of S = {C |C ∈S and S-{C} is satisfiable}; i.e. each C in the set of support
is necessary to derive [].

Next resolve C with an input clause from S (possibly a second copy of top). Then, at each
subsequent step resolve the latest resolvent with either an input clause, or a previous resolvent
(called ancestor resolution). e.g. If the refutation is R0 , R1 , R2 ,, [], where R0 is the top
clause, then R2 is formed by resolving R1 with an input clause, or with R0, or with R1.

Linear resolution appears to be quite natural as it generalises top-down/goal-directed
reasoning. The search space is a tree, each branch being one possible linear derivation, so
efficient search methods and Prolog technology can be employed.
The top clause and subsequent resolvents in the example shown on the right in A2bv are:
Px ∨Q, Rx ∨Q, ¬Rb ∨Q, Q∨Q (i.e. Q), [].The ancestor resolution step is between ¬Rb ∨Q
and Rx ∨Q, deriving Q∨Q, which factors to Q.

A2eiiRelation between ME tableau and Linear resolution refinements (2)

Next we explain how a ME-tableau relates to a linear resolution derivation. The idea is that at
each ME-step the disjunction of the leaf literals in open branches is the latest resolvent of the
corresponding linear refutation. In the example on A2bv, after the first closure the leaf literals
of the open branches are Rx and Q, which are exactly the literals in the second resolvent in the
derivation, as given in A2bi. Similarly, after the second closure the leaf literals are ¬Rb and Q,
exactly the third clause in the derivation.

The various tableau steps correspond as follows:
i) Extension corresponds to resolution of an input clause with the latest resolvent, ie one that
has been extended in the branch before, choosing to resolve on a literal most recently
introduced into the resolvent.
ii) Closure corresponds to resolution of the latest resolvent with an ancestor resolvent, but in a
quite restricted way. If the previous resolvent used was R = L ∨ C, where L was the literal
resolved upon in R before, then R can only be used again by resolving on L. Moreover, the
same "instance" of R must be used. That means that both copies of R must use the same
instantiation, i.e. it is R used twice, not R and a copy of R. This is sufficient to ensure that the
2 occurrences of clause C in the resolvent that arise from the two steps using R will factor. In
fact, as long as this latter property holds, the other restriction can be relaxed; this would
correspond to using the generalised closure rule.

In a normal ME tableau, the restriction on closure is automatically ensured by the structure of
the tableau, since only one instance of each literal occurrence is allowed. On A2ev, notice that
in order to use Rx a second time with substitution b, it is necessary to use a second occurrence,
which brings with it a second occurrence of Q. The same effect can be obtained by allowing a
second instance of Rx (namely when x==b), as in the generalised closure rule of ME. As an
example, A2ev shows the linear refutation corresponding to the LH tableau of 11bi.

A2eiiiModel Elimination Tableau Simulation of Linear Resolution

Consider the tableau shown on A2eiv and the corresponding linear resolution derivation,
which is also shown. The top clause of the linear derivation is Fx1∨Hx1, which is the first
clause in the ME tableau. The first two steps resolve with input clauses and the resolvents of
each step correspond to the leaf literals of the open branches of the tableau. Notice that the
third step, which resolves with Fx1 for a second time and which derives Hb ∨Hb, is an
ancestor matching step in the tableau and that there is only one instance of Fx1, which is the
one enforced by the unifier of this step. The two occurrences of Hb appear just once in the
tableau. In the resolution proof the resolution is between the clause ¬Fb ∨Hx1 and a copy of
the ancestor Fx1∨Hx1, say Fx3∨Hx3, which yield Hb ∨Hx1. This factors to Hb and
corresponds with the tableau version.

The restricted linear resolution strategy, which simulates ME, only allows resolution with
the ancestor instance Fx1∨Hx1, not a fresh copy of Fx ∨Hx. It also restricts to using Fx1,
the literal prevously resolved upon. If that instance were to be used later in the derivation, it
is only the instance Fb ∨Hb that may be used. The unrestricted liner resolution strategy will
also allow ¬Fx2 to resolve with a fresh copy of the ancestor Fx ∨Hx. In the tableau, the
ancestor matching step (corresponding to using the copy) is made explicitly because Fx1
from Fx1∨Hx1 is not part of the "history" leading to ¬Fx2.

The generalised closure rule corresponds to using the copy to resolve with the current
resolvent R, as long as the copy of the remaining literals safely factors with the literals in R.
In general linear resolution the step of ancestor resolution is even more flexible - any literal
in the ancestor can be used, not just the literal that was used the first time the ancestor was
involved in a resolution step. More on this is in the `Chapter' notes if you're interested.

Fx1∨Hx1 ¬Fx ∨Gx}

{ Gx1∨Hx ¬Gx ∨ ¬Fb}

¬Fb ∨Hx1

Hb ∨Hb

Hb
⇓

¬Hb ∨ ¬Fx

¬Fx2Fx ∨Hx

Hx2¬Ha

x1==b

(x2==a) []

A2eivComparison of Linear resolution and ME for the clauses:
¬Ha , ¬Gx ∨ ¬Fb , ¬Fx ∨ ¬Hb , Gx ∨ ¬Fx, Fx ∨ Hx

¬F(x2)
x2==x1

Fx1 Hx1 ⇒ Hb

G(x2)
⇒Gx1 ¬Hb ¬ Fx2

¬Gx1
Fx2 Hx2¬Fb

x1==b

¬Ha
x2==a

See A2eiii for commentary on these derivations

A2evGeneralised closure rule of ME can simulate Linear Resolution

Rx ∨ ¬Px, Px ∨Q, ¬Ra ∨ ¬Rb, ¬Q

A ME tableau can be
seen as simulating a
special kind of linear
resolution strategy. In
the derivation on the
right the two copies of
Q derived from the
same parent literal will
factor.

This will always be the
case in the tableau if
variables in the branch
closing by the
generalised closure
rule do not occur in
any remaining leaf
literals.

A linear resolution
strategy.

Q
Px

¬Px Rx

¬Ra
x=a

¬Rb

Px Q

¬Px
¬Q

¬Q

=>Ra

Rx

Px ∨Q ¬Px ∨Rx

Rx ∨Q ¬Ra ∨¬Rb

Q ∨Q ¬Q

¬Rb ∨Q

[]

A2fiChain Notation for ME Tableaux:

For interest, slide A2fii shows a convenient representation for ME-tableaux, called the chain
notation, which is possible because such tableaux are developed from left to right. This
notation enables a complete search space to be represented in 2 dimensions.

A ME-tableau is maintained as a chain of literals. There are two types of entry, boxed and un-
boxed literals. The top clause forms the first chain with the leftmost literal the next to be
selected and all literals unboxed. A chain may
(i) be extended by a new clause,
(ii) be extended by ancestor matching or
(iii) be truncated,
corresponding, respectively, to tableau extension, ancestor closure or moving to the next
branch to develop.

(i) results in the matched literal becoming boxed and literals in the (added) matching clause
(not including the complementary literal) being appended to the left of the chain. (ii) results in
the leftmost literal being boxed if it unifies with a boxed literal to its right. (iii) removes
leftmost boxed literals.

A chain represents the remaining open branches of the ME tableau formed so far, which can be
re-constructed from the chain. Each unboxed literal is a leaf literal L of the tableau. Its
ancestors, forming the rest of the branch, are all the boxed literals to its right (the first boxed
literal to the right being the parent of L). Alternatively, all literals to the left of a boxed literal
are its decendants. The example on A2fii illustrates. Regular tableaux can be enforced by not
allowing a step that would result in an unboxed literal being duplicated by another boxed
literal to its right. Also, if an unboxed literal is duplicated by an unboxed literal to its right,
then the leftmost literal can be boxed, corresponding to the "merge" operation.

A2fii

¬B∨ ¬M, M∨ ¬L,
M∨L∨ ¬B, B∨R, ¬R

top clause ¬B¬M

extension R ¬B ¬M

extension R ¬B ¬M
truncation ¬M
extension L¬B ¬M

extension M L ¬B ¬M
ancestor
matching M L ¬B ¬M

truncation ¬B ¬M

extension R ¬B ¬M

extension R ¬B ¬M
truncation []

¬B

B R

¬R

¬M

M L ¬B

¬L M

B R

¬RRegularity: If a literal occurs in a chain
twice, the leftmost unboxed, the right
occurrence boxed, the leftmost indicates
a duplication.

CHAIN NOTATION - A handy shorthand

Merging: If a literal
occurs in a chain twice,
both times unboxed,
the leftmost can be
merged with the right
copy.

Model Generation Procedure (MG):

Another procedure appropriate for propositional clauses is model generation (MG), which is a
special case of the tableau method. MG is easy for humans to use as it is more restricted than
DP, which you saw in Slides 1. Slides A2 give some examples of MG and a correctness proof.

The MG procedure attempts to build partial models. It constructs a tree in which each branch
tries to maintain a partial model of the initial sentences (but in a different way to DP).

The tree built by the MG procedure for an initial set of clauses S consists of nodes each labelled
by an atom. There are 2 kinds of branches, called open and closed. The atoms in each open
branch B give a model of the set of clauses processed in B; when all of S have been processed
in an open branch B then the branch is called completed and the nodes in B give rise to a
(partial) model of S. A closed branch B is also called completed and indicates that the atoms in
B cannot be extended to be a model of S (i.e. they make some clause in S false).

Let closed branches be labelled by false and completed open branches be labelled by true. Then
the given clauses S have no model if the disjunction of all labels in a tree in which all branches
are completed is false. There is a model if the disjunction is true, as at least one branch must
then have been completed and open.

Proof of the correctness of the MG procedure uses notions of tableaux.

A2gi

A2gii

Model Generation Example (tree form) (Rules on A2giii)

Given clauses S : LK, ¬L¬K, ¬LM, ¬MK, MR (ie L∨K etc.)
Checks: no tautologies and no subsumed clauses, (initial checks)
 at least one negative literal (step 1)
 MG(S,{ }) (ie the branch is empty)

Choose LK (step 2)

 MG([¬L¬K, ¬LM, ¬MK, MR],{L})
Choose ¬LM (step 2)

MG([¬L¬K, ¬MK],{L,M})
Choose ¬MK (step 2)

MG([¬L¬K],{L,M,K})
choose ¬L¬K

return False (step 3)

 MG([¬L¬K, ¬LM, MR],{K})
Choose MR (step 2)

MG([¬L¬K],{K,M})
return True (step 4)
Model={K,M,¬L}
(Must make L False
as K already True)

MG(([¬L¬K, ¬LM],{K,R})
return True (step 4)
Model={K,R,¬L}

Return (False or True or True) =True- hence there's a model

L

M

K

K

M R

A2giiiModel Generation Procedure

MG is initially called with S=given clauses and B= [].

procedure MG(S,B): boolean
%S are clauses still to make true and B is the branch (model) so far
1. If no clause in S contains a negative literal then return true.
 (B is a partial model of the initial clauses)

2. If S contains a clause C with ≥1 positive literals such that for all negative
literals ¬L in C (if any), L occurs in B,
 then return disjunction of MG(S(Ai),B+Ai) , for each positive literal Ai in C,
 where S(Ai) = S - {X|X in S and X made true by assignments in B+Ai}

3. If S contains a clause C with only negative literals such that for all literals
¬L in C, L occurs in B, then return false.
 (B makes C false)
4. If none of 1, 2 or 3 occurs then return true.
 (Every remaining clause has ≥1 literal ¬L, where L is not in B)

MG(S,B) halts with true if S+B has a model and returns a partial model that
includes B (ie makes atoms in B true) and which can be extended to a
complete model for S+B (see Notes on the procedure).

MG(S,B) halts with false if S +B has no models.

procedure MG(S,B): boolean
1. If no clause in S contains a negative literal return true.
Note1: B satisfies all clauses so far removed from the original argument S. B can be
made into a model of the remaining clauses by assigning true to any atoms not yet
assigned, since they either occur positively in S, or do not occur at all. (Covers the
case when S is empty.)
2. If C = E ∨ D (where all literals Ai in E are positive and ¬Lj in D are negative) is in
S and for all ¬Lj in D, Lj is in B, then return disjunction of MG(S(Ai),B+Ai) , for
each Ai in E
Note2: The branches of the form B+Ai extending B are the only ways to make C
true. Can remove any clauses in S also made true by B+Ai (for the Ai branch)
3. If C in S has only negative literals and for all literals ¬Li in C, Li is in B, then
return false.
Note3: B cannot be extended to make C true as it already makes C false.
4. If none of 1, 2 or 3 occurs then return true.
Note4: Every remaining clause in S has ≥1 unassigned negative literal ¬L. Assign
false to all such L to make the remaining clauses true. Can assign either true or false
to any remaining atoms in the language not yet assigned.

A2givSome Notes about MG
These notes are to give you some intuition as to why the MG method works. You can
assume there are no tautologies or subsumed clauses at the start and that all identical
literals have been merged.

Example:
{LK, ¬L¬K, ¬LM, ¬MK, MR} (a slightly different tree than that shown on A2gii)

(Step 2) Choose MR (could also have chosen LK instead as on Slide 2bii).
Return MG([LK,¬L¬K, ¬MK], {M}) or MG([LK,¬L¬K, ¬LM, ¬MK], {R});
i.e. start a tree with two branches.
Consider the first disjunct and (Step 2), clause ¬MK.
Return MG([¬L¬K], {M,K}). ie still to make ¬L⁄¬K true

(Step 4) return true - assign false to L.
Check that {M,K,¬L} is a (partial) model for the initial clauses.

If the second disjunct had been chosen, then apply (Step 2) and clause L⁄K and return
MG([¬L¬K, ¬LM, ¬MK], {R,L}) or MG([¬L¬K, ¬LM], {R,K});
i.e. extend the second branch of the tree by two branches.

The first disjunct will eventually return false (show this yourself)
and the second will return the model {R,K,¬L}.
Check that {R,K,¬L} is a (partial) model for the initial clauses.

A2gv

Exercises:
1)Use MG on the "three little girls" problem.
2) Consider how a purity rule might be included into MG
3) Can you suggest any efficiency short cuts for MG?

The data

(1) C(d) ∨ C(e) ∨ C(f) One of the threee girls was the culprit
(2) C(x) → H(x) { C(d) → H(d), C(e) → H(e), C(f) → H(f) }
 To convert into propositional form
(3) ¬(C(d) ^ C(e))
(4) ¬(C(d) ^ C(f))
(5) ¬(C(f) ^ C(e))
 Only one of the three girls was the culprit
(6) C(d) ∨ H(d) ∨ ¬C(e) (Dolly's statement negated)
(7) C(e) ∨ C(f) ∨ ¬(C(e) → (C(d) ∨ H(d))) (Ellen's negated)
(8) C(f) ∨ ¬H(d) ∨ ¬((H(d) ^ C(d)) →C(e)) (Frances's negated)

 "The three little girls" problem again! A2gvi

This time we’ll try to find a model and return True (and we hope the model
will make C(f) true).

We convert to clauses and can remove any tautologies or subsumed clauses
at the start. Also merge identical literals

(1) C(d) ∨ C(e) ∨ C(f) (2a) ¬C(d) ∨ H(d) (2b) ¬C(e) ∨ H(e)
(2c) ¬C(f) ∨ H(f) (3) ¬ C(d) ∨ ¬C(e) (4) ¬ C(d) ∨ ¬C(f)
(5) ¬ C(e) ∨ ¬C(f) (6) C(d) ∨ H(d) ∨ ¬C(e) (7a) C(e) ∨ C(f) ∨ C(e)
(7b) C(e) ∨ C(f) ∨ ¬C(d) (7c) C(e) ∨ C(f) ∨ ¬ H(d) (8a) C(f) ∨ ¬H(d) ∨ H(d)
(8b) C(f) ∨ ¬H(d) ∨ C(d) (8c) C(f) ∨ ¬H(d) ∨ ¬C(e)

Solution to "The three little girls" by MG A2gvii

Merge literals in (7a) to obtain C(e) ∨ C(f) and remove (8a) (tautology);
(7a) subsumes (7b), (7c), (1);

call MG([2a, 2b, 2c, 3, 4, 5, 6, 7a, 8b, 8c], []);
Apply (Step 2) on 7a (C(e) ∨ C(f)); evaluate
MG([2a, 2b, 2c, 3, 4, 5, 6, 8b,8c], [C(e)]) (i) or MG([2a,2b,2c,3,4,5,6], [C(f)]) (ii);

In (i): apply (Step 2) to 2b and call MG([2a,2c,3,4, 5, 6,8b, 8c], [H(e), C(e)]);
Apply (Step 2) to 6 and evaluate
MG([2a,2c,3,4, 5,8c], [C(d), H(e), C(e)]) or MG([2c,3,4,5,8b, 8c], [H(d),H(e), C(e)]);
Both eventually return false.

In (ii): apply (Step 2) to (2c) and call MG([2a, 2b, 3, 4, 5, 6], [H(f), C(f)]);
Apply (Step 4) to return true; get the partial model [H(f), C(f), ¬C(d), ¬C(e)].
H(e) and H(d) can be either true or false.

A2gviii

• Similar to the tableau method MG looks for models in each branch

Model Generation (MG) as a Tableau refinement

Example
¬p e ¬e ∨ ¬c ¬a ∨ ¬w ∨ p w ∨ m i ∨ a ¬e ∨ ¬m

• Top clause is always positive

• Can extend a branch by clause
C as long as negative literals in C
(if any) are complemented in the
branch

•All literals in the MG tree (solid
lines) are positive

• Leaf literals, in the tableau,
(dotted lines) are negative literals

• Differences are mainly cosmetic

e

w
m

¬e ¬mi a

¬e ¬i

¬a
¬w p

¬p
A2gix

Can we perhaps use the soundness and completeness properties of tableau to
show similar properties for MG? Yes, we Can!

Correctness of MG using correctness of Tableaux (1)

Soundness is the easiest
If a MG tree for clauses S returns
False, then S |= ⊥

If there is a closed tree, it must be
because all branches end by using a
negative clause, where all its literals
are complemented.

The implicit tableau would also be
closed, and so we use Tableau
Soundness to conclude S |= ⊥.

e

w
m

¬e ¬mi a

¬e ¬i

¬a
¬w p

¬p

Completeness uses finiteness of MG tree
For each open branch B of a MG tree
We know that:
All clauses with no negative literals are used
All unused clauses have negative literals

if B were to be extended by any clause
with negative literals not yet used in B,
there is one extended branch of B
which remains open, since all such
clauses have one negative literal not
matched in B

The open branch is saturated and will
yield a model

A2gx

Correctness of MG using correctness of Tableaux (2)

Example: Remove i ∨ a
Open branch (in tableau version of MG) is {e, w, ¬i, ¬a, ¬p}
Note - dotted lines are not part of MG tree which ends at w

e

w
m

¬e ¬m
¬e ¬i

¬a
¬w p

¬p

If (ground) MG tree is developed left -> right

And current open branch includes atoms in an
 open branch on its right (still to develop)

Then can abandon current open branch

See diagram:

If branch containing C (and atoms in X) has no
 model, nor will branch containing {A, B, C}
 and atoms in X have a model

If branch containing C and X does have a model
 no need to search branch {A,B,C} and X

A2gxiShort cut for MG

Question:
Can MG method be generalised to first order clauses?
Consider case when signature has no function symbols

Either: use analogy with free variable tableau
Or: implicitly maintain ground instances of each clause

A
C

C

Atoms X

B

A2hi

How else could the free variable method be systematic?
The ME approach is "unify as you go"
What about "unify at the end"? How could tableau development be controlled?

Possibilities for controlling Unify-at-the-end:
• Restrict total no. of clause instances over all branches / over each branch,
or number of instances of each clause over all branches / over each branch.
• Likely to get many literals in a branch that cannot possibly unify; the
branches of which they are a part can be pruned.

e.g.
• If only one occurrence of Hx in a branch then no need for two instances of
a clause containing ¬H(y), as they would have to be the same.
• If no copies of Hx in a branch then no use for ¬Hy.

Good/bad points of Unify-at-the-end:
• If not many quantifiers "unify at end" may be better.
• May only be one binding for a particular branch. Selecting it can restrict
unifiers in other branches.
• May be able to close branches without unifying. No backtracking (over
those branches).
• May have many unifiers in a branch; all have to be tried.

Comparison between Unify-at-the-end and Unify-as-you-go in ME tableaux

An example of this approach is shown on Slide A2 div

A2hiiConstructing Free Variable Tableaux

When constructing a free variable tableau, you may do it in one of two ways, which could be
called "unify-as-you-go", or "unify-at-the-end". Slides 9-11 used the unify-as-you-go method
and the alternative approach to closure is shown on Slides A2hi/iv: instead of closing each
branch "as you go" and propagating the bindings across the whole tableau, it is noted when a
branch can close and what the corresponding binding is, but no propagation takes place.

The tableau on Slide A2hiii is constructed using "unify-at-the-end". In the construction, if a
branch can be closed by unifying two complementary literals, then it is marked as possibly
closed. All possible unifiers that may lead to closure can be recorded as a label of the branch.
When every branch has such a potential closure, a single unifier must be constructed using one
unifier from the label of each branch in the tableau. For the example on A2diii it results in the
combined unifier (ie unify the individual unifiers) {x2==w1==g(n), x1==y1==x3==z1==n,
u1==f(g(n)), y2==f(g(n))}. If it is not possible to construct a single unifier, then a different set
of closures must be found (which may involve further extending the tableau) and another
combined unifier sought.

This is in contrast to the "unify-as-you-go" kind of construction, illustrated on Slide 9civ, where
whenever a closure is made that requires a binding to be made to one or more free variables,
the substitution is applied to all occurrences in the tableau of those newly bound variables. This
guarantees consistency of the bindings as the tableau is constructed. Only one binding may be
made to any free variable.

The unify-as-you-go approach is useful for most applications, especially those using data
structures, when it may be necessary for a piece of data to be used many times. If it is known
(or quite possible that) each sub-sentence of each sentence is to be used only once or a very few
times, the unify-at-the-end approach can be a reasonable one.

(1) div(x,x), (2) less(1,n), (3) div(u,w) ∧ div(w,z) → div(u,z)
(4) ¬(div(g(x),x) ∧ less(1,g(x)) ∧ less(g(x),x)) → pr(x)
(5) less(1,x)∧less(x,n)→div(f(x),x)∧pr(f(x)) Show ∃∃∃∃y (pr(y) ∧∧∧∧div(y,n))

A2hiii

¬∃y (pr(y)∧div(y,n))
¬(pr(y1) ∧div(y1,n))

div(g(x1),x1) ∧ less(1,g(x1)) ∧ less(g(x1),x1)
pr(x1)

div(f(x2), x2)
pr(f(x2))
¬ (pr(y2)) ∧div(y2,n))

div(u1,z1)

¬ less(1,x2)

¬ less(x2,n)

x2==g(x1)

x2==g(x1)
x1==n
(or x2==1 is
possible)

¬ div(u1,w1)
¬div(w1,z1)u1==f(x2)

w1==x2 z1==x1
w1=g(x1)

¬ pr(y2)

¬ div(y2,n)

y2==f(x2)

¬ pr(y1) ¬ div(y1,n)
y1==x1

y1==n
x3==n

div(x3,x3)

y2==u1,
z1==n

Gives: { x2==w1==g(n), x1==y1==x3==z1==n, u1==y2==f(g(n))}

Free variable rules
Unify at the end

A2hivE.g. Given: Fxa ∨Fg(x)x , Fxa ∨Fxg(x), ¬ Fxa ∨ ¬ Fxz ∨ ¬ Fzx

Fx1a Fg(x1)x1

Fx2a Fx2g(x2) Fx3a Fx3g(x3)

¬Fx4a

¬Fx4z1

¬Fz1x4

¬Fx5a

¬Fx5z2

¬Fz2x5

¬Fx6a

¬Fx6z3

¬Fz3x6

¬Fx7a
¬Fx7z4

¬Fz4x7

Assume at most one
instance of each clause will
be used in each branch.

A successful unification
is x4, z1, x1 all bound
to a ; i.e. didn't need
Fx2a ∨Fx2g(x2) in LH
branch - it can be
removed - so only need
one of the copies of
¬Fxa ∨ ¬Fxz ∨ ¬Fzx

x6 bound to x3 and z3
and x3 bound to a;

x7 bound to g(a), z4
bound to a.

• Sections of the tableau (indicated by
dotted lines) can be developed in parallel.
• If the tableau is ME style then
possibilities for re-use can be anticipated:
eg if S occurs in closure below branch (ii)
it can be closed in the same way as the
closure below S in branch (i). Anticipate
this by adding ¬S to branch (ii).

A2hvParallel ME : Propositional case

• Each branch of a clausal tableau
can be distributed to a separate
thread, or process. This is called
and-parallelism as every branch
must close for a refutation.

• This is different from or-
parallelism in which each process
is instead given a branch of the
search space. eg in the tree on the
left, if KLM (ie K∨L∨M) matched
with more than one clause (as it
does here: KLM matches with given
clauses ¬KST and ¬K¬S), then
there would be two branches of the
search space. Process1 is given
the search space using ¬KST and
process2 the search space using
¬K¬S. If process2 finished before
process1 then process1 can be
terminated.

K L M

¬K S T

¬S ¬K

¬S
¬K ¬K

¬L

(ii)
(i)

Parallel ME: First Order case A2hvi

• To cope with potentially infinite tableau in the and-parallel development,
each section is developed to a fixed depth. Failure to find a proof causes the
depth to be increased for a second attempt.
• Shared (ie non-universal) variables pose a problem:

e.g. Given:
¬Pxy ∨ ¬Pyx, Pf(u)u ∨ Pua, {Pvf(v) ∨ Pva

Pf(u1)u1 Pu1a

• Values of u1 must be reconciled
between two processes.
• Pu1a can close with u1==a. It
can also close with u1==f(a).
Q: Are there any more values?
• Within a finite depth the number
of values will be finite.
• Pf(u1)u1 can also close
(eventually) with u1 ==a.
• Each solution is passed up to
the parent process to be
reconciled.
• Only bindings mentioned in
ancestor nodes are retained.

¬Px1y1
u1==x1
y1==a

¬Py1x1

u1==y1
x1==a

Reconcile: obtain
u1==x1==y1==a;
Retain u1==a.

• If u1 were
universal, then
can use a
technique
similar to the
generalised
closure rule.

A2hviiParallel Clausal Tableau Development:

Slides A2hv/vii illustrate some possibilities for and-parallel execution within a
clausal tableau. Each branch, called a section on A2hv, can be given to a separate
processor. It's possible to anticipate some possible cases for re-use as shown on the
slide.

The first order case is more complex as bindings must be preserved across branches
for the shared (ie non-universal) free variables. One method is for each branch
below a node n to be evaluated independently, finding as many bindings as possible
for the variables occurring in the literal at n (to some max. depth to guarantee
termination). The bindings are then reconciled (i.e. combined) at the node n with
those from other sibling branches of n (i.e. only bindings which belong to the
solution set of every sibling branch are retained, possibly further instantiated).
Finally, only bindings to variables occurring in an ancestor of n need be kept for
further propagation.

E.g. let ground P occur at n's parent, where n matches with P and let n's siblings be
Q(x1) and R(x1). Although x1 must be reconciled with some binding, the particular
binding is not relevant to the parent of n, unless x1 occurs elsewhere in the tableau.
As this is not the case, the empty binding would be retained to pass back up the
tableau. However, notice that the following circumstance could occur: x1 is bound
in another branch to some non-universal variable z in some ancestor of n, say
x1==z, and also to x1==a, then the reconciled binding z==a is relevant, since z
occurs in an ancestor of n. If all reconciliations fail, then no bindings are retained.

A2hviiSummary of Optional Appendix 2
1. The KE prover is an alternative to ME with one splitting rule only. KE is
computationally more efficient than standard tableaux.

2. The Intermediate Lemma Extension imposes restrictions to reduce the search space,
but this is offset by requirement for more subsumption tests. It is related to hyper-
resolution.

3. The completeness of resolution can be shown using tableaux. No doubt, by
controlling the style of tableau formed - e.g. ordering use of clauses in any branch –
specific sorts of resolution proofs can be derived.

4. ME tableau are related to linear resolution. The correspondence imposes restrictions
on the linear resolution, which is partially relaxed if the generalised closure rule is used.

5. A useful chain notation exists to represent tableau as a list of boxed and unboxed
literals.

6. The Model Generation (MG) method for testing satisfiability of propositional clauses
is good for humans, but less well investigated than DP in optimised implementations.
MG returns True (and a partial model) for given clauses S if there is one. It returns
False if there are no models of S. The returned model (if any) can be extended to all
atoms by assigning T or F to unasigned atoms.

7. Different unification regimes can be employed in ME tableau, such as ``unify-as-you-
go'', or ''unify-at-the-end''.

8. With care ME tableaux can be evaluated in parallel.

