AUTOMATED REASONING

OPTIONAL SLIDES Appendix A2
(Tableau Extras)

CASE STUDY 1 - KE tableau
CASE STUDY 2 - Intermediate Lemma Extension
Model Generation (propositional prover)
RELATIONS between RESOLUTION and TABLEAU
Completeness of Resolution via tableaux
A very useful notation (chain notation)
Relation of ME with linear resolution
The UNIFY - AT - END tableau development

Brief look at Parallel Model Elimination
KB-AR - 13

Appendix A2 — Tableau Extras A2ai
These slides cover various topics about the tableau method, for which there isn't time i
lectures. They're included for interest and are completely OPTIONAL! They discuss:

i)_Case Study 1: The KE tableau prguéis alternative tableau method has just one split
rule - either P or =P - and has some theoretical interest, in that it has better complexity
standard tableaux. It has not been investigated as much as ME tableau, especially at f
level. It has similarities with the DP method and could be viewed as a first order versio
Davis Putnam Procedure;

ii) Case Study 2A variant of ME is thdntermediate Lemma Extensiofhis has some
similarities with Neg-HR, and is a tableau version;

iii) There is a useful alternative to DavigtRam for propositional logic callédodel
Generationlt is related to tableau, which allows to give a simple prof of its correctness;

iv) an alternative proof of the completeness of resolution using tableau;

v) a discussion of the relation between linear resolution and ME tableaux. Linear resoli
a refinement in which each new resolvent is formed by resolving the previous resolven
either a given clause or another resolvent. The first step resolves two given clauses. T
related to the extension step of Model elimination;

vi) The constrained development of model elimination tableaux allows for a concise no
to represent an ME tableau as a list of literals, which in turn allows a whole search spa
depicted in the plane (Chain Notation);

vii) Also included are some slides on Unify-at-end and parallel development of tableau

Case Study 1: The KE Tableau Method A2bi
A first order implementation exists by Tomas Chrien (2013) (MSc project) (There are still
many extensions and improvements - a good project!)

The KE tableau method is more recent than other techniques, having been introduced only
last 15 years or s§See "The Taming of the Cut", D'Agostino and Mondadori, and also Endr
Time Efficient KE Based Theorem provdn)the first order case there has been very little wc
on practical theorem provers, so the example here is illustrative only. The KE rules can be
either as generalisations of the Davis Putnam steps or as variations of ordinary tableau rul
to retain much of the ME method, but for arbitrary sentences. There is just one splitting ru
is not restricted to atoms. The non-splitting rules are similar to the DP steps which prune a
and for clauses they are exactly the same. KE is more efficient than standard tableau, unle
use (see Slide 10ciii) is included in tableaux development. In thatfoaska(sal form) KE-
tableaux can be simulated by ordinary ME-tableau +Re-use.

In the first order example on Slide A2bv it is appropriate to draw the universal quantifiers ir
prefix, but more generally, this may not be so. Similar benefits to those provided by univer:
variables might be obtained if universal quantifiers are distributed as much as possible, bu
remains to be investigated, as does the possibility of eliminating non-essential backtrackin
example on A2bv the first step uses the)(rule, together with the free variakileelimination
rule to derive —pr(n) from (4) and div(x2,x2). The next step anticipates the use -of) thi¢ and
sets this up by a PB application using =(div(g(x1),x1) ...). In the second branch of the RPB tt
rule is used several times, in combination with free variables.

The KE method is quite human oriented in the ground case. But it is quite hard in the first
case because of the various ways that@)eule can be combined with other rules. It tends tc
give rise to much less branching than ME tableau.

Case Study 1: KE-TABLEAUX  (D'Agostino, Mondadori, Pitt)

» KE generalises Davis Putnam to first order sentences
 There is only one splitting rule - called PB (Principle of Bivalence)

A-B A-B AOB -(AOB) Other non-

Non-splitting -B A -A A splitting rules
rules: as in standard
-A B B -B tableau
PB rule /\ for any ground sentence A
(ground):
- A A

» Although quite a lot of theory for KE-tableaux has been developed, there is

rather less on theorem proving techniques for it.

» KE is similar to Davis-Putnam, but with a more general splitting rule.

» KE can be simulated by standard tableau if the PB rule is added to the

standard ruleset. This can easily be shown to be sound by extending the

SATISFY property.

 For clauses, Re-use rule in ME also allows to simulate KE

» KE can simulate standard tableau (for Skolemised sentences, at least).
A2bii




Example of KE A2biii

Given data:
l.alw-p 2i0a 3.-w-m, 4-p 5e-=-iO-m 6.e

-p
e
sid-m (5, -rule)
;' ((2D rgﬁ)le) KE seems to be good for
propositional
S tableaux.
- (a0w) aOw (PB)
(-Orule) -w p (1, »rule)  The amount of
(Crule) -m - branching is generally
(3, -rule) m (] lower than for standard
_______ tableaux

The PB rule is often used to introduce the second premise for the non-
splitting rules. e.g. see the use of PB on a 0w above.

First Order KE rules A2biv

PB rule A is any first order formula or literal

(non-ground): S AN Al

for new free variables x
in sentence A

eg (x(Px OQx), R(x1,y1), etc.

e The Crule and O-rule are the same as for ordinary free-variable tableau;

* One method to deal with quantifiers is to draw them into a prefix and use free
variable tableaux rules. These are often combined with one of the two-premise
rules. See example on next slide.

« Little investigation of heuristic techniques for first order KE have been made to
date, so far as I'm aware. (Tomas Chrien's MSc project 2013 made a start.)

* Soundness and Completeness have been shown for the ground case.
« The KE-approach has proved useful for modal logics as well.

 Clausal KE is quite similar to Davis Putnam, effectively providing a first order
version of it.

Given: (1) =(div(g(x),x) Oless(1,9(x)) Oless(g(x),x) ) — pr(x)
(2) div(u,w) Odiv(w,z) - div(u,z) (3) less(1,x)ess(x,n) - div(f(x),x)Opr(f(x))
(4) =(pr(y)ddiv(y,n)) (5) div(x,x) (6) less(1,n)
(u,w,x,y,z are universally quantified)
div(x2,x2) (0) (5)
=pr(n) (0,-0 (4
(PB)

div(g(x1),x1) Oless(1,g9(x1)) Oless(g(x1),x1)

~(div(g(x1) x1)Hess(L.a(X1)) - givig(n).n) Dless(L.g(n)) 0less(g(n).n)

Oless(g(x1),x1))

div(g(n),n), less(1,g(n)) O less(g(n),n) (O)
prit) (1. 0-) div(f(a(m), o(m) O prfg(m) (3, U-)
x1==n div(f(g(n)), g(n)), pr(f(g(n))) (@)
_— P \
div(ul,wl)tdiv(wl,z1) ~(div(ul,wl)Odiv(wl,z1)) O
div(ul,zl) (2,0-) L =(div(f(g(n)),w1)Odiv(wi,n))
"prul) (4,020 zI=En 0 divig(n), n) (- 0) wi==g(n)
ul==f@gmn)

First Order KE example A2bv

Soundness and Completeness for Ground KE (Outline) A2bvi

The soundness of ground KE is simple to show; it is sufficient to show the property
SATISFY for the non-splitting rules and the PB rule. SATISFY is obviously true for ai
application of the PB rule (say for the sentence A), since the model of the branch bef
rule must assign either T or F to A, if it assigns T then the branch below A will still be
satisfiable and if it assigns F then the branch below —A will still be satisfiable. For the
rules, consider the exemplar A, 4{B) ==> -B. If a model M satisfies a branch contain
the formulas A, =(AB), then M will clearly satisfy -B, the conclusion of the rule.

It is also quite easy to show correctness (soundness and completeness) in a manner
that used for DP on Slides 1. This is not a coincidence, since KE is very similar to DF
especially if all sentences are clauses.

We define thax-rules to be those rules which aregules of ordinary tableau, and tReules
to be the remaining non-splitting rules (e.g. A andE8A==> -B). The minor sentence il
non-branching KE rule application of tBekind is the smaller sentence (e.g. A in the ab:
example rule). There are then basically 5 cases: a contradiction between a sentence
negation, no sentences left to develop in a branch, an applicatiomeaiids a sentence S
used as the minor sentence i-eule application, and a PB application.

However, the proof similar to that used for DP requires the KE derivation to make all
applications of @-rule using the chosen minor sentence at once. Since this is not nec
the normal or best way to make a KE derivation we'll give a different proof for comple
for ground KE. See A2bvii.




Completeness for Ground KE (Continued) A2bvii

Each sentence that occurs as a (sub)formula in the given data is a potential candit
B-rule application and is calledgaven sub-formula. (Note that atoms occurring in a gi
sentence are counted as given sub-formulas.)

An open branch of a ground KE tableau is callely developed if every given sub-
formula in the branch, or its negation, occurs at a node in the branch and no furthe
applications are possible. Clearly, there is no need to use PB for any given sub-fol
that already appears in a branch.

Let S be a given set of sentences and suppose a KE tableau is found with a fully
developed open branch B. From this branch a model for S can be found in a simile
to that deschied for standard tableau and shown to satisfy the sentences in the bra
The proof for satisfiability is by contradiction from the asumption that some smalle:
sentence in B is false. For example, suppose such a smallest false sentence was
form XOY. Then both X is false and Y is false. Since B is fully developed either X
=X isin B. If itis X then this contradicts the assumption thalYXs a smallest false
sentence. If it is =X then thé&l(rule would have derived Y, again a contradiction. T
other cases are similar and full details are left as an exercise.

Therefore, i S is an unsatisfiable set of sentences, then no fully developed open br
can exist and the KE tableau must close. For the first order case the method is es:
similar.

A reasonable way to develop a KE tableau is thus to ugethkes and3-rules as much
as possible, only using PB to introduce the minor sentence3foula application. The
amount of splitting is then kept to a minimum.

Case Study 2: Generalising Prolog to arbitrary clauses
Given -Paa, -Pf(a)a (-Paf(a), Pf(a)a (-Q [Paa, Paf(a) OPaa, Q [R, =R

Paa Intermediate Lemma Extension:
1. Select a positive literal from each
Paa Pf(a)a -Q non-Horn clause as the conclusion
— literal of that clause. Other positive
‘ /\ literals are called lemma literals.
R 2. Proceed as in Prolog - begin from
|- Pf(a)a OR an all-negative clause, match with

"conclusion” literals and ignore other
positive literals that arise unless they

If positive literals Pf(a)a and R are match the immediate parent.

ignored then tree is complete

Can derive Pf(a)a OR from .
above tableau: add ~(Pf(a)a OR) Step 1: choose (and underline)

and derive a closed tableau. conclusion literals
Step 2: derive lemmas.

In a similar way can derive Paf(a) by
using Paf(a) OPaa instead of
Pf(a)a -Q OPaa (Ground clause example ]

Intermediate Lemma Extension (contd.): AZcii

3. Either - find a refutation - no lemma
ﬂPf(a)a ﬂPaf(a) literals left as leaves;

Or - derive a lemma - only lemma literals
left as leaves; form a lemma from the
disjunction of all leaf literals.

af a 4. Deal with the lemma as in 1, then can try
an alternative path in 2, using new lemma.

Form lemma R.

-R Step 3: Find lemmas Pf(a)a OR and Paf(a).

Step 4: Use these lemmas to form lemma R

R Step 2/3: Find a refutation.

Can piece together the various tableaux used to obtain lemmas to form a
closed tableau - it will not be a regular nor a ME tableau. In the example, in the
final refutation, replace use of lemma R by tableau used to derive R, then
replace use of other lemmas by tableaux used to derive them. (See A2ciii.)

(Called Intermediate Lemmas) A2ci
Given: =G, G [-Pxy [hPyx, Pf(u)u OPua, Pvf(v) CPva A2ciii
-G (General clause example J
P e
G -Px1lyl -Pylx1 -G

0 -Pxla 0O -Paxl

Pxla Pf(Xl)Xl Paa/\ S _px3y3 -Py3x30 -Pax3

0 Pf(a)a

xl==a Pf(a)a
Px3a
Px3f(x3)
Tableau 1 y3==a [ Paf(a) P??a a Paf(a)
finding Pf(a)all Pf(a)a
lemmas. factors to Pf(a)a

Paf(a) O Paf(a)

If lemma is LOM (open branches ending in L and factors to Paf(a)
M) then can close tableau by placing —=(LOM) = Tableau 2
-L[=M as an initial sentence in the tableau. So finding lemmas.
LM really is a lemma. e.g. Pf(a)a is implied by

tableau 1 and Paf(a) is implied by tableau 2.




Given: =G, G O-Pxy O-Pyx, Pf(u)u OPua, Pvf(v) OPva, A2civ
Lemmas: Pf(a)a, Paf(a) (found as on 11diii)

The method seems to be fairly
-G efficient:

G/ﬁyzxzm -Paf(a) N effect, many

2 Lpx2y2 sub-tableau of small depth are
joined together to form a large

tableau. (When a lemma is

Use lemma 1 Pf(a)a Paf(a) used the tableau which derived

E)Pf(a)?h — it could be used instead.)
eneal x2==f(a
-Px2y2. y2==a tJ;aef(lg)r)nma 2 Because the individual search

spaces are small the total

Tableau 3 using lemmas search is reduced.

Example of a more general lemma: open branches ending in P(x) and Q(y,x)
lead to a lemma Oxy [P(x) 0Q(y,X)]. Adding - Oxy [P(x) OQ(y, X)] to the initial
set of sentences, which Skolemises to the two facts -P(a), -Q(b, a) for new a
and b, will enable the tableau to close.

Intermediate Lemma Extension (1) A2cv

The Intermediate lemma extension on slides A2c is a hyper-resolution (or Prolog)-like ex
for tableaux. (Don't confuse with other ME-extensions cdiigear-tableaux - see TABLEAUX
conferences.) In any clause with at least one positive liexatly one positive literal is marke
as theconclusion literal. Other positive literals (if any) are callbsinma literals. (If a clause ha
exactly one positive literal is the conclusion.) Each clause with no positive literals is calle
goal clause and can be used as a top clause. For uniformity, a new literal "G" can be apg
each goal clause (then all given clauses will have at least one positive literal). The top cl
then a new clause, =G. A ME-tableau is constructed from the top clause, in which the ler
literals are initially ignored — branches in which they occur as leaf literals are not pursuec
extension allows the lemma literals to close a branch (if possible) by matching some earl
negative literal in the branch. This reduces the length of the eventual lemma.)

If a tableau closes and there are no ignored lemma literals then this indicates that a refur
been found. Otherwise, if a tableau closes and there are ignored lemma literals, the lem
literals are put into a new clause (i.e. the new clause is the disjunction of the lemma leaf
literals), which is added to the data and callechtenmediate lemma. This clause will have onl
positive literals, and one is chosen as the conclusion literal. Only intermediate lemmas tr
not subsumed need beded. Clauses that are subsumed by the new intermediate lemma «
be removed. In case an intermediate lemma is retained, a new attempt at a refutation frc
(or a top clause) can be made using all given clauses and all non-subsumed intermediat:

Factoring can be incorporated in two different ways. Either: (i) clauses can be (safe-facto
before being accepted (either as a given clause or as an intermediate lemma), or (i), a p
literal that would otherwise be ignored may be matched with its parent (if possible). | pre
first method, since it allows for all safe-factors to be found regardless of which positive lit
might be selecteds a conclusion literal. The second method is more dependent on the se
of conclusion literals to detect safe-factddewever, it is simpler to implement.

Intermediate lemma Extension (2): A2cvi

The process of forming lemmas and refutations needs to be controlled in some way, anal
setting depth limits in the standard ME procedure. The simplest is the following: All poss
ways of closing a tableau descended from =G are formed and all intermediate lemmas fg
both upto some initial fixed depth. Then the process is repeated, but making use of the ni
clauses as well. If no further tableaux can be formed at the given depth and no refutation
been found then the process is repeated but to a greater depth.

Unfortunately, the depth may need to be increased even though new intermediate lemme
found at the current depth. e.g. initial clauses include -Q, P[&P Q)P (f(x)). Togeher, if Q
is the conclusion literal in the third clause, these allow for the lemmas P(f(a)), P(f(f(a)), et
formed, all at depth 2, even though none of these lemmas may be the ones required for ¢
refutation. To overcome this problem make a lemma contribute more than 1 to the depth-
when it is used in a refutation. e.g. make a lemma count exactly 1+number of lemmas us
derivation. This is consistent with giving an initial clause a count of 1, since it uses no len
its derivation. Hence, at a given depth there is a maximum number of lemmas that can b
and a finite number of possible refutations that could be made.

Once a refutation has been fouad;omplete tableau can be constructed from the various
tableaux used to form the lemmas. Beginning with the last used lemma, the use of each |
replaced by the tableau that derived it. All its leaves will match in the same way that the I
did. This substitution of tableaux can be repeated until all lemmas have been replaced.

In the tableau on A2cilii, first the tableau for R is used beneath -R. This tableau uses the
Pf(a)alR and Paf(g)which are also lemmas. They are replaced by the tableaux which der
them, the leaf literals that formed the lemmas now matching where those ofi®(a)&af(a)
did. See diagram on A2cvii.

Intermediate Lemma Extension: Reconstructing a closed tableau from lemm  A2cvii

=R -R
Replace tableaux
-PiRla ~Pafe)  enMOlTMAS  -Pi)a -Paf@

/ \ Paf(a) —Paa T~ - Paa
Pf(a)a Paf(a) /\ /\

W B 3) Paa Pflaa -Q  Paa Paf(a)
(2) 1) /\ ®3)
In closed tableau from 11dii with top clau 0 R
=R and closure with lemma R replace R @)

with the tableau on 11dii that derived it

Soundness and Completeness of the Intermediate lemma Extension:

Next we show that the method of the Intermediate Lemma Extension is both sound an
complete (at the ground level). The ground level tableau can then be lifted to give
completeness and soundness at the general level in a similar way to that used for free
tableau on slides 9.

To show soundness, note that each generated lemma is associated with a sub-tableaJ
various sub-tableaux can be used in place of the corresponding lemma, as described ¢
Each closure that was possible using the conclusion literal of the lemma is still possiblg
the tableau. For the example on A2ci/ii the final closed tableau is shown above.




Completeness of the Intermediate Lemma Extension

The proof is by induction on the number of lemma literals in the given clauses. Let S b
minimally unsatisfiable set of clauses with a total of k lemma literals. (i.e. if any clause
removed from S then S would become satisfiable.)

If k=0 then the clauses are Horn clauses and since S is unsatisfiable there will be at le:
all-negative clause in the set-of-support. Then there is a standard ME tableau starting 1
all-negative top clause that will close (by completeness of ME). It is not hard to show t
structure of the closed tableau is of the right form (and simulates a Prolog derivation fr(

If k>0, suppose as induction hypothesis (IH) that, &m8k lemma literals, there is always
set of sub-tableaux formed using the method, which can be pasted together to give a ¢
and soundly formed tableau. Let C belause with a lemma literal L and let C'=C-{L}.
Form S'=S-{C}+{C'} and S"=S-{C}+{L}. Each may be made minimally unsatisfiable suct
that, for the case of S', C' is needed to show unsatisfiability, and in the case of S" {L} i
needed. (Show this by using the assumption that S is minimally unsatisfiable). Since i
and S" the number of lemma literals <k, by IH there is constructable a well-formed
Intermediate Lemma tableau from an all-negative clause for S' and for S".

Now take the constructed tableau for S' and put back L into C', forming C again. The ti
for S’ was closed but will now give rise to the lemma L: in the derivation of the tableau
use of C (where before C' was used) will include using L, multiple occurrences all bein
factored to give the lemma L. In the well-formed tableau for S", this tableau deriving le
can now be used wherever originally the clause L was used. Adcii
cviii

For the example on AZ2ci/ii the choices made for L are:
R fromQ R, Pf(a)a fronPaalPf(a)al=-Q and Paf(a) frorRaallPaf(a); lemma atoms are
non-conclusion atoms. There are 3. (Conclusion atoms are underlined.)

Assume C1 iaallPaf(a), giving C1'= Paa. S19{(R, -R,PaaPf(a)al-Q, Paa, -Paa,
-Pf(a)al~Paf(a)}, which reduces to minimally unsatisfiable {Paa, -Paa},
and S1"=Q 0R, -R,PaallPf(a)all-Q, Paf(a), -Paa, -Pf(a)a-Paf(a)}.

In S1" choose as C2 the clalsra[Pf(a)al-Q, and use the IH to form tableaux from
S2'={Q [R, -R, Pad-Q, Paf(a), -Paa, -Pf(a)aPaf(a)} and S2"=Q R, -R, Pf(a)a,
Paf(a), -Paa, -Pf(aJa-Paf(a)}.

For S2' choose CE[R and S3'={Q, -R,Paa-Q, Paf(a), -Paa, -Pf(a)aPaf(a)} and
S3"={R, -R}. The tableaux for S3", S2", S1' are fairly obvious. Tableau (i) below is for .
After re-inserting L3=R into S3' can use it in closure for S3", as shown in (ii). Two mol
constructions are needed to complete the full tableau according to the proof. These are
an exercise for you. -R

-Paa
/\ —Pa(

Paa -Q
| ~ \
m Q Paa /“Q\
O R (ii) A2cix

An Assessment of the Intermediate Lemma Extension A2cx

In 2010 MSc student Rosa Gutierrez Escudero implemented various refinements for th
and performed a thorough set of benchmarking tests using the TPTP (Thousands of pr
for theorem provers) Database. It turned out that the method generally performs no be:
Model Elimination as implemented in the best standard version of LeanCop (with Re-U
no backtracking restrictions). The method was tested on problems including equality, a
using various ways to reason with equality. (However, recently she has made the code
efficient, so there may be an update.)

In one variant the lemma literals were not restricted to be positive atoms. Instead, it wa
allowed for a uniform translation to be applied to literals in the initial clauses. That is, ct
literals could be transformed into their complements. (This is similar to the transformati
described for generalising hyper-resolution.) For some problems this proved to be a gc
improvementWhereas the normal ILE method restricts lemma literals to be atoms,
transforming (say) all P literals into their complements will not affect unsatisfiability, but
affect the syntactic structure of the clauses and lead to a simpler derivation.

The ILE method might be expected to perform well — in order to construct a derivation |
searches many small search spaces for the lemmas. However, many lemmas are deri\
than once and therefore subsumed and hence redundant; this appears to be one reasc
is not as good as might be expected. e.g. suppose the lermrBa#found at depth 3. Then
when additional lemmas are sought using any newly found lemmiag will be found for a
second time. Subsumption is important though, as if A imB\is marked as conclusion, the
next lemma may well be B, subsuming the previous lemma. Secondly, non-essential
backtracking was less helpful — the restrictions on forming a tableau are quite strict in |
alternative derivations were often not allowed.




Completeness of Resolution using Tableaux A2di

Example. Given: -B 0-M, MO-L, MOLO-B, BOR, =R

A: Form a tableau such that B: Each clause with
no literal occurs twice in a branch, and leaf nodes only can be
every internal node is matched by a leaf node. resolved with the literal
just above. e.g. clause
labelled (1).

C: The tableau is
adjusted by removing
the resolved literals
from the two clauses
involved. e.g. =B from
(1) and B from BLOR.

-B -M
' M//\ﬂL
i T
R
\ @) -R
(2) -R

@ G ™M

1: MOL: B + BOR

0 MOLOR

2.-R+BOR OB
3:-R+MOLOR O ML

4:B+-BO-M 0O -M
5. MOL +MO-L
oMM OM

6:-M+M O]

After each step, it is still the case that no literal occurs twice in a branch

and all internal nodes are matched by a leaf node.

Also, the tableau is properly closed still, but using (some of) the original
clauses as well as any new resolvent. It may be necessary to factor.
e.g. Before step (6) must factor MOM to M.

B R ML =B R The remaining literals
= / NOTE: == still match above and the
R MOL-B can be removed from tableau still closes. e.g.
= beneath —-B as M does not Simulates formation of
match below. Then M-L can resolvent MOLCR.
be removed similarly.
Another Proof of Completeness for Resolution A2diii

The slides A2d give a constructive proof that refutation by ground resolution (and
factoring) is complete, but this time based on the completeness of tableau system
idea is to build a closed (ground) tableau from the given clauses and then to trans
in small steps, each step corresponding to a resolution st®8pgéA a closed ground
regular tableau is formed with the properties that (i) every non-leaf node is
complemented by a leaf node and (ii) no branch contains a literal more than once.
that a ME tableau would satisfy (i) and (ii) initially, but so do some other tableau a:
well.) In order to achieve this, iifis a non-leaf node in clause C that is not
complemented, then C is removed from the tableau and the sub-tableau heeath
descend directly from its parent since no closuresiuggee example.) His a node
occurring twice in a branch, then tblause containing the occurrence at greater dep
can be removed and the sub-tableau benea#im descend directly from its parent as
closures can use the remaining occurrence.

In Sage B clauses are removed from the tableau starting from all-leaf clauses. The
of such a clause C must match with at least one literal in C, given that property (i)
Stage A is true. Thus C can be resolved (possibly with factoring of the matching it
with the clause D containing its parent. The resolvent replaces D in the tableau. Tl
properties (i) and (ii) of Stage A are maintained and the tableau still closes. If thert
an exception, it would contradict that the property held before the resolution step.
Exercise show these 3 things.

After none or more resolvents have been formed, a tree occurs of the form X(=X)
nodem, with one or mor@ccurrences of =X(X) at child nodesraf The corresponding
resolution step (including factoring) results in the empty clabisee every step remov
at least 1 closure, the process will terminate.




Relation between ME tableau and Linear resolution refinements (1) A2ei

ME-tableaux are closely related to tiveear refinement of resolution. This refinement is
outlined below. It was introduced long before free-variable ME-tableaux, as were the v
restrictions of the refinement. However, there is one particular restriction, called SL-
resolution, which corresponégactly to free-variable ME-tableau. When the generalised
closure rule is included, then more general linear resolution proofs can be simulated by
tableaux. The relationship between the two systems is detailed further in the chapter n
clausal tableaux on my website, if you're interested.

Strategy of Linear resolution
First select an initial clause callégp in the set of support of set of clauses S:

Theset of supportf S = {C |COS andS-{C} is satisfiable}; i.e. each C in the set of suppr
is necessary to derijg.

Next resolve Gwith an input clause from S (possibly a second copy of top). Then, at ea
subsequent step resolve the latest resolventaittieran input clausear a previous resolve

(calledancestor resolution). e.g. If the refutation is RO, R1, R2, [],where RO is the toj
clause, then R2 is formed by resolving R1 with an input clause, or with RO, or with R1.

Linear resolution appears to be quite natural as it generalises top-down/goal-directed
reasoning. The search space is a tree, each branch being one possible linear derivatic
efficient search methods and Prolog technology can be employed.

The top clause and subsequent resolvents in the example shown on the right in A2bv i
Px[Q, RxQ, -RbQ, QIQ (i.e. Q) []- The ancestor resolution step is between &Rb
and Rx0Q, deriving Q1Q, which factors to Q.

Model Elimination Tableau Simulation of Linear Resolution A2eiii

Consider the tableau shown on A2eiv and the corresponding linear resolution deriva
which is also shown. Thep clause of the linear derivation is FXHx1, which is the first
clause in the ME tableau. The first two steps resolve with input clauses and the resol
each step correspond to the leaf literals of the open branches of the tableau. Notice
third step, which resolves with Fx1 for a second time and which derivésibbis an
ancestor matching step in the tableau and that there is only one instance of Fx1, whi
one enforced by the unifier of this step. The two occurrences of Hb appear just once
tableau. In the resolution prbthe resolution is between the clause 4Ftx1 and a copy o
the ancestor FXdHx1, say Fx8Hx3, which yield HbOHx1. This factors to Hb and
corresponds with the tableau version.

The restricted linear resolution strategy, which simulates ME, only allows resolution v
theancestor instance Fx10Hx1, not a fresh copy of Fx CHXx. It also restricts to using Fx1,
the literal prevously resolved upon. If that instance were to be used later in the derive
is only the instance HoHb that may be used. The unrestricted liner resolution strateg'
also allow -Fx2 to resolve with a fresh copy of the ancestaiHbx In the tableau, the
ancestor matching step (corresponding to using the copy) is made explicitly because
from Fx1OHx1 is not part of the "history" leading td-x2.

The generalised closure rule corresponds to using the copy to resolve with the currer
resolvent R, as long as the copy of the remaining literals safely factors with the litera
In general linear resolution the step of ancestor resolution is even more flexible - any
in the ancestor can be used, not just the literal that was used the first time the ancesi
involved in a resolution step. More on this is in the "Chapter' notes if you're intereste

Relation between ME tableau and Linear resolution refinements (2) A2eii

Next we explain how a ME-tableau relates to a linear resolution derivation. The idea is
each ME-step the disjunction of the leaf literals in open branches is the latest resolvent
corresponding linear refutation. In the example on A2bv, after the first closure the leaf |
of the open branches are Rx and Q, which are exactly the literals in the second resolve
derivation, as given in A2bi. Similarly, after the second closure the leaf literals are -Rb
exactly the third clause in the derivation.

The various tableau steps correspond as follows:

i) Extension corresponds to resolution of an input clause with the latest resolvent, ie on
has been extended in the branch before, choosing to resolve on a literal most recently
introduced into the resolvent.

i) Closure corresponds to resolution of the latest resolvent with an ancestor resolvent,
quite restricted way. If the previous resolvent used was RI€Lwhere L was the literal
resolved upon in R before, then R can only be used again by resolving/mndaver, the
same "instance" of R must be used. That meand&dtiatopies of R must use the same
instantiation, i.e. it is R used twice, not R and a copy of R. This is sufficient to ensutéeh
2 occurrences of clause C in the resolvent that arise from the two steps using Rwill factor. In
fact, as long as this latter property holds, the other restriction can be relaxed; this woul
correspond to using the generalised closure rule.

In a normal ME tableau, the restriction on closure is automatically ensured by the struc
the tableau, since only one instance of each literal occurrence is allowed. On A2ev, no
in order to use Rx a second time with substitution b, it is necessary to use a second oc
which brings with it a second occurrence of Q. The same effect can be obtained by allc
second instance of Rx (hamely when x==b), as in the generalised closure rule of ME. |
example, A2ev shows the linear refutation corresponding to the LH tableau of 11bi.

Comparison of Linear resolution and ME for the clauses: A2eiv
-Ha, -GxO-Fb, -FxO-Hb, GxO-Fx, FxOHx
x1[Hx1 ~Fx LGx}

\\"”’/,//
@ eowm T
Fx1 Hx1 O Hb
=Fb OHx

HXx
FbO

1
b ~
Hb OHb (x2)
0 _'|2: le S(éZ)l -Hb - Fx2
~Hb [-Fx Hb Xe==x X /\
Fx OHx ~Fx2 / -F Bxz  Hx2
/ -Gx1 Xl_::b |
-H Hx2 _'_Ha
X2==a
(x2==a) [] See A2eiii for commentary on these derivations




Generalised closure rule of ME can simulate Linear Resolution A2ev

Rx 0-Px, Px0Q, -RaO-Rb, -Q

A ME tableau can be
seen as simulating a Px [Q -Px ORX

special kind of linear ~~—_—

resolution strategy. In Wa ~Rb

the derivation on the
right the two copies of

Q derived from the -Rb O0Q
same parent literal will /
factor.

QIR -Q

This will always be the

case in the tableau if

variables in the branch []
closing by the

generalised closure A linear resolution
rule do not occur in strategy.

any remaining leaf

literals.

Chain Notation for ME Tableaux: A2fi

For interest, slide A2fii shows a convenient representation for ME-tableaux, callddithe
notation, which is possible because such tableaux are developed from left to right. This
notation enables a complete search space to be represented in 2 dimensions.

A ME-tableau is maintained as<hain of literals. There are two types of entiopxed andun-
boxed literals. The top clause forms the first chain with the leftmost literal the next to be
selected and all literals unboxed. A chain may

(i) be extended by a new clause,

(ii) be extended by ancestor matching or

(i) be truncated,

corresponding, respectively, to tableau extension, ancestor closure or moving to the ni
branch to develop.

(i) results in the matched literal becoming boxed and literals in the (added) matching cl:
(not including the complementary literal) being appended to the left of the chain. (i) res
the leftmost lieral being boxed if it unifies with a boxed literal to its right. (i) removes
leftmost boxed literals.

A chain represents the remainiogenbranches of the ME tableau formed so far, which ct
re-constructed from the chain. Each unboxed literal is a leaf literal L of the tableau. Its
ancestors, forming the rest of the branch, are all the boxed literals to its right (the first t
literal to the right being the parent of L). Alternatively, all literals to the left of a boxed lit
are its decendants. The example on A2fii illustralRegular tableaux can be enforced by r
allowing a step that would result in an unboxed literal being duplicated by another boxe
literal to its right. Also, if an unboxed literal is duplicated by an unboxed literal to its rigt
then the leftmost literal can be boxed, corresponding to the "merge" operation.

CHAIN NOTATION

top clause -B-M

extension RﬂM
extension ﬂM

truncation S\
extension L-B

extension M —|B
ancestor

matching ~B[-M |
truncation —|B

extension R

- A handy shorthand A2fii

-BO-M, MO-L,

MOLO-B, BCR, -R /\

-B -M

B R M [ B
Merging: If a literal |
occurs in a chain twice, R -L M
both times unboxed, - T
the leftmost can be N
merged with the right B R
copy. N /

R

Regularity: If a literal occurs in a chain

extension |R|-B|-M
truncation []

twice, the leftmost unboxed, the right
occurrence boxed, the leftmost indicates
a duplication.




Model Generation Procedure (MG): A2g

Another procedure appropriate for propositional clausesdel generation (MG), whichis a
special case of the tableau method. MG is easy for humans to use as it is more restric
DP, which you saw in Slides 1. Slides A2 give some examples of MG and a correctnes

The MG procedure attempts to build partial models. It constructs a tree in which each b
tries to maintain a partial model of thatial sentences (but in a different way to DP).

The tree built by the MG procedure for an initial set of clauses S consists of nodes eack
by an atom. There are 2 kinds of branches, cajped andclosed. The atoms in each open
branch B give a model of the set of clauses processed in B; when all of S have been pr
in an open branch B then the branch is caltedpleted and the nodes in B give rise to a
(partial) model of S. A closed branch B is also called completed and indicates that the §
B cannot be extended to be a model of S (i.e. they make some clause in S false).

Let closed branches be labelled by false and completed open branches be labelled by
the given clauses S have no model if the disjunction of all labels in a tree in which all by
are completed is false. There is a model if the disjunction is true, as at least one branch
then have been completed and open.

Proof of the correctness of the MG procedure uses notions of tableaux.

Model Generation Procedure AZgiii

( procedure MG(S,B): boolean
%S are clauses still to make true and B is the branch (model) so far
1. If no clause in S contains a negative literal then return true.
(B is a partial model of the initial clauses)

2. If S contains a clause C with >1 positive literals such that for all negative
literals —L in C (if any), L occurs in B,

then return disjunction of MG(S(Ai),B+Ai) , for each positive literal Aiin C,
where S(Ai) = S - {X|X in S and X made true by assignments in B+Ai}

3. If S contains a clause C with only negative literals such that for all literals
-Lin C, L occurs in B, then return false.

(B makes C false)
4. If none of 1, 2 or 3 occurs then return true.
(Every remaining clause has =1 literal -L, where L is not in B)

\.

MG is initially called with S=given clauses and B=1].

MG(S,B) halts with true if S+B has a model and returns a partial model that
includes B (ie makes atoms in B true) and which can be extended to a
complete model for S+B (see Notes on the procedure).

MG(S,B) halts with false if S +B has no models.

Model Generation Example (tree form) (Rules on A2giii)

Given clauses S : LK, -L-K, -LM, -MK, MR (ie LK etc.)
Checks: no tautologies and no subsumed clauses, (initial checks)
at least one negative literal (step 1)
MG(S.{}) (ie the branch is empty)

Choose LK (step 2)

K
MG([-L-K, -LM, -MK, MR]{L}) MG([-L-K, -LM, MR]{K})
Choose -LM (step 2) Choose MR (step 2)
J
M R
MG([‘!L‘!K, ﬂMK],{L,M})
Choose -MK  (step 2)
K‘ MG([-L-K].{K,M})  MG(([-L-K, -LM]{K,R})
return True (step 4) réturn True (step 4)
MG([-L=K],{L,M,K}) Model={K,M,-L} Model={K,R,-L}
choose -L-K (Must make L False
return False (step 3) as K already True)
Return (False or True or True) =True- hence there's a model A2gii
Some Notes about MG A2giv

These notes are to give you some intuition as to why the MG method worksaly
assume there are no tautologies or subsumed clauses at the start and that all
literals have been merged.

procedure MG(S,B): boolean

1.If no clause in S contains a negative literal return true.

Notel: B satisfies all clauses so far removed from the original argument S. B «
made into a model of the remaining clauses by assigning true to any atoms nc
assigned, since they either occur positively in S, or do not occur at all. (Covers
case when S is empty. )

2. If C = EOD (where all literals Ai in E are positive and -Lj in D are negative)
S and for all =Lj in D, Ljis in B, then return disjunction of MG(S(Ai),B+Ai) , for
each AiinE

Note2: The branches of the form B+Ai extending B are the only ways to make
true. Can remove any clauses in S also made true by B+Ai (for the Ai branch)
3.1f C in S has only negative literals and for all literals -Liin C, Liis in B, ther
return false.

Note3: B cannot be extended to make C true as it already makes C false.

4. 1f none of 1, 2 or 3 occurs then return true.

Note4: Every remaining clause in S hak unassigned negative literal —=L. Assign
false to all such L to make the remaining clauses true. Can assign either true «
to any remaining atoms in the language not yet assigned.




Example:
{LK, -L=K, -LM, =MK, MR} (a slightly different tree than that shown on A2gii

(Step 2)Choose MR (could also have chosen LK instead as on Slide 2bii).
Return MG([LK,-L-K, =-MK], {M}) or MG([LK,-L=K, -LM, =-MK], {R});

i.e. start a tree with two branches.

Consider the first disjunct and (Step 2), clause -MK.

Return MG([-L-K], {M,K}). ie still to make —/=K true

(Step 4)return true - assign false to L.
Checkthat {M,K,-L} is a (partial) model for the initial clauses.

If the second disjunct had been chosen, then dgphp 2)and clause /K and retu
MG([‘!L—!K, -LM, —|MK], {R,L}) or MG([‘!L—!K, —|LM], {R,K});
i.e. extend the second branch of the tree by two branches.

The first disjunct will eventually return false (show this yourself)
and the second will return the model {R,K,-L}.
Checkthat {R,K,-L} is a (partial) model for the initial clauses.

Exercises:

1)Use MG on the "three little girls" problem.
2) Consider how a purity rule might be included into MG A2gV
3) Can you suggest any efficiency short cuts for MG?

"The three little girls" problem again! AZgvi
The data

(1) C(d)JC(e) IC(f) One of the threee girls was the culprit

(2) C() - HX) { C(d) ~ H(d), C(e) - H(e), C(f) » H(f) }
To convert into propositional form

(3) ~(C(d) " C(e))

(4) =(C(d) ~ C(f)

(5) ~(C(f) " C(e)) _ _
Only one of the three girls was the culprit

(6) C(d) OH(d) O-C(e) (Dolly's statement negated)

(7) C(e) C() O~(C(e) » (C(d) O H(d))) (Ellen's negated)

(8) C(f) O=-H(d) O-((H(d)~ C(d)) -~ C(e)) (Frances's negated)

This time we'll try to find a model and return True (and we hope the model
will make C(f) true).

We convert to clauses and can remove any tautologies or subsumed clauses
at the start. Also merge identical literals

Solution to "The three little girls" by MG A2gvii
(1) C(d)OC(e)OCH  (2a) ~C(d) OH(d) (2b) -C(e) OH(e)

(2¢) =C(f) OH(H) (3) ~C(d) 0~C(e) (4) = C(d) O ~C(f)

(5) - C(e) O-C(f) (6) C(d) DH(d) D-C(e)  (7a) C(e) OC(f) OC(e)

(7b) C(e) OC(f) U-C(d) (7c) C(e) OC(f) O-H(d) (8a) C(f) O-H(d) OH(d)
(8b) C(f) O-H(d) OC(d)  (8c) C(f) O-H(d) O~C(e)

Merge literals in (7a) to obtain C(e) OJC(f) and remove (8a) (tautology);
(7a) subsumes (7b), (7c), (1);

call MG( [2a, 2b, 2c, 3, 4, 5, 6, 7a, 8b, 8c], [] );
Apply (Step 2) on 7a (C(e) OC(f)); evaluate
MG([2a, 2b, 2c, 3, 4, 5, 6, 8b,8c], [C(e)] ) (i) or MG([2a,2b,2c,3,4,5,6 ], [C(F)] ) (ii);

In (i): apply (Step 2) to 2b and call MG([2a,2c,3,4, 5, 6,8b, 8c], [H(e), C(e)] );

Apply (Step 2) to 6 and evaluate

MG([2a,2¢,3,4, 5,8c], [C(d), H(e), C(e)] ) or MG([2c,3,4,5,8b, 8c], [H(d),H(e), C(e)]);
Both eventually return false.

In (ii): apply (Step 2) to (2c) and call MG([2a, 2b, 3, 4, 5, 6], [H(f), C(f)] );
Apply (Step 4) to return true; get the partial model [H(f), C(f), =-C(d), =C(e)].
H(e) and H(d) can be either true or false.




Model Generation (MG) as a Tableau refinement A2gviii
 Similar to the tableau method MG looks for models in each branch

Example

—p e -e [-c -a O-wOp w Om ida -e [-m

e

e Top clause is always positive .... / \
m
w

» Can extend a branch by clause
C as long as negative literals in C
(if any) are complemented in the

7\

AN
yd

branch
[ a
«All literals in the MG tree (solid 2y R
lines) are positive SN !
« Leaf literals, in the tableau, -6 i [
a

(dotted lines) are negative literals
« Differences are mainly cosmetic

Correctness of MG using correctness of Tableaux (2)

- e
Completeness uses finiteness of MG tree
For each open branch B of a MG tree / \
We know that: m
w
7\

All clauses with no negative literals are used
All unused clauses have negative literals 2N PR

A

d
D
_y
-%
4
U

if B were to be extended by any clause
with negative literals not yet used in B,
there is one extended branch of B
which remains open, since all such
clauses have one negative literal not
matched in B

[NIEN

4

]
S

The open branch is saturated and will
yield a model

J
=]

Example: Remove iOa

Note - dotted lines are not part of MG tree which ends at w

Correctness of MG using correctness of Tableaux (1)

Can we perhaps use the soundness and completeness properties of tableau to
show similar properties for MG? Yes, we Can!

e
Soundness is the easiest / \ m
w I\

If a MG tree for clauses S returns
False, then S |= 0O

Y

U \
U \
4

" m

If there is a closed tree, it must be )
because all branches end by using a i
negative clause, where all its literals -~
are complemented. SN

The implicit tableau would also be -e
closed, and so we use Tableau
Soundness to conclude S |= .

Open branch (in tableau version of MG) is {e, w, -i, -a, -p} A
gx

A2gix
Short cut for MG A2gxi
If (ground) MG tree is developed left -> right S Atoms X
And current open branch includes atoms in an

open branch on its right (still to develop) / \
C

Then can abandon current open branch A

See diagram:
If branch containing C (and atoms in X) has no

model, nor will branch containing {A, B, C}
and atoms in X have a model

If branch containing C and X does have a model |
no need to search branch {A,B,C} and X Cc

W

Question:
Can MG method be generalised to first order clauses?
Consider case when signature has no function symbols

Either: use analogy with free variable tableau
Or: implicitly maintain ground instances of each clause




Comparison between Unify-at-the-end and Unify-as-you-go in ME tableaux

How else could the free variable method be systematic?
The ME approach is "unify as you go"
What about "unify at the end"? How could tableau development be controlled?

Possibilities for controlling Unify-at-the-end:

* Restrict total no. of clause instances over all branches / over each branch,
or number of instances of each clause over all branches / over each branch.
« Likely to get many literals in a branch that cannot possibly unify; the
branches of which they are a part can be pruned.

e.g.

« If only one occurrence of Hx in a branch then no need for two instances of
a clause containing -H(y), as they would have to be the same.

 If no copies of Hx in a branch then no use for =Hy.

An example of this approach is shown on Slide A2 div

Good/bad points of Unify-at-the-end:

< If not many quantifiers "unify at end" may be better.

« May only be one binding for a particular branch. Selecting it can restrict
unifiers in other branches.

* May be able to close branches without unifying. No backtracking (over

those branches).

« May have many unifiers in a branch; all have to be tried. A2hi

(1) div(x,x), (2) less(1,n), (3) div(u,w) Odiv(w,z) - div(u,z)
(4) =(div(g(x),x) Oless(1,9(x)) Oless(g(x),x) ) — pr(x)
(5) less(1,x)0ess(x,n) - div(f(x),x)Opr(f(x)) Show Oy (pr(y) Odiv(y,n))

~(pr(y1) Ddiv(y1,n)) nify at the end

—_— \
div(g(x1),x1) Oless(1,9(x1)) Oless(g(x1),x1)

Ly (pry)tdiv(y,n)) ‘ﬁree variable rules ’
U

pr(x1)
i = 1) =div(yl,n)
4 div(f(x2), x2) pr(y
 less(1x2) pr(ix2)) V=
==g(x1) = (pr(y2)) Odiv(y2,n)) div(x3,x3)
. ©oyl==n
—— - div(ul,wl) ° i
ﬁzzg(xl) =T ~div(wi,z1) l_\ div(y2,n)
(orx2==1is wl==x2 211 P2 y2==ul,
possible) wl=g(x1) y2==f(x2) z1==n

Gives: { x2==wl==g(n), x1==y1==x3==z1==n, ul==y2==f(g(n))} A2nhiii

Constructing Free Variable Tableaux A2hii

When constructing a free variable tableau, you may do it in one of two ways, which coul
called "unify-as-you-go", or "unify-at-the-end". Slides 9-11 used the unify-as-you-go me
and the alternative approach to closure is shown on Slides A2hi/iv: instead of closing e
branch "as you go" and propagating the bindings across the whole tableau, it is noted w
branch can close and what the corresponding binding is, but no propagation takes place

The tableau on Slide A2hiii is constructed using "unify-at-the-end". In the construction, i
branch can be closed by unifying two complementary literals, then it is markessidoty
closed. All possible unifiers that may lead to closure can be recorded as a label of the br
When every branch has such a potential closure, a single unifier must be constructed u:
unifier from the label of each branch in the tableau. For the example on A2diii it results i
combined unifier (ie unify the individual unifiers) {x2==wl1==g(n), x1==y1==x3==z1==

==f(g(n)), y2==f(g(n))}. If it is not possible to construct a single unifier, then a differer
of closures must be found (which may involve further extending the tableau) and anothe
combined unifier sought.

This is in contrast to the "unify-as-you-go" kind of construction, illustrated on Slide 9civ,
whenever a closure is made that requires a binding to be made to one or more free vari
the substitution is applied &l occurrencesin the tableau of those newly bound varialsleThis
guarantees consistency of the bindings as the tableau is constructed. Only one binding
made to any free variable.

The unify-as-you-go approach is useful for most applications, especially those using dai
structures, when it may be necessary for a piece of data to be used many times. Ifitis k
(or quite possible that) each sub-sentence of each sentence is to be used only once or
times, the unify-at-the-end approach can be a reasonable one.

E.g. Given: Fxa [OFg(x)x , Fxa OFxg(x), - Fxa O- Fxz 0= Fzx A2hiv
/\ Assume at most one
instance of each clause will
Fxla Fg(xl)xl be used in each branch.
A successful unification
Fx2a Fx29(x2) Fx3a Fx3g(x3) is x4, z1, x1 all bound
toa; i.e.didn't need
Fx2a [OFx2g(x2) in LH
~Fx6a —|Fz3x6 branch - it can be
“Fz1x4 removed - so only need
ﬂFx4a -Fx6z3 one of the copies of
-Fxa O -=Fxz O0-=Fzx
-Fx5z2
Fxdzl Fzaxt x6 bound to x3 and z3
-Fx5a —Fz2x5 and x3 bound to a;
-Fx7z4 X7 bound to g(a), z4
-Fx7a bound to a.




Parallel ME : Propositional case AZhy

/N « Each branch of a clausal tableau
: M can be distributed to a separate
: : thread, or process. This is called
/]\ : | : | and-parallelism as every branch
: i -K must close for a refutation.

K S:T: -K AL
/\ S ff : + This is different from or-

A : A parallelism in which each process
5 :

S i (ii) :

is instead given a branch of the

0 search space. eg in the tree on the
left, if KLM (ie KOLOM) matched

with more than one clause (as it

Sections of the tableau (indicated by does here: KLM matches with given

dotted lines) can be developed in parallel.  clauses -KST and -K-S), then

If the tableau is ME style then there would be two branches of the

possibilities for re-use can be anticipated: =~ search space. Processl is given
eg if S occurs in closure below branch (i)  the search space using -KST and

Parallel ME: First Order case A2hvi

« To cope with potentially infinite tableau in the and-parallel development,
each section is developed to a fixed depth. Failure to find a proof causes the
depth to be increased for a second attempt.

¢ Shared (ie non-universal) variables pose a problem:

e.g. Given: « Values of ul must be reconciled
=Pxy U=Pyx, Pf(u)u JPua, {Pvi(v) OPva  between two processes.
¢ Pula can close with ul==a. It
g can also close with ul==f(a).

! Q: Are there any more values?

it can be closed in the same way as the process2 the search space using
closure below S in branch (i). Anticipate -K=S. If process2 finished before
this by adding =S to branch (ii). processl then processl can be
terminated.
Parallel Clausal Tableau Development A2hvii

Slides A2hv/vii illustrate some possibilities famd-parallel execution within a
clausal tableau. Each branch, calleztaion on A2hv, can be given to a separate
processor. It's possible to anticipate some possible cases for re-use as showt
slide.

The first order case is more complex as bindings must be preserved across b
for the shared (ie non-universal) free variables. One method is for each branc
below a node to be evaluated independently, finding as many bindings as po:
for the variables occurring in the literalra¢to some max. depth to guarantee
termination). The bidings are then reconciled (i.e. combined) at the modith
those from other sibling branchesrofi.e. only bindings which belong to the
solution set of every sibling branch are retained, possibly further instantiated)
Finally, only bindings to variables occurring in an ancesteréed be kept for
further propagation.

E.g. let ground P occur afs parent, whera matches with P and lets siblings be
Q(x1) and R(x1). Although x1 must be reconciled with some binding, the parti
binding is not relevant to the parentmpfunless x1 occurs elsewhere in the table
As this is not the case, the empty binding would be retained to pass back up 1
tableau. However, notice that the following circumstance could occur: x1 is bc
in another branch to some non-universal variable z in some ancest&agf
x1==z, and also to x1==a, then the reconciled binding 7s-redevant, since z

occurs in an ancestor of If all reconciliations fail, then no bindings are retaine

Piulyul v Pula +” Within a finite depth the number
/ / \ of values will be finite.
¢ Pf(ul)ul can also close

¢ Iful were 2PxIyl  _pyix1 (eventually) with ul ==a.
universal, then ul==x1 » Each solution is passed up to
can use a yl==a ul==yl the parent process to be
technique x1==a reconciled.
sg?]llee;‘[iltics)ége Reconcile: obtain ¢ Only bindings mentioned in
glosure rule ul==x1==yl==3; ancestor nodes are retained.

: Retain ul==a.

Summary of Optional Appendix 2 AZhvii

1. The KE prover is an alternative to ME with one splitting rule only. KE is
computationally more efficient than standard tableaux.

2. The Intermediate Lemma Extension imposes restrictions to reduce the search space,
but this is offset by requirement for more subsumption tests. It is related to hyper-
resolution.

3. The completeness of resolution can be shown using tableaux. No doubt, by
controlling the style of tableau formed - e.g. ordering use of clauses in any branch —
specific sorts of resolution proofs can be derived.

4. ME tableau are related to linear resolution. The correspondence imposes restrictions
on the linear resolution, which is partially relaxed if the generalised closure rule is used.

5. A useful chain notation exists to represent tableau as a list of boxed and unboxed
literals.

6. The Model Generation (MG) method for testing satisfiability of propositional clauses
is good for humans, but less well investigated than DP in optimised implementations.
MG returns True (and a partial model) for given clauses S if there is one. It returns
False if there are no models of S. The returned model (if any) can be extended to all
atoms by assigning T or F to unasigned atoms.

7. Different unification regimes can be employed in ME tableau, such as ""unify-as-you-
go", or "unify-at-the-end".

8. With care ME tableaux can be evaluated in parallel.







