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AAArrrrrraaayyysss   aaasss   llliiissstttsss   

 

•  For abstract reasoning, arrays are often best thought of as lists. 

 

•  Computational  methods for lists (e.g. cons, ++) of Haskell are  

 not always best for arrays in Java. 

 

•  Nevertheless, we can still use the Haskell ideas in our reasoning  

 about arrays 

 

•  Further illustrations of loop invariants. 
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ARRAYS REPRESENT LISTS 

 

An array is characterised by  

 – its elements,  

 – and the order of its elements 

In other words, abstractly, arrays are lists of elements. 

Examples:  

Given double [] a =new double[3]   (i.e. a.length=3) 

a represents the list [ a[0], a[1], a[2] ] 

Given double [] a =new double[0]   (i.e. a.length=0) 

a represents the empty list [] 

(Java also has ArrayLists and Vectors, which are, in effect, variable 

length arrays. See later.) 
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MANIPULATING LISTS 

 

If arrays are like "lists" then it could make sense to use  

 head, tail, last, concatenation (++) and sublists 

when reasoning about them, even though it may not be simple to 

construct these things in Java. 

Example:  

Given double [] a =new double[3], double [] b =new double[4] 

then  a represents the list [ a[0], a[1], a[2] ], 

  head(a) = a[0],  last(a) = a[2], 

  tail(a) = [a[1], a[2]],   

  [b[1], b[2]] is a sublist of b 

 a++b represents the list [a[0], a[1],  a[2], b[0], b[1], b[2], b[3]] 

Note for computing purposes, must also know how the elements are 

subscripted. 
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ARRAYS AS LISTS — AND SUBLISTS 
 

Let a be any Java array, and let i, j be integers with 0!i!j!a.length. 

We write a(i to j) for the Haskell list 

  [a[i], a[i+1], …, a[j-1]]   //usual convention on regions 

Formally, a(i to j) is defined iff 0!i!j!a.length 

a(i to j) = [ ], if i = j 

  = a[i]: a(i+1 to j), if i < j 

Some Properties (suppose someType [] a and a.length=n) 

• If we view a as a list, that list would be a(0 to n).  

          Let's define a-as-a-list = a(0 to n). 

• If a(i to j) is defined, its length is j–i;    (eg a(2 to 4) =[a[2],a[3]]) 

• If 0 ! i ! j ! k ! a.length then a(i to k) = a(i to j) ++ a(j to k) 

• a(i to i+1) = [a[i]] 

• for i<j,   a(i to j) = a[i]:a(i+1 to j) = [a[i]]++a(i+1 to j)  

       = a(i to j–1)++[a[j–1]],   etc. 
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In this chapter we are concerned with transferring our reasoning about lists to reasoning 
about arrays, in order to make that reasoning simpler. We are not concerned (particularly) 
whether to use arrays, ArrayLists or Vectors to represent lists. 

When reasoning about programs it can be convenient to talk about empty arrays. E.g., it is 
useful, when considering a portion of an array, to be able to state it is empty. This might be a 

condition for termination. You can define them in Java, e.g. as in int [] b = new int[0], even 
though they don't seem very useful in practice. On the other hand, an empty ArrayList in 
Java is a potentially useful object. You can add to or delete elements from an ArrayList, so 
increasing or diminishing its size; an empty ArrayList may indicate a special case to be 
considered differently from other cases. 

The notation a(i to j) is chosen to represent the array elements a[i], a[i+1], upto a[j-1] (it does 
not include the element a[j]), as this conforms to the Java convention for array indices when 
i=0 and j=a.length. Note that a(i to j) is defined iff 0!i!j!a.length. It also follows the notation 
we use for segments of arrays in several of the algorithms considered in this part of the 
course, in which the end point is not included in the array. This choice also makes some 
things neater:   

e.g. the length of the list (or number of array elements) is j - i;  an empty list is a(i to i);  
joining two consecutive pieces of an array together is a(i to j) ++ a(j to k) = a(i to k).  

Revision Exercise: On the next slide it is stated that there is just one function satisfying the 
given properties of reverse. Use list induction to show that if there were two “reverse” 
functions satisfying the properties, say reverse1 and reverse2, then they’d be equal – 
ie for all ls, reverse1(ls) = reverse2(ls). 
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USING WHAT WE KNOW ALREADY 

You used lists in Haskell a lot, and so understand them quite well. 

BUT  the Haskell methods used cons and concatenation (++).  

Neither of these is used when constructing or manipulating arrays.  

So how does the Haskell understanding transfer to Java? 

Example: (One particular) Haskell definition of reverse 
 reverse [ ]  = [ ] 
 reverse (h:t) = (reverse t) ++ [h] 

Properties: 
 reverse [ ]    = [ ] 
 reverse [h]    = [h] 
 reverse (s++t) = (reverse t) ++ (reverse s) 

Actually, there is only one function with these properties, so we  

could use them as a specification for the many possible Haskell 

implementations of reverse. 
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JAVA  REVERSE 

void jReverse(double [] a)  {// elements of a could be any type; 

// Pre: none 

//Post:ar=reverse a0 (where reverse is the Haskell function) 

//                                   and ar is the value of a at return 

//         i.e. a-as-a-list= reverse a0-as-a-list } 

For efficiency, swap pairs of elements of a, starting at the two ends 

(swap a[0] with a[a.length-1]) and work towards the middle. 

Do a diagram:  n = number of pairs swapped, k = a.length. 

Next move: swap a[n] with a[k–n–1]. (e.g. n=2:swap a[2] with a[k-3]) 
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IDEA FOR JAVA IMPLEMENTATION 

We use the Haskell function in the specification of the Java method; 

can use any Haskell implementation of reverse; we chose the simplest 

 

From the diagram we see: 

 No. elements swapped = 2*n.  

 No. elements unswapped = k–(2*n). 

 Both must be non-negative.   

Can stop when at most one element left unswapped, i.e. k–(2*n) ! 1 

 giving a loop variant. 
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CODE 

void jReverse(double [] a) { 

// Pre: none 
// Post: reverse a0 = a (both as lists)  

final int K = a.length; 

int n = 0; 

 while  (K – 2*n > 1) {  

       // Invariant:  ?? (Assume a.length =a0.length=K) 

       // Variant: K-(2*n)   

       swap(a, n, K–n–1);   n ++; 

            // take care with swap; this one swaps a[n] with a[K-n-1] 

            } 

      } 

(Note: Could instead declare k as int k = a.length;  

would require (i) invariant to include k=a.length and  

(ii) to use k in place of K throughout in what follows.)  
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LOOP INVARIANT  

 

Loop invariant: (look again at the diagram)  

 n " 0 ! K–(2*n) " 0    //" 0 pairs swapped, and " 0 unswapped 

 ! reverse a0(0 to K)   //the answer we want) 

          = a(0 to n) ++ reverse a(n to K–n)  ++  a(K–n to K) 

Old style invariant might have been: 

  " i:int(n!i<k-n#  a0[i]=a[i]) !  n " 0 !  K–(2*n) " 0 !  

  " i:int(0!i<n#  (a0[i]=a[K-1-i] !  a0[K-1-i]=a[i]))  

Need the first part as a particular rearrangement is required. 
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LOOP INVARIANT IS ESTABLISHED 

Loop invariant:  

 n " 0 ! K–(2*n) " 0    //" 0 pairs swapped, and " 0 unswapped 

 ! reverse a0(0 to K)   //the answer we want) 

          = a(0 to n) ++ reverse a(n to K–n)  ++  a(K–n to K). 

Initialisation (establishing invariant): 

Initial code: n = 0 (no pairs swapped yet), K=a.length and a=a0 

Then required to show – 

    0 " 0 ! a.length " 0 : true by arithmetic and property of length 

and – 

reverse a0(0 to a0.length)= 

     a0(0 to 0)++reverse a0(0 to a.length)++a0(a.length to a.length) 

ie reverse a0=[ ]++reverse a0++ [ ]  

This is true. So we established the invariant! 
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RE-ESTABLISHING INVARIANT 

Assume the invariant holds at the start of an iteration  

and while condition is true (at least two elements left unswapped). 

Write n1, a1 for the values of n, a at the start of this iteration. 

• The invariant is true, so  

reverse a0(0 to K) 

= a1(0 to n1) ++ reverse a1(n1 to K–n1) ++ a1(K–n1 to K). 

• The while cond is true: (K–n1)-n1"2. So a1(n1 to K–n1) has 

length "2 and can be expanded. Then the expression for reverse a0  

= a1(0 to n1)  

 ++reverse ([a1[n1]]++a1(n1+1 to K–n1–1)++[a1[K–n1–1]])  

            ++ a1(K–n1 to K). 

By reverse properties (above), and associativity of ++, this  

= a1(0 to n1)  

 ++[a1[K–n1–1]]++reverse a1(n1+1 to K–n1–1)++[a1[n1]]  

              ++a1(K–n1 to K). 
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Write n2, a2 for the values of n, a at the end of this iteration. 

In the iteration, we swap entries n1 and K–n1–1 of the array.   

=  a2(0 to n1)  

 ++[a2[n1]]++reverse a2(n1+1 to K–n1–1)++[a2[K–n1–1]]  

                           ++a2(K–n1 to K) 

But then we increment n (i.e., n2 = n1+1, or n2-1=n1), so this 

=  a2(0 to n2–1)  

  ++ [a2[n2–1]] ++reverse a2(n2 to K–n2) ++[a2[K–n2]] 

                  ++a2(K–n2+1 to K) 

= a2(0 to n2)  

                ++ reverse a2(n2 to K–n2)  

                        ++ a2(K–n2 to K) 

We've proved that this is equal to reverse a0(0 to K). 

But this is just the (main bit of the) invariant for a2, n2. So this part 

of the invariant is re-established. 

Exercise: check other parts of Inv. (n"0, etc.) are also re-established. 
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FINALISATION 

Above argument worked when K–(2*n) " 2.  

Write a3 and n3 for values of  a and n after loop exit.    

By Inv and false while condition 0 ! K–(2*n3) ! 1. 

Then a3(n3 to K–n3) has length K–(2*n3) = either 1 or 0. Either way 

 reverse a3(n3 to K–n3) = a3(n3 to K–n3). 

Therefore, by the invariant, 

reverse a0(0 to K)) 

 = a3(0 to n3) ++ reverse a3(n3 to K–n3)  ++  a3(K–n3 to K) 

 = a3(0 to n3) ++   a3(n3 to K–n3)   ++  a3(K–n3 to K) 

 = a3(0 to K)  =  ar(0 to K). 

That is, Postcondition holds (remember K=a.length): 

  reverse a0-as-a-list  = ar-as-a-list 

Will it terminate? 

Loop variant = number of elements left unswapped = K–(2*n) (which 

is "0 by Inv.). This decreases by 2 each iteration. Stop when it's !1. 
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ALTERNATIVE JAVA REVERSE USING A ‘FOR’ LOOP 

The while loop in jReverse was while (K – 2*n >1){ 

K – 2*n > 1 <==> K – 2*n " 2 <==> (2*n)/2 !(K–2)/2 

<==> n ! (K–2)/2 (uses the fact that 2*n is even) 

Use this as a limit for a for loop implementation. 

void jReverse(double  [] a) { 

// Pre: none 
// Post: a = reverse a0   (both as lists)  

final int K = a.length; 

 for (int n = 0; n <= (K–2)/2; n++) //could be done in parallel 

  swap(a, n, K–n–1); 

 } 

Must still check termination – that only a finite number of n-values 

are considered; ie the list [0, 1, 2, .. , (K-2)/2] is finite. 

Take care there are no effects on the loop variable n. (There aren't.) 
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REASONING ABOUT FOR LOOP IN JAVA REVERSE 

 for (int n = 0; n <= (K–2)/2; n++) //could be done in parallel 

  swap(a, n, K–n–1); 

Reasoning about this requires Post to be in terms of array elements: 

"i:int(0!i<a.length # a[i]=a0[a0.length-i-1]) ! a.length=a0.length. 

Must show for each i: 0!i<a.length,  there is some iteration I which 

makes a[i]=a0[a0.length-i-1]) true and  this is not undone; i.e. no 

other iteration affects a[i].  

In fact, iteration I makes a[I]= a0[K-I-1] and a[K-I-1]=a0[I] and no 

other iteration affects these two elements of a. 

The condition a.length=a0.length is true as it is given by the 

postcondition of swap. 

Exercise: Using properties of reverse, show by induction on length 

of a that this postcondition is equivalent to a = reverse a0. 
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EXAMPLE: STRING COMPARISON 

Problem: given two strings, which comes first in lexicographic order? 

Lexicographic order is "Dictionary Order". 

eg "cat"<"catch"; "cat"<"do"; "cat">"car"; "cart"<"cave"; "car"="car" 

First attempt: 

enum Ord{before, same, after} 

Ord compare(char [] s, char [] t) { 
// Pre: none 

// Post: s=s0 and t=t0 and 

//             ((r = Before and s is strictly before t in lex. order) 

//     or (r= Same and s = t) 

//      or (r= After and s is strictly after t))} 

Track along s and t in parallel until either they disagree or one of 

them is exhausted. Then we can work out the result.  

(Note: Before is short for Ord.before, etc.) 
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THE POST-CONDITION? 

What does lexicographic order really mean? One explanation says – find the first 

place where s and t differ. So, using ^ for string concatenation, we write 

  s = u^a^s',       t = u^b^t',  

where u, s', t' are strings and a, b are characters.  

So:  • u = first part where s and t agree  

   (could be empty or could be all of s or all of t) 

 • a and b (a # b) are the first differing characters, 

 • s' and t' are the remaining parts. 

Then s is before (or after) t according as the unicode value of a is less than (or 

greater than) the unicode value of b, i.e. check a<b. 

BUT this doesn’t cover the cases where one string is an initial substring of the other 

(where u exhausts s or t) or when s=t: 

  •  if t = s^t' & t# s then s is before t (u exhausts s), t' is non-empty 

  •  if s = t then they’re the same 

  •  if s = t^s' & s# t then s is after t (u exhausts t), s' is non-empty 
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 PROGRAM IDEA 

A possible Haskell solution: 

data Order = Before | Same | After 

listcomp [ ] [ ]  = Same 
listcomp [ ] (y:t)  = Before 
listcomp (x:s) [ ] = After 
listcomp (x:s) (y:t) 
   | x < y     = Before  
   | x==y     = listcomp s t 
   | x>y     = After 

Postcondition was: 

// Post: s=s0 and t=t0 and  

//             ((r = Before and s is strictly before t in lex. order) 

//      or (r= Same and s = t) 

//      or (r= After and s is strictly after t)) 
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STRING COMPARISON IN JAVA (1) 

It is hard to give a neat characterisation of Post for jCompare. 

Instead, relate the Java Post to Haskell function listcomp, (and then 

show listcomp is correct). 

Ord jCompare(char [] s, char [] t) { 
// Pre: none 
// Post: r = listcomp s0 t0 (both s and t as lists) ! s=s0 ! t=t0 

// Note that s and t won"t change, so we could write s,t for s0,t0 

// But we use s0, t0 as a reminder they are the initial values 
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STRING COMPARISON IN JAVA (2) 

Ord jCompare(char [] s, char [] t) { 
// Pre: none 
// Post: r = listcomp s0 t0 (both s and t as lists) ! s=s0 ! t=t0 

// In what follows we assume s and t don"t change 

//        hence we can write s,t for s0,t0 throughout 

Idea 1: Use index n to track along s and t in parallel (s[n] and t[n] are 

next characters to compare) until either they disagree or one of them 

is exhausted. Then we can work out the result. 

Could use as Invariant 

 0 ! n ! min(s.length, t.length)  (keep n within bounds) 

 ! "i.int (0 ! i < n   # s[i] = t[i]) 

In English:‘No difference found yet’. 

BUT: difficult to relate this invariant to Postcondition 
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(Better) Idea 2: Mimic the Haskell definition.   

(We'll see a general form of this idea (called ‘tail recursion’) soon.) 

When s and t differ or one of them is exhausted we're in the Haskell 

base case and can work out the result. 

 
Invariant imitates recursion of Haskell definition: 

  0 ! n ! s.length ! 0 ! n ! t.length ! 

  listcomp s0 t0   (the result we want using initial args) 

                          //i.e. listcomp s0(0 to s.length) t0(0 to t.length) 

  = listcomp s(n to s.length)   t(n to t.length) 

                                            (the result we'll get using current args) 
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METHOD 

 

Having tracked along n elements, loop invariant tells us we can get 

the right answer simply by calculating 

 listcomp  s(n to s.length)  t(n to t.length) 

 

To do this, look at parts of Haskell definition. 

 

If s(n to s.length) = [] or t(n to t.length) = [ ]  (no more elements) then 

can calculate the result immediately (use first 3 cases of definition.) 

 

Otherwise (last 3 cases), compare s[n] and t[n]:  

 if different, can calculate result;  

 otherwise (recursive call) continue looping. 
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CODE 

Ord jCompare(char [] s, char [] t) { 
// Pre: none 
// Post: r = listcomp s0 t0 (s and t as lists) ! s=s0 ! t=t0 

   int n = 0 
   // Invariant:     0 ! n ! s.length ! 0 ! n ! t.length ! 

   //                    listcomp s0 t0 =  

   //                           listcomp s(n to s.length) t(n to t.length) 

   // Variant:       min(s.length, t.length)-n 

   while            // Invariant true, s and t not exhausted 

      ((n<s.length) &&  (n<t.length) && (s[n] == t[n])) {  

                        // Neither s(n to s.length) nor t(n to t.length) is [ ]                                            

                        // and s(n) = t(n); recursive case 

        n ++;}      // s or t exhausted or s[n] < t[n] or s[n] > t[n] 

                        // Finalisation - next slide 

   } 
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FINALISATION 

// Invariant true, and in base case  of Haskell def. — copy it! 

if (exhausted(s,n) && (exhausted(t,n))  

        return Ord.same; 

else if (exhausted(s,n))     // so s exhausted, t not exhausted 

        return Ord.before; 

else if (exhausted(t,n))      // so t is exhausted, s not exhausted 

        return Ord.after; 

else                                // neither exhausted 

        if (s[n] < t[n]) return Ord.before; 

else if (s[n] > t[n]  return Ord.after; 

Loop variant: Use number of possible comparisons that may still be 

made:    min(s.length, t.length) – n 

boolean exhausted(char [] st, int k) { 

   // Pre: 0<=k 

   return (k >= st.length;}  
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For the record here are the proofs that compare is correct. We assume s=s0 and 
t=t0 throughout.  

1) Invariant is set up by initial code. Required to show Invariant is true when n=0 
and s=s0 and t=t0. i.e. show 0!0!s.length ! 0!0!t.length !listcomp s0 t0 = 

listcomp s0 t0, which is true. (Note lengths are always "0.)  

2) Invariant + while condition false + final code implies postcondition. False while 

condition means one or other (or both) of s or t is exhausted or neither is exhausted 

but they differ at position n. That is, one or more of the following conditions hold: 
(i) n>=s.length, (ii) n>=t.length, or (iii) n<s.length ! n<t.length ! s[n]# t[n].  

There are 5 cases in all, which are: 

(a) only s is exhausted, (b) only t is exhausted, (c) both s and t are exhausted, (d) 
neither s nor t is exhausted and s[n]<t[n], and (e) neither s nor t is exhausted and 
s[n]>t[n]. The code covers them all with the correct results. Below in (1) we show 
case (c), when both s and t are exhausted, and in (2) we give case (d). The other 
three cases are left as exercises.  
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(1) The invariant gives listcomp s0 t0 = listcomp s(n to s.length) t(n to t.length) 
= listcomp [] [] = Same = r.  
The invariant specifies n!s.length and n!t.length, hence n=s.length=t.length by 
Case: (i)+(ii). 
 
(2) The invariant gives listcomp s0  t0 = listcomp s(n to s.length) t(n to t.length) 
= listcomp (s[n]: s(n+1 to s.length)) (t[n]: t(n+1 to t.length))  
 (s[n], [t[n] are defined since n<s.length and n<t.length by case of while test) 
= Before = r (since s[n]<t[n]) 

3) Variant decreases. The variant is min(s.length, t.length) - n, which decreases at 

each iteration  as n increases.  Within the loop it is guaranteed by the invariant to be 
" 0 and so the loop must terminate. 

4) Array accesses are ok:  In the array accesses within the while condition it is 
known that 0 ! n < s.length and 0 ! n < t.length, by the invariant and the conjuncts 
of the condition. In the finalisation it is known that ¬exhausted(s,n) and 
¬exhausted(t,n), so by Post of exhausted n<s.length and n<t.length. 
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5) Invariant is maintained: There are 2 parts to check. Let n1 be the value of n at 
the start of the loop code and n2 the value at end. Since the while condition holds, 
then n1<min(s.length, t.length) and s[n1]=t[n1]. By the code n2 = n1+1, which 
guarantees that n2!min(s.length, t.length).  The second part of the invariant is re-
established as follows, using the conjunct s[n1]=t[n1] of the while condition:  

At start of loop listcomp s0 t0 = listcomp s(n1 to s.length) t(n1 to t.length) (by 
Invariant) 

RTS listcomp s0 t0 = listcomp s(n2 to s.length) t(n2 to t.length) 

We show this by showing  listcomp s(n1 to s.length) t(n1 to t.length) 

          = listcomp s(n2 to s.length) t(n2 to t.length) 

LHS = listcomp (s[n1]: s(n1+1 to s.length)) (t[n1]: t(n1+1 to t.length)) 
               (since n1<s.length and <t.length) 
= listcomp s(n1+1 to s.length) t(n1+1 to t.length) (since s[n1]=t[n1]) 
= listcomp s(n2 to s.length) t(n2 to t.length) = RHS 

all using the Haskell code for listcomp. 
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Course 141 – Reasoning about Programs 

 

TTTaaaiiilll      

RRReeecccuuurrrsssiiiooonnn 

 

• Tail Recursion as a technique for transferring Haskell reasoning  

 into Java. 

• Tail recursion used to transform recursion into loops, so gaining in  

 efficiency. 

• Transform recursion into Tail Recursion using accumulating  

 parameters 

• Further illustration of loop invariants and reasoning with them 
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TAIL RECURSION (REVISION) 

 

A definition of a function f is tail recursive iff the results of any 

recursive calls of f are used immediately as the result of f, without 

any further calculation. 

An example: 
 isin x [ ]   = False 
 isin x (h:t) | h==x      = True 
              | otherwise = isin x t 

A non-example: 
 concat [ ] u    = u 
 concat (h:t) u  = (h:(concat t u)) 

Not tail recursive: the result of the recursive call (concat t u) is 

used in a further calculation; it has h put on the front. 

We see that in a tail recursive definition, the recursion is used simply 

to call the same function but with different arguments. 
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TAIL RECURSION = LOOPS 

• Think of the tail recursion as meaning  

 “do the same computation again, but with new arguments”. 

• In Java, keep variables for the arguments, and then tail recursion 

means “update the variables, and repeat”.  This is just looping. 

• Loop invariant says: 

  “the answer you originally wanted is the same as if you had

  calculated it starting with the variables you’ve got now”: 

 "function arg0 = function arg" 

e.g. listcomp was tail recursive 

Ord jCompare(char [] s, char [] t){ 

//    (See earlier  ) 
//  Invariant ... ! listcomp s0 t0 =  

//                       listcomp s(n to s.length) t(n to t.length) .... 

The method of converting Haskell tail recursion to Java loops is the 

same whatever the argument types, as we’ll see.  
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EXAMPLE – ISIN 
 

isin : Eq a => a -> [a] -> Bool  
isin x []      = false 
isin x (h:t)  
 | x==h      = true 
 | otherwise = isin x t 

ISIN IN JAVA  

boolean jIsIn(int x, int [] t) { 

   // Pre:  none 
   // Post: r = isin x0 t0 ! t is unchanged 

   int i=0; 
   while   //Inv: x=x0 ! t=t0 ! isin x0 t0 = isin x t(i to t.length)  

               // ie result we want = result from here ! 0!i!t.length 

               // Variant: t.length-i 

       ((i<t.length) && (x!=t[i]))  {i++;} 

   return (i!=t.length); } 
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PROOF THAT JAVA ISIN IS CORRECT (1) 

Invariant is initially established:  

Note: x and t are unchanged throughout – x=x0 and t=t0 always. 

Required to show invariant true just before entering loop first time: 

Given: 

 i=0 (initialisation by code) 

To show: 

 isin x0 t0 = isin x t(i to t.length) ! 0!i!t.length 

First conjunct 

<==> isin x0 t0 = isin x t(0 to t.length) (substitute for i) 

<==> isin x0 t0 = isin x0 t0 (x and t are unchanged) 

Second conjunct  

<==> 0!0!t.length <==> true by arithmetic and length property. 
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PROOF THAT JAVA ISIN IS CORRECT (2) 

Postcondition is achieved: 

At exit of loop either i"t.length or x=t[i]. Also Invariant is true: 

isin x0 t0 = isin x t(i to t.length) ! 0!i!t.length ! t=t0 

Case 1: i!t.length.   

i!t.length (by Inv.) and i"t.length (by Case) ==> i=t.length  

isin x0 t0 (result we want) = isin x t(i to t.length) (by Inv) 

= isin x t(t.length to t.length) (substitute for i) 

= isin x [] = False (by Haskell code) = Java result r 

Case 2: (i<t.length and x=t[i])  

Since i<t.length , t(i to t.length) = t[i]:t(i+1 to t.length). 

Hence isin x0 t0 =  isin x t(i to t.length)  

= isin x  t[i]:t(i+1 to t.length)  

= True (by case, Haskell) = Java result r 
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PROOF THAT JAVA ISIN IS CORRECT (3) 

Invariant is re-established:  
Let i1 be value of i just after the while test on an arbitrary iteration 
and i2 be value at the iteration end.   
(No need for x0 and t0 as no changes made to either.)  

Given:  (i1<t.length ! t[i1]#x) (loop test) ! (0!i1!t.length 

    ! isin x t = isin x t(i1 to t.length)) (Invariant) 

Required to show invariant holds at end of loop (i2=i1+1 by code): 

    isin x t = isin x t(i2 to t.length) ! 0!i2!t.length 

0!i1<t.length (by Inv and loop test)  

<==> 1!i1+1!t.length <==> 1!i2!t.length ==> 0!i2!t.length 

isin x t = isin x t(i1 to t.length)   (by Invariant) 

= isin x t[i1]:t(i1+1 to t.length)   (since i1<t.length)  

= isin x t(i1+1 to t.length)   (by Haskell  x # t[i1]) 

= isin x t(i2 to t.length), so the invariant  is re-established.  
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Proof that jIsIn is correct 

Remaining proofs required to show that jIsIn is correct. 

Postcondition set up: See slide 33. Note that in Case 2 we rely on the fact that in 
Java a test such as i<t.length && x # t[i] evaluates the first condition and if it is 
false does not evaluate the second condition. In a language where this was not the 
case, you would need to code using if-statements inside the while loop and employ 
an additional boolean variable, such as "finished" (or use some statement such as 
break if the language provides it).  

Variant decreases:  

as i increases, t.length-i decreases.  

By Inv. i ! t.length, so the variant "0 and loop must stop.  

Array accesses ok: Note that 0!i<t.length in the loop. 

In fact, jIsIn could also have been implemented directly in terms of linked lists or 
ArrayLists. (See later.) Using more abstract list operations may sometimes enable 
the algorithm to be checked for correctness more easily (although in this case the 
proof doesn't seem too hard). 

Of course, at some point it must be proved that the abstract operations provided by 
the implementation (eg by ArrayLists) are correct.  
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TAIL RECURSION – GENERAL SCHEME 

Haskell definition (assuming f has one parameter): 
 f x  
  |c1 = a1 
  |c2 = a2 
  |…  = … 
  |d1 = f x1 
  |d2 = f x2 
  |…  = … 

a1, a2, … are expressions giving results in the non-recursive cases. 

x1, x2, … are the new parameters used in the tail recursive cases. 

a1, a2, …,x1, x2, …, as well as the guards c1, c2, …, d1, d2, …, are 

all calculated simply, without recursion. 

No difficulty in making this work if f has more than one parameter. 

Exercise:  

Use the general translation given on next slide to obtain jIsIn.  
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LOOP TRANSLATION IN GENERAL 

resultType jf(someType x, …) { 

// Pre:  any preconditions needed for f 
// Post: r =  f x0  

   while   (!c1 && !c2 && …) { 
   // Inv: f x0  = f x    <<--NOTE!! 

   //  ! any preconditions for f in terms of x that are not implied  

   //   by true while condition ! conditions for ok array bounds 

   // Variant: same as value used to show Haskell terminates 

    if         (d1)  {x = x1;} 

    else if (d2)  {x = x2;} 

    else if …  {  } 

      } 
   if         (c1) return a1; 

   else if (c2) return a2; 

   else if …; 

   } 
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ANOTHER EXAMPLE: DATE (HASKELL) 

This example is taken from an earlier tutorial on invariants 

--pre: 1!d0 ! y0"1900 

--post: (d0=$(i=y0,ry-1)(days(i))+rd) 

--            ! 1!rd!days(ry)  where (rd,ry)=date d0 y0 

date d y   
 | d>days(y) = date (d-days(y)) (y+1) 
 | otherwise = (d,y) 

days(y) is a helper function and returns the number of days in y: eg 

days y   
 | (y `mod` 4)==0   = 366 
 | otherwise = 365 

See slide 40 for verification of date by induction.  
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ANOTHER EXAMPLE: DATE (JAVA) 

ReturnPair jDate(int d, int y) { 
   // Pre:   d0#1 ! y0 # 1900 

   // Post: (rday, ryear ) = (date d0 y0) 

while  (d > jDays(y)) { 
       // Inv.: (date d0 y0 = date d y) ! d#1 ! y#1900 

       // Variant: d 

       d = d-jDays(y); y++;  } 

   return new ReturnPair(d, y); 

   } 

The Java helper function jDays and the class ReturnPair are assumed. 

class ReturnPair{ public final int day, year; 

 public ReturnPair(int d, int y){day=d; year=y;} } 

See slide 41 for verification of jDate. Note the Inv. includes the 

precondition for d and y. 
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Proof that (Haskell) date is correct. 

The proof is by induction on d. Let 1!d for arbitrary d.  

Assume as IH: For all d'<d 

"y:int(1!d' ! y"1900 # (d'=$(i=y, r'y -1)(days(i))+ r'd ) ! 1! r'd!days(r'y)),  

where (r'd, r'y) = date d' y. 

To show: "y:int(y"1900 # (d=$(i=y, ry-1)(days(i))+rd ) ! 1! rd!days(ry)), 

where (rd, ry) = date d y.       Let y be arbitrary and satisfy y"1900. 

Case 1: d!days(y). Then rd =d and ry = y. After substitution,  

must show (d=$(i=y, y-1)(days(i))+d) ! 1 !  d ! days(y). 

First conjunct reduces to d = 0+d, true by arithmetic.  

Also 1!d by assumption and d!days(y) by Case. 
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Case 2: d>days(y).  

Let (r''d, r''y) = date (d-days(y)) y+1. Then (rd,ry)=( r''d, r''y).  

Must show (d=$(i=y, ry-1)(days(i))+ rd ) ! 1! rd!days(ry))  (*). 

First note that the arguments for the call date (d-days(y)) (y+1) satisfy 

its precondition:  

d-days(y)>0 (by Case) so d-days(y)"1, and y+1>y "1900 by assumption.  

Also, d-days(y)<d, so IH is applicable giving:     

"y:int(1!d-days(y)!y+1"1900# (d-days(y)=$(i=y+1, r''y -1)(days(i))+r''d)  

    ! 1! r''d !days(r''y) ).  

Hence can derive (d-days(y) = $(i=y+1, r''y -1)(days(i))+ r''d) ! 1! r''d !days(r''y) 

<==> (d=$(i=y, r''y -1)(days(i))+r''d) ! 1! r''d!days(r''y).  

Substitute rd = r''d and ry = r''y  

giving (d=$(i=y, ry -1)(days(i))+ rd) ! 1! rd !days(ry)<==> (*). 
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Proof that jDate is correct. 

We show that for jDate the postcondition is set up at the end of loop and that the 
invariant is maintained within the loop.   

Postcondition is set up by jDate 
On exit from the while loop d>jDays(y) is false ==> d!jDays(y).  
By Invariant d"1, so second part of Post is attained.  
RTS also that (rday, ryear)=date d0 y0.  

date d0 y0=date d y (by Inv.) = (d,y) (by Haskell date)  

     since d!jDays(y)= (rday, ryear) (by Java jDate). 

Invariant is established at start of loop. 
Required to show date d0 y0 = date d y ! d"1 ! y"1900. Know d=d0 and 

y=y0 by code ==> first conjunct true; second and third conjuncts are true by 
Precondition. 
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Invariant is re-established by loop code. 
Let d1 and y1 be the values of d and y at start of loop code and d2 y2 be the values 
at end.  

Know (1) d1"1, y1"1900 (by Inv) and (2) d1>jDays(y1) by loop test.  

Also know: date d0 y0 = date d1 y1.  

(Assume that Haskell days y and Java jDays(y)  compute the same answer (**))  

Required to show date d0 y0 = date d2 y2.  

At the end of the loop code d2 = d1-jDays(y1) and y2 = y1+1.  

date d1 y1 = date (d1-days(y1)) (y1+1) = date d2 y2  

 (use (**) and Haskell code).  

Note the precondition of date d1 y1 holds by (1).  

Hence date d0 y0 = date d2 y2.  

The other parts of Invariant, d2"1 ! y2 " 1900, are true by (1) and (2) . 

Loop terminates. 
Variant d decreases each iteration since d1-jDays(y1) < d1 by definition of jDays.  
Since d is always "1 by the Invariant, the looping cannot continue forever. 
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NOT ALL FUNCTIONS ARE TAIL RECURSIVE  

--pre: n"0    post: r = !n where r = fact n 
fact n  
 | n==0      = 1 
 | otherwise = n*(fact (n–1)) 

BUT residual computations (n*…) can be “accumulated” into a 

single variable (you saw this many times in Haskell lectures): 

--pre: n"0 
factTR m n  
 | n==0      = m 
 | otherwise = factTR (m*n) (n–1) 

m is the accumulator parameter  in factTR. 

Postcondition of factTR? 

--Post:r = m * fact n where r = factTR m n 

Can then calculate fact n by factTR 1 n 
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FROM NON-TAIL RECURSIVE FUNCTIONS TO LOOPS  

VIA TAIL RECURSIVE FUNCTIONS 

(1) Given correct non-tail recursive function f and the corresponding 

tail recursive function fTR, must show that f and fTR compute 

the same result (for appropriate initial values). 

(2) The function fTR with the accumulating parameter is tail 

recursive, so can convert it into a loop (the Java program is jFTR). 

To obtain correct result from jFTR must initialise the 

accumulating parameter to the right value at the start. 

(3) Prove jFTR correctly implements  fTR. 

(4) Check f is correct! 
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Proof that fact = factTR 1 (Revision) (Step 1) 

Prove by induction on n  that 
 "m:int ((factTR m n) = m*(fact n)) 
Then factTR 1 n = 1 * (fact n) = fact n 

Proof  Base case: (n=0). Let M be an arbitrary int; 

factTR M 0=M (by code) = M*1=M*(fact 0)(by code) 

Induction step: assume as inductive hypothesis (note the "m) 

"m:int((factTR m n) = m*(fact n))  

Then, let M be an arbitrary int; factTR M (n+1) 

= factTR (M*(n+1)) n (by code for factTR) 
= (M*(n+1))*(fact n) (by Ind. Hyp. - here m is M*(n+1)) 

= M*(fact (n+1)) (by associativity of * and code for fact) 

Very important note  

Can’t prove fact n = factTR 1 n directly by induction on n. 

Must understand better how the accumulator parameter works, and 

prove a stronger statement. ("m((factTR m n)=m*(fact n)).  

You saw examples of this in the Induction part of the course. 
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IMPLEMENTATION USING A LOOP (STEP 2) 

int jFactTR(int n) { 

// Pre: n0#0 
// Post: r = fact n0 (or r = factTR 1 n0) 

   int m  = 1;  // m is the accumulator   

   while         (n != 0) {  
   // Inv: factTR 1 n0 (= fact n0) = factTR m n ! n#0  

   // Note n#0 needed for pre of factTR in reasoning 

   // Variant:  n  

        m = m*n;   n--;       //get new arguments m and n 

       } 
   return m;                //base case of factTR 

   } 

Could also code the recursive definition of fact directly into Java. 

But this version with while is much more efficient. 
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 Proof that jFactTR is correct (Step 3) 

The proof that jFactTR is correct follows exactly the same pattern as used to show 
that jDate is correct. Compare the two proofs to convince yourself this is so.  

Postcondition is set up by jfactTR 
At loop exit (n != 0) is false ==> n=0.  
Required to show r = factTR 1 n0.  

factTR 1 n0 = factTR m n (by the Inv.) = factTR m 0 (substitute for n)  

= m (by Haskell factTR) = result r ( by Java jFactTR). 

Invariant is established at start of loop: n=n0 and m=1 
Required to show (factTR 1 n0 = factTR m n) ! n"0 <==> 

(factTR 1 n0 = factTR 1 n0) ! n0"0 <==> True by precondition 
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Invariant is re-established by loop code 
Let m1/m2 and n1/n2 be the values of m and n at start and end of an arbitrary loop 
iteration.  

The Invariant gives n1"0 and factTR 1 n0 = factTR m1 n1  

and the loop test gives n1 !=0.  

By the loop code m2 = m1*n1 and n2 = n1-1.  

RTS n2"0 ! factTR 1 n0 = factTR m2 n2. 

n1 !=0 ! n1"0 ==> n1>0 (*) <==> n1-1"0 <==> n2"0. 

By the Haskell code factTR m1 n1 = factTR (m1*n1) (n1-1) (since n1 > 0) 

= factTR m2 n2.  

The precondition of factTR m1 n1 holds by the Invariant.  

Hence factTR 1 n0 = factTR m2 n2.  

Loop terminates 
Variant n decreases on each iteration since n1-1<n1. Since n is always "0 by the 
Invariant, the looping cannot continue forever. 
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OTHER DATA STRUCTURES 

So far we've implemented Haskell list functions as methods using arrays, 

which represented our lists.  However, there are other representations for 

lists – eg ArrayLists, which implements the List interface using arrays. 

The reasoning can then use list properties explicitly, which may be easier.  

We show the idea for jIsIn. Here's our previous version in Java: 

boolean jIsIn(int x, int [] t) { 
   // Pre:  none 
   // Post: r =  isin x0 t0 ! t=t0 

   int i=0; 
   while   //Inv: x=x0 ! t=t0 !  

               //        isin x0 t0=isin x0 t(i to t.length) ! 0!i!t.length  

               // Variant: t.length-i 

       (i<t.length && x!=t[i])   i++; 

   return (i!=t.length); 
   }   

Arrays as Lists and Tail Recursion, page 52       1/1/14 

ISIN IN HASKELL  

isin : Eq a => a -> [a] -> Bool  
isin x []      = false 
isin x (h:t)  
 | x==h      = true 
 | otherwise = isin x t 

isin IN JAVA USING ArrayList 

boolean jIsIn2(int x, ArrayList<Integer> t)    { 

// Pre:   none            //t is declared as a List of Integers 
// Post:  r =  isin x0 t0 ! deep struct. t = deep struct. t0 

Iterator<Integer> s = t.iterator(); 

while  (s.hasNext() && x != (s.next()).intValue()) 

//get value of head of t; Java knows it is an Integer; side effect 
// Invariant:  (isin x0 t0 = isin x s) ! "t = t0" 

// Variant: no. remaining elements of t to examine 

return s.hasNext();  } 
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Proof that jIsIn2 is correct —Assume x=x0 and deep structure of t = deep structure of t0 

throughout. This might be represented by "t=t0". (See comment below.) 

Reasoning about jIsIn2 is difficult. The invariant has to capture that the iterator s is moving 

along the list t, and that the deep structure of t, ie the elements in t, are not changed. 

Moreover, the s.next() method call has the side effect of moving s along one element of t to 

find the next element in t. I am not sure at the moment exactly how best to tie the position of 

s into the list t. Perhaps can capture it by "s=suffix of t", and the postcondition of s.next() as 

"s=tail(s0) && r=head(s0)". 

Let's see. First though, here is a picture to illustrate these things. 

 

s

t

s is a suffix of t

before s.next()

s=s0

3

s

t

after s.next()

r = 3 = head(s0) && s= tail(s0)
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Invariant: x=x0 ! "t=t0" ! t=t0 ! 

(I1): s is a suffix of t0 !  

(I2): isin x0 t0= isin x s. 

We'll assume x=x0, t=t0  and "t=t0" throughout and omit it from the reasoning to save 

clutter. 

1) Invariant set up by initial code: s=t0 (impicit in iterator initialisation) 

(I1) <==> t0 is a suffix of t0 <==> True 

(I2) <==> isin x0 t0=isin x t0 <==> True 

2) (Invariant + false while condition + final code ) implies postcondition: 

Successful loop exit implies either s has completed iterating over t (case 1) 

 or (s has not completed iterating over t ! x0=s.head()) (case 2)  

The invariant says the required result r (= isin x0 t0) =isin x0 s.  

Let s3 be value of s when the call s.next().intValue() is made;  

Case 1 (s has finished): s3=[];   isin x0 []=False,  

so the actual result given by the code (= s.hasNext()) = false is correct.  

Case 2 (x0=s3.head()) and s4=tail(s3): isin x0 s3 =True,  

so the actual result given by the Java code (=s.hasNext()) = true is correct. 

3) Variant decreases: The number of elements still to be iterated over reduces by 1 on each 

iteration by side effect of next() method of the iterator.  Hence the loop must stop as the 

length of a non-empty list cannot decrease forever. 
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4) Invariant is maintained:   

Let s1 be the value of s when the loop test is made, and s2 be the value of s after the call to 

s.next() – i.e. at the end of an arbitrary loop iteration.  

A true loop test means s1 not finished and x#value of head(s1).  Given 

(I1): s1 is a suffix of t 

(I2): isin x0 s1=isin x0 t0.  

RTS   

(I1'): s2 is a suffix of t0 

(I2'): isin x0 s2= isin x0 t0. 

(I1') is true by definition of suffix and tail given (I1). 

(I2'): LHS = isin x0 tail(s1) = isin x0 s1 by the Haskell code taken from 

right to left (since x# value of head(s1)) = isin x0 t0 by the invariant = RHS. 

5) Array accesses.  

As the structure is an ArrayList must check access: element s1.next() is accessed and exists 

in the loop as the loop is non-empty by the successful call to s1.hasNext() in the while 

condition. 

Note: the deep structure of t doesn't change - the list iterator s (for t) simply moves over the 

list in order. The method next() has the side effect of doing this. 
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This kind of reasoning is just as we did before. To remind you: 

•  The post-condition is in terms of a Haskell function f,  

    of the form r = f initial-args. 

•  The invariant is also in terms of f, of the form f initial-args = f current-args. 

•  There may need to be additional requirements to enforce the preconditions of f.  

VARIATIONS 

In the code on slide 52 the method jIsIn2 is defined for an ArrayList argument.  

A recursive version is the following: 

boolean jIsIn3(int x, ArrayList<Integer> t) { 

ArrayList<Integer> s=t; 

if (s.isEmpty()) return false; 

if (x == (s.get(0)).intValue()) return true; 

s=s.subList(1,s.size()); return jIsIn3(x, s); } 

You still have to reason that s remains a suffix of t0, etc. 

The actual parameter can be an implementation of List, namely ArrayList, declared 

(eg) as in ArrayList<Integer> t = new ArrayList<Integer>(10); 

After adding some elements jIsIn2 can be called by jIsin2(6,t) for example. 
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You can also implement jIsIn2 using generic Lists as in: 

boolean jIsIn2(int x, List<Integer> t) {  

   // Pre:   none //t is declared as a List of Integers 

   // Post:  r =  isin x0 t0 ! "t = t0" 

List<Integer> s = t; 

while  (! s.isEmpty() && x != (s.get(0)).intValue()) 

     //get value of head(s); Java knows it is an Integer 

     // Invariant:  (isin x0 t0 = isin x s) !  

     // x = x0 ! "t = t0" ! s is a suffix of t0 ! t=t0 

     // Variant: length of s 

       {s=s.subList(1,s.size()); // set s to tail(s)} 

   return !s.isEmpty();  } 

If you're interested in reasoning about linked structures, see Sophia, who is much 

more expert than me on that topic! 
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GENERAL METHOD USING HASKELL 
 

1) Find obvious solution in Haskell (usually easy) 

2) Prove the function is correct by induction (often the hardest part). 

3) Find less obvious tail recursive solution in Haskell and the relation 

between it and non-tail recursive function (sometimes not so easy). 

4) Prove the two functions give the same answers by induction. 

5) Translate the tail recursive version to Java with while loops (easy). 

6) The loop invariant can be written down immediately in terms of 

the Haskell functions. If the base Haskell function H is tail recursive 

the invariant is H args0 = H currentArgs (eg isIn was like this). If not 

the invariant is HTR initialArgs = HTR currentArgs (eg fact was like 

this). Initial Args are args0 and appropriate initial accumulator value. 

7) Prove the Java method is correct (usually easy). 
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SUMMARY 

• A useful notation for arrays-as-lists was introduced 

   a-as-a-list = a(0 to a.length) 

• Haskell functions can be used to specify Java methods 

• Tail recursive Haskell functions can be systematically converted into 

while loop Java methods 
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APPENDIX – FOR LOOPS 

public class Matrix{ 

  private int [] [] m, int size; 

  //class invariant: size>0 

public Matrix(int n){Pre?? 

    m = new int [n] [n]; size = n; 

    } 

//public String toString()  for printing out matrices 

public void zeromatrix(){ 

    for (int i=0; i<size; i++) 

      for (int j=0; j<size; j++) 

        m[i][j] = 0; 

    } 

  } 
What precondition on Matrix will ensure the invariant true initially?  
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FOR LOOP REASONING 

for loops are typically used to do the same operation to all elements 

of an array. Different iterations of the loop do not interfere with each 

other and the fact they happen in some particular order is irrelevant. 

(i) Sometimes the operations could be executed in parallel. 

Such for loops can be thought of as "do all these". 

 e.g. for (int i = 0; i < a.length; i++) a[i]=0; 

(ii) Sometimes, although the iterations cannot be executed in 

parallel, they could still be executed in any order.   

Such for loops can be thought of as "do this, then this,...".        

e.g. s = 0; for (int i = 1; i <= 5; i++) s+= i; 

(We'll see examples next week.) 
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PROVING THE POSTCONDITION HOLDS 

For case i): 

 for (int i=0; i<size; i++)  

  for (int j=0; j<size; j++)   m[i][j] = 0; 

Let I and J  be integers 0 ! I,J<size. Show that, at the end, m[i][j] = 0. 

Proof: there is an iteration of the for loops  

(namely with i=I and j=J)  in which m[i][j] becomes 0; once that is 

done, none of the other iterations will ever undo it. 

The pattern is quite general, and very easy. You reason that 

everything necessary is done, and then (because the iterations are 

independent) never undone. for loops should always terminate! 
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PROVING THE POSTCONDITION HOLDS (2) 

For Case ii) 

  s = 0; for (int i = 1; i <= 5; i++) s+= i; 

Why can’t the operations occur in parallel here? 

It is safest to reserve for loops for independent operations as in (i); 

a for loop can be coded as a while loop and for reasoning purposes it 

is often simpler to reason about the corresponding while loop.  

For this example, it's possible to reason similar to Case i): 

We must show that s=(Sum(i=1 to 5)(i)). Let I be an arbitrary int.  

There is exactly one iteration which adds I to s.  

Since this step is not undone, s=(Sum(i=1 to 5)(i))+initial value  

=(Sum(i=1 to 5)(i)) +0 = (Sum(i=1 to 5)(i)). 
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You may think that the second kind of for loop could be run in parallel. But consider again  
 s=0; for ( int i =1;  i<= 5;  i++){s+=i}  
It does satisfy a kind of independence — it doesn't seem to matter in which order the steps 
are taken. To show the  loop gives s=15, we could try to show that s=(Sum(i=1 to 5)(i))+0 
(=1+2+3+4+5 ) = 15. 
 

We could argue as follows: imagine s is a location (a 'bucket' if you wish), initially with 

value 0.  For an arbitrary I, the Ith iteration adds I into the location s and nothing removes it. 

So at the end of the loop every value of i has been added in and the value of s is the total 
sum. However, it is only correct if we assume the additions are made at different times.  
 
Imagine that we tried to make the additions for i =2 and i=3 at exactly the same time. We 

might argue as follows: "look in s" — the value is (say) 1 at the moment; "compute i+1 = 3" 

(i.e. 2+1) — make sure the value of s is now 3. But at the same time, the computation for i=3 

would result in the conclusion "make sure the value of s is now 4". So what is the value of s?  
There are various calculi for reasoning about such parallel operations - see the second (and fourth) 
year courses in concurrency.  
 
Of course, in practice, you will use for loops even when the operations are not independent. 
However, such loops are really masquerading as while loops and when reasoning about them you 
need to use the technique of  invariants.  (eg see an example next week.) 
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A TYPICAL FOR LOOP? 

boolean neg1 (int [] a) { 
//post: r % at least one negative integer is in a ! a=a0 

   boolean isNeg = false; 

   for (int i=0; i<a.length; i++) isNeg=isNeg || (a[i]<0); 

   return isNeg;} 

If a[i]"0 for every i then isNeg = result = false, which is correct. 

If a[i]<0 for some i, say I, then isNeg = true after the Ith iteration and 

stays true, and result = true, which is correct.  

boolean neg2 (int [] a) { 

for (int i=0; i<a.length; i++) if a[i]<0 return true; 

   return false;} 

If a[i]"0 for every i then neg2 returns from outside the for loop with 

result =false, which is correct. If a[i]<0 for some i, say I, then neg2 

would return after the Ith iteration with result=true, which is correct.  
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BUT ... 

• The result of executing neg1 and neg2 would be the same even if the 

iterations of the for loop were executed in a different order. 

• The reason is that although the answer could have been determined by 

any of the iterations, that answer would be the same in all cases. 

• This is not the case for neg3.  

int neg3 (int [] a) { 
//post "returns the first value of i: a[i]<0 (if any)" ! a=a0 

//formally?? 

for (int i=0; i<a.length; i++) if a[i]<0 return i; 

   return a.length;} 
 

• The answer depends on which for loop iteration causes the return. 

• Use a while loop for this kind of for loop. 
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CONVERTING FOR LOOPS TO WHILE LOOPS 
 

Generally, a for loop of the form   

for (<init> <test> <inc>) <code> 

becomes the while loop 

<init> 

// inv true here 

while <test> {    // inv true here and <test> true 

           <code> 

     <inc>  //variant decreased 

     }     

                               // inv true here and <test> false 
 

It’s up to you to find the right variant and invariant for the problem.  

The variant is often 0 when the loop stops – so test is variant>0.  

The invariant often includes the property variant"0. 
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Let's apply the method to our earlier for loop:  
 s=0; for (int i= 1; i<=5; i++) s=s+i; 

As a while loop it becomes 

s=0;   

int i = 1;  

while i<=5 {              //inv true here and while condition true 

      s = s+i;  i++; }   //inv true here and while condition false 

In order to show this loop adds together the first five positive integers we must find and 
include the correct mid-condition as invariant and show it is maintained. We must also find a 
variant and show the loop stops at the right time.  

The variant in this case is 6-i (the loop will stop when it reaches 0). 6-i>0 <==>5-i"0, so the 
loop test is equivalent to variant>0. 

The invariant  should represent the state when we are making progress. It should tell us what 

we have added to s so far. It is s=Sum(k)(k=1 to i-1) ! 1!i!6. We make the convention that 

Sum(k)k=1 to 0 is 0. Now we show that the loop works and also that it stops. Note the 
second conjunct of the invariant – it’s important! It implies variant"0. 

The loop stops: the variant decreases at each iteration since i increases. Within the loop (i.e. 
when the while condition is true) the variant is  >0. Hence the loop must stop since the 
variant cannot continue decreasing and remain >0. 

The invariant is set up initially: when i=1, s should be 0; it is. Also 1!1!6. 
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The invariant is maintained: call the values of i and s at the start of the loop i1 and s1. The 
requirement is s= Sum(k)(k=1 to (i1+1)-1) = s1+i1. This is exactly what the loop code 
computes — first it adds i1 to s1, then it increments i1 to i1+1. Also 1!i1+1!6 as the true 
while condition gives i1!5. More formally, let i2 and s2 be the values of i and s at the end of 
the loop. Given: 

1!i1!6 ! i1!5 ! s1=Sum(k)(k=1 to i1-1) (invariant before the code and loop test) 

i2=i1+1! s2=s1+i1 ( effect of code)  

Then RTS: 1!i2!6 ! s2=Sum(k)(k=1 to i2-1) (after the code) 

First, 1!i1!6 ! i1!5 <==> 1!i1!5<==>2!i1+1!6<==>2!i2!6 ==> 1!i2!6 

Next, (s1=Sum(k)(k=1 to i1-1)) <==> (s1+i1=Sum(k)(k=1 to i1-1)+i1) (add i1 to both sides) 
<==> (s1+i1 = Sum(k)(k=1 to i1)) <==> s2 =Sum(k)(k=1 to i2-1).  

The result is correct: at the end the false while condition (loop exited) tells us i>5 and the 
invariant that i!6 ! s=Sum(k)(k=1 to i-1). So i=6 and s=Sum(k)(k=1 to 5). Done! 

Generally, a for loop of the form  for (<init> <test> <inc>) <code> becomes the while loop 

<init>while <test> {                                  //inv true here and <test> true 

      <code><inc> //variant decreased}     //inv true here and <test> false 

It is up to you to find the right variant and invariant for the problem.  
The variant is often 0 when the loop stops and the invariant often includes variant"0.  
E.g. in the above example the variant was 6-i; it is 0 when i=6, which is when the loop will 
terminate. In addition 6-i"0 is equivalent to 6"i, which is included in the invariant. 

Exercise: Formalise neg3 as a while loop with suitable invariant. 


