Tutorial on reasoning about recursion in Java

Q	You said in your lecture that reasoning about recursion in Java was just like in
Q	Haskell. I tried to reason about gcd but I'm finding it hard. Could you help?
А	Where exactly are you stuck?
Q	I showed the base case when y=0.
\sim	That is, I showed the result (=x) satisfies
	$x \ge 0 \& x 0 \& x x \& \forall z:int(z x \& z 0 -> z x).$
	I used the definition of " ", that $z \mid x$ if $x=m*z$ for some int m.
	Most of the properties are easy: $x \mid 0$ because $0 \star x=0$.
•	But I am not sure what the Ind. Hyp. should be.
А	You want to show that for any non-negative x and y the post-condition holds. Since
	you appear to be using induction on y
Q	I see – I let
	P(y) be $\forall x: nat(r \ge 0 \& r x \& .r y \& \forall z: int(z x \& z y -> z r), where r=gcd(x, y).$
	I can assume $P(y')$ for all $0 \le y' \le y$ and try to show $P(y)$
А	You don't seem to need me after all!
Q	Let X>=0 be an arbitrary int.
Ū	
	How do I know what r is?
А	Use the program.
Q	Oh yes, of course.
	Since y>0, r =gcd(x,y)=gcd(y,x%y). As x%y <y can="" hyp.<="" i="" th="" the="" use=""></y>
А	Why is $x\%y < y$? Also, you need that $x\%y >= 0$ to use the hypothesis.
Q	OK! A property of "%" is that 0<=x%y <y.< td=""></y.<>
×.	
	So then I can deduce from the hypothesis that
	r ≥0 & r y & r x%y & ∀z:int(z y & z x%y -> z r)
	And I have to show (i) $\mathbf{r} \mathbf{x}$, and (ii) $\mathbf{r} \mathbf{y}$ and (iii) $\forall z:int(z \mathbf{x} \& z \mathbf{y} \rightarrow z \mathbf{r})$.
	(ii) is true from the hypothesis.
	· · · · · · · · · · · · · · · · · · ·
	I think I am stuck for sure now as the hypothesis doesn't seem to apply.
А	You give up too easily.
	Call $x\%y = g$ and write down a property involving x, y and g.
Q	Mmmm. g+k*y=x?
A	Correct.
Q	Ah! I see. Then this property holds also:
	for any z:int if z g and z y then z x, and if z x and z y then z g (**).
	When I take \mathbf{r} for z, I can deduce (i) from the hypothesis.
	To show (iii), suppose that $z x$ and $z y$. Then $z x$ follows by (**).
	Therefore $z y$ and $z x^{s}y$ so $z r$, which is what I want.
<u> </u>	I think it's done!
А	Excellent. (KB Feb 2002)