
1

Tutorial on reasoning about Java programs with loops
Q I find reasoning about programs confusing.

I don't know where to start. I don't know
what to write down. Anyway I know how to
program and I don't see the point of it.

A The reasoning is to help you get it right —
first time. And to understand your program
fully. It also can be used to construct a
program, and it often gives simpler
programs than you might get if you hacked
it. How about going through an example?

Q Yes, that might help. How about a simple
program — say, to find the minimum
element of an array?

A OK. The first step is to give a program
header and a precise precondition and
postcondition, preferably using logic. If
you find logic impossible, English is better
than nothing. But you did a whole course on
logic, so you shouldn't find it too hard.

Q I think I can do the program header: int minval(int [] a)
A Good, that'll do. You could use reals instead

of integers but the idea will be the same, so
fair enough.

Q Now how do I do the precondition here?
A Ask yourself if there are any restrictions on

the input data.
Q Maybe that the array is an array of

integers?
A No need for that — you put it in the header

already.
Q How about 0<a.length?
A Good idea – otherwise there would be no

values to find the min of!
Q

Now the postcondition. It should be:
— I think.

//pre: 0<a.length
//post: r = min(a)

A OK, but it's a bit informal.
Q Why?
A Well, "min" normally applies to two

numbers, not a whole array's worth. And if
you don't define what min means, and min
on arrays is not a basic Java method, how
are you going to verify that the program
calculates it?

Q Good point. How about //post: r=min{a[0],…,a[a.length-1]}
A Better. Could you do it formally in logic if

you had to?
Q How about

(I write r for the result returned by the
function.)

"i:int(0≤ia.lengthÆr≤a[i])

A That says r is <= any element in a. But then
r might be < min(a). You have to say r
occurs as a value in a as well.

Q Ah: so try "i:int(0≤i<a.lengthÆr≤a[i])
Ÿ $i:int(0≤i<a.lengthŸa[i]=r).

A Very good.
Q So do we use the min version or the logical

version?

2

A If you're doing it properly, the logical one.
But it can take ages to do. So stick with the
simple one. We've got:

int minval(int [] a)
//pre: 0<a.length
//post: r=min{a[0],…,a[a.length-1]}

Q Now what?
A How is the program going to work? What's

the idea?
Q Do a loop. Scan through a, keeping track of

the least element found.
A Good. So draw a diagram showing the

situation at the beginning of an arbitrary
iteration of the loop.

Q Here you are:

A Not enough detail. That picture would work
for just about any problem. So it doesn't
help.

Q So? I mean, what's the point of a diagram?
A What is the point ever? It helps you to think

about exactly what's happening. I think it
should mention and give the meaning of
every variable in the program.

Q OK, we'll need a variable, say n, to mark the
current place as we scan through (that's in
the diagram already), and another, say m, to
keep the minimum so far.

A Good. Now draw it.
Q Here it is.

I marked the range that n can take:
0 <=n<a.length.

I think you said you need that to check (i)
that array accesses in the loop are legal, and
(ii) that n has a particular value (probably
a.length-1 here) when the loop terminates —
you need this to get the postcondition right.

A Exactly. Great. Now you can do the
invariant and variant.

Q How?
A The variant is easiest — it measures how

much work there is left to do at that point.
Q So it's how much of the array we haven't

seen yet: that is [looks at diagram, to count]
a.length-1-n.

//variant: a.length-1-n

A Good. The invariant, on the other hand, is a
logical condition expressing that the
program is doing OK so far. It should say
what the diagram says, but in logic.

Q But how do I do that?
A What are the distinct points the diagram

makes?
Q Well, it says 0 <=n<a.length..
A Good — that will be in the invariant. What

other points does it make?
Q Well, it says m is the minimum of the values

in a up to n.
A Good. How d'you say that in logic?
Q How about m = min{a[0] Æ n}

3

A Well, OK, but you didn't define the notation
min{a[0]Æn}. Maybe add : // where min{a[0]Æn} means

min{a[0],a[1],…,a[n]}
Q Right. Should I have used the long way

instead?
A Not necessarily: we're not trying to make

things harder than they have to be, and it's
a good idea to use abbreviations, if you
define what they mean. Now are there any
more points the diagram makes?

Q — I can't see any.
A Are you sure? Have you covered everything

you need for the program to be doing OK so
far, at the beginning of an iteration of the
loop?

Q I mentioned all the program variables…and
said how they are related. I think I got the
lot.

A Fine. So can you write the invariant now?
Q Alright then, try: //invariant: 0≤n<a.length

// & m = min{a[0]Æn}
A Excellent! You did it!
Q Fine. Now what?
A Write the code. Include the precondition,

postcondition, invariant and variant as
comments.
I like this bit. Here we go:

That should work.

int minval(int [] a) {
//pre: 0<a.length
//post: r=min{a[0],…,a[a.length-1]}

int n = 0; int m = a[n];
while (n<a.length-1)
//invariant: 0≤n<a.length
// & m = min{a[0]Æn}
//variant: a.length-1-n

n++; if (a[n]<m) m = a[n];
 }

A Now you have to verify it.
Q I don't like this bit.
A That's because you aren't used to it. In fact

the verification can go hand in hand with
writing the code. Try the first step: show
the initialisation code establishes the
invariant.

Q That's this bit:

So what do I do? I don't know how to start.

//pre: 0<a.length
//post: r=min{a[0],…,a[a.length-1]}

int n = 0; int m = a[n];
while (n<a.length-1)
//invariant: 0≤n<a.length
// & m = min{a[0]Æn}

A To establish the invariant, find out what
values the variables have when the
invariant is reached, and see if the
invariant is true for those values.

Q Well, n will be 0 and m will be a[n]. So the
invariant will be:

0≤0<a.length
& a[n] = min{a[0]Æn}

A But it's still got n's in. Get rid of them.
Q OK: we get:

The first line is obviously true. But how can
I prove it?

0≤0<a.length
& a[0] = min{a[0]Æ0}

4

A It's just true. You don't have to prove it.
Formally, 0<=0 is true because the ordering
<= on integers is reflexive, and 0<a.length is
true because the pre-condition says so. So
no, you don't need to prove it.

Q How do I know when I have to prove
something?

A If it's true just because of properties of
integers or of Java, you don't have to prove
it. But if it relies on things your particular
program did, then you do, because you're
trying to verify the program works.

Q Seems reasonable, I suppose. Now the
second line?

a[0] = min{a[0]Æ0}

A This again is obvious. If we expand the
abbreviation min{a[0]Æ0}, we get:
and this equation is obviously true. Unless
you want to define min formally ...

a[0] = min{a[0]}

Q No, no, I don't mind, really. So that
establishes the invariant. Quite easy really.

A Note that you could have developed the code
by looking to see what you needed to do to
establish the invariant. The invariant is
true when n=0 and m = a[0], so if the code
sets up these values the invariant will be
established.

Q So we can actually construct programs this
way … [mildly impressed]
Now how d'you re-establish the invariant?

A Assume the invariant is true and the loop
exit test is false at the beginning of some
(arbitrary) iteration of the loop.

Q Right, so we have invariant true: 0≤n<a.length
& m = min{a[0]Æn}

while condition true: n<a.length-1
A Now here's the loop code again:

See what it does to the variables, substitute
their values at the end of this iteration into
the invariant, and see if it's true.

while (n<a.length-1)
//invariant: 0≤n<a.length
// & m = min{a[0]Æn}
//variant: a.length-1-n

n++; if (a[n]<m) m = a[n];

Q OK, well, n is incremented by 1. So if I
substitute n+1 for n in the invariant, the
first half of it becomes:

0≤n+1<a.length

A Good. Is it true?
Q [thinks…] Yes, because we already had 0<=n,

and the while condition was true, so
n<a.length-1. So how do I write that down?

A You just did.
Q So this will do—? By the old invariant and the true while

condition, 0≤n<a.length-1.
So 0≤n+1<a.length.

A Sure, I love it. We're not trying to nit-pick
in this course. We just want to know the
reasons why things are true.

Q I get the idea now. What about the second
half of the invariant? I can substitute n+1
for n:
But I don't know what 'm' is after the
iteration. It depends on the "if" test:
So what do I doooo?

m = min{a[0]Æn+1}

if (a[n]<m) m = a[n];

5

A You could take it case by case: first assume
the test in the "if" is true, and check the
invariant is reestablished; then do it for
when the if-test is false. That's like ⁄-
elimination. It will always work.
 There's another way which often works.
Look at the difference between the old and
the new invariant. The new invariant (after
the iteration) is usually the old one (before
the iteration), plus an extra bit, because the
loop has done a bit more work after one
more iteration. So try to show the code
covers that extra bit.

[exercise: do it this way!]

Q So how d'you do that here?
A We're trying to prove that after the

iteration we have:
What's this in unabbreviated form?

m = min{a[0]Æn+1}

Q In full, it is m = min{a[0], …, a[n], a[n+1]}.
A And what did this bit of the invariant say

before the iteration? Call the old value of m
"m1" if you like.1

Q It said: m1 = min{a[0], …,a[n]}.
A And what's the difference between the two?
Q Well, m is the min. of all the items that m1 is

the min of, plus the extra one, a[n+1]. So I
think we have

m = min{m1,a[n+1]}.

A Good! I think you can say that without
proof.
Now does the code set m to min{m1,a[n+1]}?

Q Yes! It does!! The code increments n first, so
by the time we get to the loop test, we're
dealing with n+1. So in effect, the code sets
m to a[n+1] if a[n+1]<m1. This means m ends
up the minimum of m1 and a[n+1]. That's
what I was thinking of when I wrote the
code.
(I even thought of writing m=min(m,a[n])
but I thought you'd object.) Is that it?

while loop code:

n++;
if (a[n]<m) m = a[n];

A Yes.
Q How d'you prove it?
A You just did. If you know why it's true,

you're 80% towards a proof. Just write what
you know and why you know it.

Q OK, I'll try, but this is hard. Re-establishing m = min{a[0] Æ n+1}
Before the iteration, the invariant
gives m1 = min{a[0], …, a[n]}.
After the iteration the invariant is
m = min{a[0], …, a[n], a[n+1]}.
That is, m = min{m1, a[n+1]}.
But the code sets m to the minimum of
its old value (m1) and of a[n+1]. QED.

A Excellent. You should say somewhere that
m1 is the value of m before the iteration.

Q m1 is the value of m before the
iteration.

1This is as in lectures. As there are 2 cases for m, we're in danger of confusing the
old and new values of m, so having separate symbols for the old and new values of
m may help here. We don't really need to bother with this for "n", as there's only
1 possible value of n after the iteration.

6

A Thank you. Now show the loop terminates.
Q How d'you do that?
A Show the variant starts out >=0 on the first

iteration,
drops by at least 1 in each iteration,
but never goes negative without the loop
terminating.

Q Right, here goes: The variant is a.length-1-n.
At the beginning of the first iteration,
n is 0. So the variant is a.length-1,
and this is ≥0 by the pre-condition.

A Good. Next bit?
Q Each iteration increases n by 1.

So the variant drops by ≥1 each
iteration.

A Doing well. How about the last bit?
Q The while condition is false if

n≥a.length-1, which says a.length-1-n≤0.
So if the variant gets to be ≤0, the
loop will not execute.

A Wonderful. Now show the polishing-off
code sets up the postcondition.

Q Right. What do I have to do?
A Assume the invariant and loop exit test are

both true, and show that the code after the
loop makes the postcondition true. First,
write them out:

invariant: 0≤n<a.length
& m = min{a[0]Æn)}

Loop exit test: n>=a.length-1
post: r=min{a[0],…,a[a.length-1]}

Q Now what?
A Show that the code after the loop makes the

postcondition true. What result does the
code return?

Q — it doesn't! I forgot! The code should be minval(int [] a) {
… … …
return m;

A Naughty. At least the verification caught
the mistake. That is what it's for. Now can
you verify it?

Q We know r = m. (r is the result returned.) r=m
A So substitute m for r in the postcondition.
Q OK:

— ah, we know that's true. m is min(a),
because the invariant gives
and n should be a.length-1 now as it starts at
0 and goes up by 1 each iteration so it'll
eventually hit a.length-1 and then the loop
will exit.

m = min{a[0],…,a[a.length-1]}.

m = min{a[0]Æn}

A Well OK, but this is a bit vague. Can you
show n=a.length-1 just from the invariant
and loop test?

Q Errm,
A Write them again.
Q Here you go…

Yes — n>=a.length-1 and n<=a.length-1, so
n=a.length-1.

invariant: 0≤n<a.length
& m = min{a[0]Æn)}

Loop exit test: n>=a.length-1
A GOOD. So write the proof out in order.

7

Q After the loop, the invariant and exit
test are both true. So:
0≤n<a.length & m = min{a[0]Æn)}
and n>=a.length-1.
Therefore n=a.length-1.
So m = min{a[0]Æa.length-1}.
As the code returns m, we get
r = min{a[0]Æa.length-1}.
This is the postcondition.

A Very good. Now you only have to check
array accesses are legal in the program.
Here it is again.

Where are the array accesses?

int minval(int [] a) {
//pre: 0<a.length
//post: r=min{a[0],…,a[a.length-1]}

int n = 0; int m = a[n];
while (n<a.length-1)
//invariant: 0≤n<a.length
// & m = min{a[0]Æn}
//variant: a.length-1-n

n++; if (a[n]<m) m = a[n];
return m;

 }
Q Here:

and here:
int m = a[n];
if (a[n]<m) m = a[n];

A Good. Are they legal? Do they always have
indexes between 0 and a.length-1?

Q The first one does, because n was set to 0
initially.

A Fine. What about the ones in the loop?
Remember these accesses occur as many
times as the loop is done, so you'd better only
use the invariant and failure of the loop exit
test to verify them.

Q Well, we have:
So after incrementing n, it's <=a.length-1
and >=0 (we did this before). So the a[n]
accesses are legal.

//invariant: 0≤n<a.length
& m = min{a[0]Æn)}

//while condition true:n<a.length-1
n++; if (a[n]<m) m = a[n];

A That's it. Easy, eh?
Q Will we have to do all this in the exam?
A I sincerely hope so. But honestly, it can be

quite long, so often you get asked to do only
a part of it, like re-establishing the
invariant.

Q Phew.
A But not always—
Q [Transfers to a cheaper university]

IMH, Feb 00 (with a few minor changes by KB 02)

