
Imperial College London - Department of Computing

A Brief Introduction to Otter

Krysia Broda and Silvana Zappacosta

November 2009

What is Otter?

Otter could stand for Organized Techniques for Theorem-proving and Effective Research. It
is a resolution based theorem prover that incorporates binary resolution, factoring, hyper-
resolution and paramodulation. It was developed at Argonne by William McCune, Larry
Wos and others and is written in C.

For a complete reference see the reference manual for Otter 3.3. The manual can be
retrieved either from the directory /usr/share/doc/otter or from the Otter web page at
location http://www-unix.mcs.anl.gov/AR/otter.

Otter is not automatic. The user sets various parameters and options and then Otter
applies a simple loop to look for a proof. If it cannot find one then the user can alter the
settings.

There are two main lists of clauses used by Otter the sos list (set-of-support) and usable
list (there are two more, but see the manual - the passive list can be especially useful). The
sos list is used to control the refutation, in that every resolvent must either have a parent in
sos or one derived from it. This is not a restriction, for every clause can initially be in sos
if you wish.

The main loop is –

While (sos is not empty and no refutation found yet) do
select given-clause from sos (the ‘lightest’)
move given-clause to usable
infer and process new clauses using the inference rules in effect;

each new clause has the given-clause as one of its parents
and one of the usable clauses as the other parent;
new clauses that are kept are added to sos

End while.

Various processing is applied to new clauses, such as factoring and subsumption tests if
these are indicated by the options, called flags.

kb/sza Page 1

Using Otter

The specification of the Computer-Based Coursework (CBC) No. 1 contains the necessary
guidelines for running Otter under Linux.

All input is taken from a prepared input file and output is written to an output file. It
is not particularly convenient to use, but it does work!

Comments can be inserted into the input file using %. All input on a line beyond % is
ignored.

Variables start with the lower case letters in the range u to z. If you prefer, setting the
flag prolog style variables says that variables start with upper case letters.

Prolog style list notation can be used – [] is the empty list, [a, b, c, d] represents the list
with the four elements a, b, c and d and [h | t] represents the list with head h and tail t.

Spaces tabs and newlines can occur anywhere in complex terms except within names and
between a function or predicate symbol and the opening parenthesis.

A clause is a sequence of literals separated with |. If a is an atom then a and −a are
literals. A clause is ended by a full stop (not considered part of the clause).

Commands

There are commands that indicate that a list of clauses follows, commands that set and clear
flags and commands to assign parameters to various values. We only give a few here to get
you going.

To input a list of clauses use either list(usable) or list(sos). Each command and
each clause is ended by a full stop. The whole list is ended by end of list (followed by a
full stop).

There are ways to control the order in which Otter selects clauses from sos to be the
given-clause, by weighting clauses in various ways. Or, it is possble to control the order
interactively. The default weight of a term is 1+ the sum of the weights of the arguments.
The weight of a constant or variable is just 1. The default weight of an atom is similarly 1+
the sum of the weights of the arguments. Thus the default weight of a clause is the number
of symbols it contains. It is possible to change the weight of an atom or term to be 1+ the
maximum weight of the arguments.

The commands for that are set(atom wt max args) and set(term wt max args) re-
spectively. To make interactive selection of givens, use set(interactive given).

Various flags

The default setting of most flags is clear. If not, it is indicated. Flags are set by the command
set(flag) and cleared by clear(flag).

input sos first If set, the input clauses (initial sos) are selected as givens first and then
the lightest clauses are chosen. Otherwise, the lightest clauses are always chosen first
from sos.

sos queue If set, sos operates as a queue.

sos stack If set, sos operates as a stack.

print given If set, clauses are output when they become given.

kb/sza Page 2

binary res If set, binary resolution is available as an inference rule (as well as any others).

hyper res If set, hyper-resolution is available as an inference rule.

ur res If set, UR-resolution is available. This rule generates unit clauses (from other units
and clauses).

neg hyper res If set, negative hyper-resolution is available. This is hyper-resolution in which
the roles of positive and negative literals are reversed – all-negative clauses are electrons
and positive literals in nucleii are resolved away. It can (more-or-less) be used to simulate
Prolog execution. Try it and see what happens for a set of Horn clauses.

for sub default is set; if set apply forward subsumption to newly generated clauses (delete
clause if subsumed by a clause in sos or usable).

unit deletion If set apply unit deletion to newly generated clauses; i.e. remove a literal if
it is the negation of an instance of a unit clause in sos or usable.

back sub default is set; if set apply back subsumption to newly generated clauses.

factor If set, factor newly kept clauses. All factors are generated. Safe factors replace the
original.

very verbose If set, lots of information is printed!

print kept default is set; if set new clauses that are kept are output.

print proofs default is set; if set print all proofs; if not set print no proofs.

print back sub default is set; if set output clauses that are backward subsumed.

Some Parameters

report default is -1, range is [− 1. . MAX − INT]. If n > 0 then output statistics about
every n seconds . n = 30 is a good start.

max gen default is -1, range is [− 1. . MAX − INT]. If n is not -1 then terminate after n
clauses have been generated. There are other limits, see manual.

max proofs default is 1, range is [0. . MAX − INT]. If n = 1 OTTER will stop if it finds
a proof. If n > 1 OTTER will search until it finds n proofs. If n = 0 OTTER will find
as many proofs as it can.

stats level default is 2, range is [0. . 3]. This controls the level of detail of statistics pronted
at the end. If n = 0 there are no statistics printed. If n = 1 a few important statistics
are printed. If n = 2 most relevant statistics are printed. If n = 3 subsumption counts
are output as well.

For using equality you will have to look at the manual. There are lots and lots of flags to set
or clear.

kb/sza Page 3

