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abstract. This paper proposes a Compiled Labelled Deductive
System, called ACCLDS, for reasoning about role-based access control
in distributed systems, which builds upon Massacci’s tableau system
for role-based access control. The ACCLDS system overcomes some of
the limitations of Massaci’s approach by combining its multi-modal
propositional language with a labelling algebra that allows reason-
ing explicitly about dynamic properties of the accessibility relations.
This combined feature, which is typical of the Compiled Labelled De-
ductive framework, facilitates a sound and complete, and more nat-
ural ACCLDS reasoning mechanism than Massacci’s sound and only
partially complete tableau system. Limitations of the usefulness of
Massacci’s multi-modal logic in formalising access control systems are
also discussed, showing that they relate to the initial formulation of
Abadi’s calculus for access control. Solutions for overcoming these
limitations are briefly proposed within the context of the ACCLDS

system.

1 Introduction

Labelled Deductive Systems (LDS) is a methodology initially proposed by
Gabbay in [18] for both the theoretical study of logics and the develop-
ment of logical systems suitable for the needs of specific applications. In
the LDS approach, a basic unit of information is not just a formula but a
labelled formula, where the label belongs to a given labelling algebra. Addi-
tional information, for example regarding the overall structure of the data
or the underlying semantic properties of the logic, can be explicitly embod-
ied, via the labels, in the object language of the system. Derivation rules
act on both the labels and the formulae, according to certain fixed rules
of propagation. The addition of this separate “object-level” dimension (i.e.
labels and labelling algebra) enables the development of a uniform system
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for different logics within the same family, in that every deduction rule can
be applied to each of these logics and their differences captured entirely
by the labelling algebra. The general proposals in [18] acted initially as
a manifesto or starting point for a wide programme of research. Detailed
investigations were, for example, undertaken into the benefits of using the
LDS methodology to reformulate intuitionistic modal logics [28] and sub-
structural logics [8, 15, 19]. Specialised frameworks based on LDS where
also proposed [3, 6, 10, 26]. Among these the Compiled Labelled Deductive
Systems (CLDS) approach demonstrated how LDS techniques facilitates the
reformulation and generalisation of a large class of modal logics and condi-
tional logics [9, 26]. This chapter contributes to this programme of research
by showing how the CLDS approach can be used to develop a sound and
complete logical system for role-based access control, called ACCLDS sys-
tem, which enables the formalisation of and reasoning about access control
in distributed systems.

Various logical formalisms for (role-based) access control have been pro-
posed in the literature [1, 13, 22, 24, 29]. These all attempt to model and
reason about the role-based hierarchical relationships between principals
and between groups, where privileges can be inherited along the hierarchical
structure. The approach in [22] is based on a first-order logic representation
of access control policies expressed in programming-style languages (such as
Ponder [16] and Tower [20]), the PDL approach in [2, 29] uses an event-
condition-action formalisation and relative implementation in logic pro-
gramming, and [13] deployes a deontic-based language, also translated into
first-order logic for reasoning purposes. Abadiand Massacci, on the other
hand, have proposed a modal logic formalisation of access control systems,
referred in this chapter as the logic for access control. In particular, Abadi
work in [1] provides a first axiomatisation of basic notions of access control
systems, such as principals, privileges, authentication and delegation ([27]).
This is based on multi-modal logic, where modalities are assumed to be ab-
stractions of roles, and constraints over the different accessibility relations
are used to define various delegation principles. The inference capability of
this axiomatisation was shown by Massacci to be limited [24]; for instance
the so-called “hands-off axiom” ¬(A says ⊥) → (A controls (P =⇒ A)),
used to express that a principal A hands-over its privileges to another prin-
cipal P , is valid in Abadi’s calculus, but not provable. This is partly due to
the fact that universal formulae of the form P =⇒ A, although expressable
in the languange, are not axiomatisable within a Hilbert System [5] and
therefore not axiomatisable in Abadi’s calculus. The labelled tableau sys-
tem, proposed subsequently by Massacci in [24], overcomes this limitation.
This system enables explicit reasoning about formulas of the form P =⇒ A,
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so facilitating, in turn, dynamic inference of properties of the accessibility
relations. For instance, the inference of P =⇒ P |P forces dynamically the
accessibility relation for the principal P to be transitive. However, as stated
in [24], Massacci’s labelled tableaux system is only partially complete. This
is because the tableaux rules do not allow these universal formula to be
unfolded over compound principals.

This chapter aims to address the limitations of both Abadi’s and Mas-
sacci’s logic-based approaches. It builds upon Massacci’s work to propose
a CLDS system, called ACCLDS system, where explicit reasoning about ac-
cessibility relations of both primitive and compound principals can be per-
formed, so allowing the development of a sound and complete proof system
for role-based access control in distributed system. In the CLDS approach a
theory combines a logical theory written in an object language and a labelling
algebra, written in a first-order labelling language. The latter is used to ax-
iomatise semantic and/or proof theoretic properties that uniquely identify
the underlying object logic. In the ACCLDS system, the labelling algebra is
defined as a binary first-order theory axiomatising the properties of atomic
and compound principals, whereas the object language is the multi-modal
language given in [24]. The two languages are combined via the notion of
a declarative unit, written as α : λ, which expresses that the formula α is
true at the label (i.e. point) λ. The inference rules include basic rules for
the classical connectives, which appear in the formula part of the declar-
ative units, rules, driven by the labelling algebra, for reasoning explicitly
about the accessibility relations, as well as additional specialised rules for
reasoning about modal connectives and their interaction with primitive and
compound principals. The modularity of the CLDS approach is also re-
flected by the ACCLDS system. The set of basic rules is in fact the same as
the set of basic rules that any logical system would require when formalised
within a CLDS framework [11]. It is the set of specialised rules that provides
the ACCLDS system with the specific characteristic of a logical system for
access control. It is this specialised set of rules that allows explicit unfolding
of modal properties through compound principals so enabling the ACCLDS

system to be complete.

The chapter is organised as follows. Section 2 gives a brief overview of
the language features and semantics of a CLDS approach. The general nat-
ural deduction style proof system for a CLDS system is described together
with a general model–theoretic semantics, based on a translation method
into classical logic and related notion of semantic entailment. Section 3
introduces basic concepts of access control for distributed systems and the
features that a logic for this type of application should have. The spe-
cific ACCLDS system is described in Section 4, and proofs of soundness and
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completeness are given in Section 5. The chapter ends in Section 6 with a
general discussion on how to further improve the logic for access control so
to capture more realistic behaviours of access control systems.

Notation Throughout the chapter predicate symbols, terms and meta-
variable denoting principals begin with an upper-case letter, whereas other
constants, variables and function symbols begin with a lower-case letter.
Greek letters meta-variables are used to refer to terms different from the
principals, and expressions in the system. Larger entities such as structures,
sets, theories and languages are symbolised in calligraphic font, A,B, C, etc..
The power set of a given set A will be denoted by PW (A).

2 Overview of CLDS

This section introduces the CLDS approach within the context of modal
logic, by giving a brief description of its basic language features, syntax
and semantics1. A CLDS is a logical framework in which explicit reference
can be made to specific possible worlds and to relationships between pos-
sible worlds, whilst retaining the conventional syntax of modal logic. In
this approach, a logical theory, called a configuration, is a generalisation of
standard modal theories, as it is defined as a structure of arbitrary modal
theories, the proof-theoretical presentation is uniform across the different
logics of the same family and retains the conciseness of standard modal
logic proof systems. The semantics is defined through a translation into
first-order logic, whereby the notions of model, satisfiability of a configura-
tion and semantic entailment are given in terms of classical semantics.

2.1 Languages and Syntax

A CLDS language is, in general, defined as an ordered pair 〈LP ,LL〉, where
LP is a given object language and LL is a labelling language defined as a bi-
nary fragment of a first-order language. In the propositional case, the object
language is composed of a countable set of propositional letters, {p, q, r, . . .}
and boolean connectives {¬,∧,→}. The labelling language LL includes,
instead, a countable set of constant symbols {s0, s1, s2, . . .}, a countable set
of variables {x, y, z, . . .}, a set of binary predicate symbols {R1, R2, . . .},
called R-predicates, the set of logical connectives {¬,∧,∨,→,↔} and the
quantifiers ∀ and ∃.

For proof-theoretic purposes, the labelling language LL is, in general,
extended with additional sets of Skolem terms, which are used only in the
definition of some labelled natural deduction rules of the system. The ex-
tended labelling language is then called a semi-extended labelling language
and is defined as follows.

1For a more general presentation of a CLDS, the reader is refererd to [11].



2. OVERVIEW OF CLDS 5

DEFINITION 1.1. Let LP be a propositional language and {α1, α2, . . .} be
the set of all wffs of LP . The semi-extended labelling language Func(LP ,LL)
is defined as the language LL extended with a set of skolem function symbols
{skn

α1
, skn

α2
, . . .} where n ≥ 0.

Ground terms of Func(LP ,LL) are called labels. The specific definition
of the skolem symbols skn

αi
and their interpretation depend on the specific

CLDS system. Similarly for the R-predicates. In the case of modal logics
labels refer to possible worlds and R-predicates to the accessibility relation.
For access control logics, R-predicates denote the accessibility relation for
the principals and they provide the direction to which privileges can be
propagated amongst various roles.

Syntax. The CLDS language facilitates the formalisation of two types of
information, (i) what holds at particular points, expressed by a syntactic
entity called declarative unit, and (ii) which points are in relation with each
other and which are not, expressed by the syntactic entity called an R-
literal. A declarative unit is defined as a pair “formula:label”, where the
label component is a ground term of the semi-extended labelling language
Func(LP ,LL) and the formula is a wff of the language LP . An R-literal
is any ground literal in the semi-extended labelling language involving a
binary R-predicate, usually of the form Ri(λ1, λ2) and ¬Ri(λ1, λ2), where
λ1 and λ2 are labels, expressing that λ2 is or is not related to λ1 by the
accessibility relation Ri. For each R-literal ∆, the conjugate of ∆, written
∆, is the opposite in sign of ∆.

This combined aspect of the CLDS syntax yields a definition of a CLDS
theory more general than the traditional definition of a logical theory. In-
formally, a CLDS theory, called a configuration, is composed of two sets,
a set of R-literals and a set of declarative units. For example the pair
of sets {RQ(w0, w1))} and {P says r : w0, P =⇒ Q : w2, r : w1} is a con-
sistent ACCLDS configuration, which states that the principal P requests
r (P says r :w0) and this request is granted at the P accessible world w1

(r :w1) since w1 is Q accessible (RQ(w0, w1))) and P inherits privileges from
the principal Q (P =⇒ Q :w2). The formal definition of a configuration is
given below.

DEFINITION 1.2. Given a CLDS language, a configuration is a tuple
〈D,F〉 where D, called a diagram, is a finite set of R-literals and F is a func-
tion from the set of ground terms of Func(LP , LL) to the set PW(wff(LP ))
of sets of wffs of LP .

To capture different classes of logics within the CLDS approach, an ap-
propriate first-order theory A, written in the language LL and called a
labelling algebra, needs to be defined. This is used by the proof system to
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infer properties about the diagram part of a configuration. Inference rules
and the notion of a derivability relation are, in fact, defined between config-
urations. A set R of such inference rules, together with a CLDS language
〈LP ,LL〉 and a labelling algebra A, uniquely define a CLDS system (i.e. for
any CLDS system S, S = 〈〈LP ,LL〉,AS ,RS〉).

2.2 A “basic” natural deduction system

The “structural” aspect of a CLDS theory stimulated the idea of defining
deductive processes that describe how configurations “evolve” by reasoning
within and between the local theories associated with each point in a config-
uration or by reasoning about the diagram of a configuration. An inference
rule of a CLDS is defined between configurations as follows.

DEFINITION 1.3. An inference rule I is a set of pairs of configurations,
where each such pair is written as C/C

′

. If C/C
′

∈ I then C is called an
antecedent configuration of I, and C

′

an inferred (or consequence) configu-
ration of I with respect to C.

All the rules except one have the effect of expanding the antecedent con-
figuration. These rules can extend an antecedent configuration C with either
a declarative unit, or with an R-literal, or with both. However, configura-
tions equal or smaller than the antecedent one can also be inferred. This is
facilitated by an inference rule called the C-Reduction (C-R) rule. Only a
graphical representation of the inference rules will be used throughout the
chapter and the reader is referred to [11, 26] for a complete formal definition
of a CLDS proof system. Tables 1.1 and 1.2 show, respectively, the classi-
cal rules for the →, ¬ and ∧ connectives2 and the basic rules for R-literals,
which are all common to any CLDS system. In this graphical representa-
tion, C〈α :λ〉 (respectively C〈∆〉) denotes that C includes a declarative unit
α :λ (respectively R–literal ∆). Declarative units and R-literals contained
in square brackets are assumptions introduced within a derivation that are
subsequently discharged. C

′

〈π〉, where π is a declarative unit or an R-literal,
represents that the inferred configuration C

′

is C extended with π. C̃ are
the configurations derived in subderivations after adding to the antecedent
configuration C temporary assumptions.

In most CLDSs, the labels occurring in the classical rule are the same,
except for the (¬I) rule. The notion of contradiction (or inconsistency) in
the CLDS approach strictly depends on the type of logic. Modal logics,
and therefore the logic for access control, include a classical notion of in-
consistency, for which the symbol ⊥ used in the (¬I) rule is a short-hand
for any LP wff of the form α ∧ ¬α. In CLDSs where the notion of classical

2Introduction and elimination rules for ∨ can be derived using the equivalence α∨β ≡
¬(¬α ∧ ¬β).
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Table 1.1. Classical CLDS Rules.

C〈α→β :λ,α :λ〉

C
′

〈β :λ〉
(→E)

C〈[α :λ]〉
:

C̃〈β :λ〉

C
′

〈α→β :λ〉

(→I)

C〈α ∧ β :λ〉

C
′

〈α :λ, β :λ〉
(∧E)

C〈α :λ, β :λ〉

C
′

〈α ∧ β :λ〉
(∧I)

C〈¬¬α :λ〉

C
′

〈α :λ〉
(¬¬)

C〈[α :λ]〉
:

C̃〈⊥ :λ
′

〉

C
′

〈¬α :λ〉

(¬I)

inconsistency applies the particular labels λ and λ
′

in the (¬I) rule are not
required to be the same – a contradiction in some part of a configuration
introduces an inconsistency to the configuration as a whole.

The R-literals rules, given in Table 1.2, facilitate reasoning about the
diagram of a configuration, using the particular labelling algebra A under
consideration, and infering R-literals and declarative units which would not
be inferred using only the logical connectives. For logics of the same family
(e.g. different modal logics), the (R-A) rule captures entirely the difference
between one CLDS system and another, allowing all other inference rules
to be equally applicable to any CLDS system. In the ACCLDS system,
the (R-A) rule allows to reason about properties of principals explicitly
within the derivation process. The rules (⊥E) and (RI) express additional
forms of interactions between the R-literals and the declarative units. The
(⊥E) rule allows the inference of falsity (i.e. ⊥ : λ) whenever R-literals
and its negations are present in a configuration. This is necessary because
since no compound classical formulae with R-literals can be inferred in a
configuration, inconsistency of this form would not otherwise be captured.
The (RI) rule enables instead the derivation of R-literals in the presence of
a logical inconsistency.

DEFINITION 1.4. Given a CLDS system S = 〈〈LP ,LL〉,AS ,RS〉, a proof
is a pair 〈P ,m〉, where P is a sequence of configurations {C0, . . . , Cn}, with
n > 0, and m is a mapping from the set {0, . . . , n− 1} to RS such that for
each i, 0 ≤ i < n, Ci/Ci+1 ∈ m(i).
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Table 1.2. Rules for R-literals

C〈∆, ∆〉

C
′

〈α :λ〉
(⊥E)

C〈[ ∆ ]〉
:

C̃〈⊥ :λ〉

C
′

〈∆〉

(RI)

C

C
′ (C-R)

C

C
′

〈∆〉

(R-A)

where C
′

⊆ C if A ∪ D `FOL ∆

DEFINITION 1.5. Given a CLDS system S, and two configurations C and
C

′

, C
′

is derivable from C in S, written C `S C
′

, if there exists a proof
〈{C, . . . , C

′

},m〉.

The above definition of derivability can be reformulated as a relation
between a configuration and single declarative unit or R-literal. Given, for
instance a CLDS S, a configuration C = 〈D,F〉 and a declarative unit or
R-literal π, then C `S π if there exists a configuration C

′

such that C `S C
′

and π ∈ C
′

.

2.3 Semantics

A CLDS can be seen as a “semi-translated” approach to a given object
logic, because of its feature of syntactically representing in the proof system
semantic notions of the underlying logic. Its own model-theoretic semantics
is therefore naturally defined in terms of a first-order semantics using a spe-
cific “compiled” translation method into first-order logic. This translation
method is defined here and the notions of a CLDS model, satisfiability of
a configuration and semantic entailment are given also in terms of classical
semantics.

As mentioned before, a declarative unit α :λ represents that the formula
α is verified (or holds) at the point λ, whose interpretation is strictly related
to the type of underlying logic. In the CLDS approach these notions are
expressed in terms of first-order statements of the form [α]∗(λ), where [α]∗

is a predicate symbol. The extended labelling language Mon(LP ,LL) is
an extension of the language Func(LP ,LL) given by adding a monadic
predicate symbol [α]∗ for each wff α of LP .
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DEFINITION 1.6. Let Func(LP ,LL) be a semi-extended labelling lan-
guage. Let α1, . . . , αn, . . . , be the ordered set of wffs of LP . The extended
labelling language Mon(LP ,LL) is defined as the language Func(LP ,LL)
extended with the set of unary predicate symbols {[α1]

∗, . . . , [αn]∗, . . .}.

The relationships between the monadic predicates [α]∗ in Mon(LP ,LL)
are constrained by a set of first-order axiom schemas which capture the
satisfiability conditions of each type of formula α. These schemas strictly
depend on the underlying logic. For example, as shown in Section 4, the
extended labelling algebra A+ of the ACCLDS system includes the axiom
schema ∀x([A =⇒ B]∗(x) → ∀y, z(RB(y, z) → RA(y, z))) to capture the
semantic meaning of the =⇒ operator.

The translation method adopted by the CLDS approach associates syn-
tactical expressions of the CLDS language with sentences of the lan-
guage Mon(LP ,LL) and CLDS configurations with first-order theories in
Mon(LP ,LL). Each declarative unit α : λ is associated with the sentence
[α]∗(λ), and each R-literal is associated with itself. The first-order transla-
tion of a configuration is a first-order theory defined as follows.

DEFINITION 1.7. Let C = 〈D,F〉 be a configuration. The first-order trans-
lation of C, written FOT (C), is a theory written inMon(LP ,LL) and defined
by the expression FOT (C) = D ∪ DU , where DU = {[α]∗(λ) | α ∈ F(λ), λ
is a ground term of Func(LP ,LL)}.

Since labels in a configuration can only be ground terms of the language
Func(LP ,LL), the first-order translation of a configuration is a set of ground
literals of the language Mon(LP ,LL). The notions of model, satisfiability
and semantic entailment are given in terms of classical semantics (where
“M ‖−FOL ψ” signifies that the classical formula ψ is true in the classical
model M, according to the standard classical logic definition).

DEFINITION 1.8. Given a CLDS system S, the associated extended alge-
bra A+

S , a declarative unit α :λ and an R–literal ∆,

(1.1) M is a CLDS model of S ⇔def M is a model of A+
S

(1.2) M ‖−S α :λ ⇔def M ‖−FOL [α]∗(λ)

(1.3) M ‖−S ∆ ⇔def M ‖−FOL ∆

In the above definition, the statement (1.1) defines the class of models of a
CLDS system S in terms of models of the extended algebra A+

S associated
with S. Statements (1.2) and (1.3) define, respectively, the satisfiability of
declarative units and R–literals in terms of classical satisfiability of their as-
sociated first–order translations. A CLDS model M satisfies a configuration
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C, written M ‖−S C, if and only if for each π ∈ C (where π may be a declar-
ative unit or an R–literal), M ‖−S π. The notion of semantic entailment in
a CLDS system is given here as a relation between configurations.

DEFINITION 1.9. Let S = 〈〈LP ,LL, 〉,AS ,RS〉 be a CLDS and let A+

be the extended algebra of S. Let C = 〈D,F〉 and C
′

= 〈D
′

,F
′

〉 be two

configurations of S and FOT (C) = D ∪ DU and FOT (C
′

) = D
′

∪ DU
′

be
their respective first-order translations. The configuration C semantically
entails C

′

, written C |=S C
′

, iff for each ∆ ∈ D
′

, A+ ∪ FOT (C) |=FOL ∆,

and for each [α]∗(λ) ∈ DU
′

, A+ ∪ FOT (C) |=FOL [α]∗(λ).

Proving soundness. Given that the semantics is based on a first-order
translation method, the proof of the soundness property of the `S for a
CLDS system S takes advantage of the soundness property of the first-
order classical derivability relation `FOL. A diagrammatic representation
of the soundness theorem of a CLDS system S is given in Figure 1.1. The

A+ ∪ FOT (C) `FOL FOT (C
′

)

?
-

C `S C
′ - C |=S C

′

6

A+ ∪ FOT (C) |=FOL FOT (C
′

)

(2)

(3)

(1)

(4)

Figure 1.1. Proof of the soundness property of a CLDS system S.

soundness statement, which corresponds to the arrow labelled with (1), is
proved by the composition of three main steps, arrows (2), (3) and (4)
respectively. The first step (arrow (2)) proves that the hypothesis, C `S C

′

,
for a CLDS system S, implies that A+ ∪ FOT (C) `FOL FOT (C

′

). This
trivially implies (by soundness of first-order logic) that A+∪FOT (C) |=FOL

FOT (C
′

), which gives the second step of the proof (arrow (3)). Arrow (4)
is given by the definition of the semantic entailment between configurations
given in Definition 1.9. Note that this methodology is generally applicable
to any CLDS system. The first step is the only one that needs to be proved
for each specific CLDS system.

Proving completeness. The completeness property of a CLDS system
with respect to the semantics described in Section 2.3 can be proved using
standard Henkin-style methodology [21]. The theorem states that, given a
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C 6`S C
′ - C 6|=S C

′

6

A+ ∪ FOT (C) 6|=FOL FOT (C
′

)

PPPPPPPPPPPq

(1)

(3)(2)

Figure 1.2. Proof of the completeness property of a CLDS system S.

CLDS system and two configurations C and C
′

such that C
′

− C is finite,
if C

′

is semantically entailed from C then C
′

is also derived from C, where
C

′

−C (formally defined in [26]) is the set of declarative units and R-literals
in C

′

but not in C. The methodology adopted to prove the completeness of
a CLDS system is diagrammatically represented in Figure 1.2 and can be
informally described as follows.

The proof considers the contrapositive statement (arrow (1)), which states
that, given a CLDS system and two configurations C and C

′

such that C
′

−C
is a finite, if C 6`S C

′

then C 6|=S C
′

. This is proved by the composition of two
main steps, arrows (2) and (3). Arrow (3) is already given by Definition 1.9,
while arrow (2) represents the main part of the theorem. The proof of ar-
row (2) is based on the statement if C is a consistent configuration then C
is satisfiable, known as the “Model Existence Lemma”. It consists of the
following reasoning steps.

• The hypothesis that C
′

is not derivable from C, C 6`S C
′

, implies that
there exists a π ∈ C

′

−C (where π is a declarative unit or an R-literal)
such that C 6`S π.

• The above step implies that the configuration C extended with ¬π
(written C + [¬π]) is a consistent configuration.

• The above step implies then that the configuration C + [¬π] is satisfi-
able. Therefore, there exists a semantic structure M of the CLDS
system S which satisfies C and that also satisfies ¬π. It is then
shown that M does not satisfy π. Thus, since π ∈ C

′

, by defini-
tion of satisfiability of a configuration, M does not satisfy C

′

. Hence
A+ ∪ FOT (C) 6|=FOL FOT (C

′

).

The above methods for proving soundness and completeness of a CLDS will
be used in Section 5 to show the soundness and compleetness of the access
control system ACCLDS.
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3 Overview of a logic for Access Control

Access control logics are used to formalize access rights in distributed sys-
tems. A collection of such authorization rights is called an Access Control
Policy and individual rules of the collection are sometimes called Policy
Norms [13], or more often referred to as policies [22, 23]. A large volume
of work is present in the literature on the specification of access control
policies, especially in the area of Role Based Access Control (RBAC) [1, 27].
These include logic-based declarative descriptions like Abadi’s Calculus for
Access Control [1, 24] and the logic programming approaches proposed in
[2, 4], as well as specialised programming language type descriptions, such
as the PONDER [16] and Tower languages [20]. Each method has its ben-
efits and limitations. Logic-based specifications of access control policies,
although sometime difficult to understand for the software engineer, are pre-
cise, generally succinct and amenable to formal analysis for inconsistency
detection [22]. On the other hand, the programming style approaches to
RBAC can be quite verbose, but are more accessible to system managers
and to those responsable for specifying such policies. The work described
in this chapter falls into the first category of access control policy specifi-
cation. It provides a new formalisation, called ACCLDS system, of the logic
for access control initially proposed by Abadi in [1] and subsequently en-
riched by Massacciwith a tableaux method [24], which overcomes some of
its current limitations. Before describing the ACCLDS system in detail, an
informal introduction of the main features and expressiveness of this logic
is given below, together with an illustrative example.

In RBAC, specifications of policies make use of the notions of a principal
(or role) and an associated set of privileges that grant holders of that role
access to data or to a system. A principal may also represent a group; mem-
bers of the group have then the privileges granted to the group. Formulas
include atoms, representing satisfied requests, compound expressions stat-
ing the making of a request by a principal, relationships between principals
and any Boolean combinations of these. For example, the information that
a belongs to the manager-role A can be expressed as a =⇒ A, the state-
ments that a is requesting to read a file f and B is a sub-manager role of A
can be, respectively, formalised as a says read(f) and A =⇒ B. Primitive
operators can be defined to form compound principals which often imply
combined privileges of different roles. For instance, the information that a
role combines two different roles B and C can be formalised using a binary
operator &. This combination of roles is often used to express particular
rights of holders of a role B that can be kept private and not inherited. The
Access Control Logic includes also the binary operator | used to state that
a principal is a member of more than one different group or role and can
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make requests assuming any of these roles.

A simple example application drawn from a typical workplace organisa-
tion is given here to illustrate the formalisation of some of the basic features
of a RBAC. This example consists of four different roles called {A,B,C,D},
where A could be seen as the role of charge-nurse, B and C as the role of
staff nurse responsible for medications and patient welfare respectively, and
D as the role of nurse. The privileges of a nurse are inherited by staff nurses,
who also have some additional privileges, and the charge-nurse inherits all
the privileges of staff nurses. This role dependency is expressed by the for-
mulas B =⇒ D, C =⇒ D, A =⇒ C and A =⇒ B, where =⇒ indicates the
role hierarchy and is graphically represented in Figure 1.3(a). It is easy to
show that A =⇒ B&C follows from A =⇒ C and A =⇒ B; that is, A has
the union of the privileges of B and C.

B

A

C

D

(a)

B1

B

B2(b)

A

C

D

B1

B

B2(c)

A

C

D

Figure 1.3. (a) Ward-nurse hierarchy, (b) privileges divided, (c) privileges
restricted

In Abadi’slogic for access control, access authorization is given by a for-
mula of the form (A says r) → r, meaning that if A makes a request r
then the request will be granted. This is short-handed as A controls r.
The role structure given in Figure 1.3(a), together with the assumption
B controls r would allow the inference of A controls r. Similarly if
C controls r. The above scenario could be elaborated by splitting B into
two sub-roles B1 and B2, for example, to encompass the fact that members
of staff-nurse of role B may access records of two different kinds. This new
dependency, illustrated in Figure 1.3(b), can be expressed by the formulas
B =⇒ B1&B2, B1 =⇒ D and B2 =⇒ D instead of B =⇒ D. If now
B2 controls r then it can be shown that A controls r also. In fact, since
all members of B2 have authorization to access r and A inherits all the
privileges of B2 through B, all members of A have authorization to access
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r as well. It may be, however, desirable for A to inherit only the privileges
of role B1 (for example if the role B2 is for staff-nurse members who com-
municate only between themselves). In that case, the privilege inheritance,
shown graphically in Figure 1.3(c), can be formalised by replacing A =⇒ B
with A =⇒ B1. Given this new statement, it is no longer possible to infer
A controls r.

Another aspect of access control systems concerns Separation of Duty
policies [20]. Such a policy is useful, for example, when a role allows a
member two types of access privileges for accessing the same data, but
not both. For instance, members of the staff nurse roles might be al-
lowed to issue a medication, but only if the request has been certified,
which must be done by some other staff nurse. This kind of access con-
trol policy can be captured by the following formalization, where m is a
medication: B controls issue(m) , B controls certify(m), b =⇒ B and
b says issue(m) → ¬b says certify(m))

4 ACCLDS – A CLDS for Access Control

In this section a CLDS for access control, called ACCLDS, is formally defined
following the approach described in Section 2.

Language of ACCLDS . The language of the ACCLDS system is a pair
〈LP ,LL〉, where LP and LL share a common set of terms, called principals.
These include a countable set of constants {P,Q, . . .}, called primitive prin-
cipals, and compound terms, called compound principals, constructed from
the primitive principals using the operators {|,&}. In the remainder of this
chapter, meta-variables A, B, C will be used to denote principals. The la-
belling language LL is a first-order language constructed from a countable
set of constant symbols {w0, w1, . . .}, representing possible worlds, a count-
able set of variables {x, y, z, . . .}, the binary functors qA

B for every principal
A and B, and binary predicates RA, for every principal A. The functor qA

B

is a skolem function used in the labelling algebra to express a property of
the binary relation RA|B. The second component of the ACCLDS language,
LP , is a propositional multi-modal language consisting of a countable set
of proposition letters {r, s, t, . . .}, representing access requests, the constant
symbol ⊥, the classical connectives {¬,∧,→}, the binary operator =⇒ and
the modality operators A says for every principal A. Well-formed formulae
of LP are defined as follows.

DEFINITION 1.10. A well-formed formula of LP is defined inductively as:

• a propositional letter

• A =⇒ B, for any principals A and B
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• A says α, for any principal A and wff α

• boolean conbinations of wffs

The language LL is extended into Func(LP ,LL) by adding for each wff
α of LP and principals A and B, the unary functor sA

α and the constant
symbols sp1

A,B and sp2
A,B. The ground term sA

α (λ) can be thought of as re-
ferring to any arbitrary world specifically associated with α and A, and used
to express Kripke semantic notions of the form “for all possible worlds...”
corresponding to a given formula A says α. The constant symbols sp1

A,B

and sp2
A,B can also be thought of as arbitrary worlds and are used to capture

the definition of the =⇒ operator within the proof rule.

The labelling algebra AL is a set of first-order axioms expressing the
properties of the binary relations RA, for any principal A.

DEFINITION 1.11. The labelling algebra AL, written in Func(LP ,LL), is
the first-order theory given by the following axioms:

∀x, y(RA&B(x, y) ↔ (RA(x, y) ∨RB(x, y))) (Union)
∀x, y(RA|B(x, y) → RA(x, qA

B(x, y)) ∧ RB(qA
B(x, y), y)) (QuotingE)

∀x, y, z((RA(x, z) ∧ RB(z, y)) → RA|B(x, y)) (QuotingI)

An ACCLDS system L is defined by the tuple L = 〈〈LP ,LL〉,AL,RL〉
where the set RL of inference rules is given in the following section.

Table 1.3. Additional Rules for the ACCLDS system

C〈A says α :λ1,
RA(λ1, λ2)〉

C
′

〈α :λ2〉

( says E)

C〈[RA(λ, sA
α (λ))]〉

:

C̃〈α :sA
α (λ)〉

C
′

〈A says α :λ〉

( says I)

C〈B =⇒ A :λ1, RA(λ2, λ3)〉

C
′

〈RB(λ2, λ3)〉
(=⇒E)

C〈[RA(sp1

A,B , sp2

A,B)]〉
:

C̃〈RB(sp1

A,B , sp2

A,B)〉

C
′

〈B =⇒ A :λ〉

(=⇒I)

C〈RA&B(λ1, λ2)〉
C〈[RA(λ1, λ2)]〉

:

C
′

〈π〉

C〈[RB(λ1, λ2)]〉
:

C
′

〈π〉

C
′

〈π〉

(&RE)
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4.1 Proof Rules for ACCLDS

There are three types of reasoning step that can occur in an ACCLDS sys-
tem. Those of the first type are “classical” and occur within a particular
local theory included in C and respect standard notions of inference for
classical connectives. These are the rules given in Table 1.1. The sec-
ond type of reasoning step concerns reasoning about the diagram part of a
configuration using the properties of the labelling algebra. These are the
rules described in Table 1.2 among which the (R-A) rule plays a prominent
role. It allows, in particular, the inference of relationships about compound
principals. For instance, given a configuration that includes the R-literals
RA(λ1, λ2) and RB(λ2, λ3), the (R-A) would allow the inference of the R-
literal RA|B(λ1, λ3) using the axiom (QuotingI) of the labelling algebra.

The third type of reasoning step is about the interaction between different
theories in a configuration, and uses the rules given in Table 1.3. In partic-
ular, the rules ( says I) and ( says E) are similar to standard introduction
and elimination rules for the modal 2 operator. The term sA

α (λ) used in
the ( says I) rule refers to an arbitrary possible world uniquely associated
with the formula α and accessible from λ via the accessibility relation RA.
The rules (=⇒I) and (=⇒E) allow dynamic inference of properties of the
diagram part of a given configuration. For instance, the transitive prop-
erty of an RP relation can be implicitly introduced in a derivation from
P =⇒ P |P :λ1 whenever the two R-literals RP (λ1, λ2) and RP (λ2, λ3) are
given or inferred, as shown in the ACCLDS derivation in Figure 1.4. The
rule (&RE) allow the inference process to implictly reason about disjunc-
tions of R-literals, as this type of formulae cannot be directly expressed in
a configuration.

C〈P =⇒ P |P :λ1, RP (λ1, λ2), RP (λ2, λ3)〉 Assumptions
C1〈RP |P (λ1, λ3)〉 (R-A)
C2〈RP (λ1, λ3)〉 (=⇒E)

Figure 1.4. Implicit inference of RP ’s transitivity from P =⇒ P |P :λ1

Finally, the rules given in Table 1.4 are ”short-hand” derived rules, which
allow compound principal terms involved in says formulas to be reduced
to primitive principal terms. The first four of these rules mirror the tableau
rules given in [24]. The (univ) rule captures exactly the global property
of the formula A =⇒ B and corresponds to Massacci’s rule [Ugr]. The
(speaks) rule is a generalisation of Massacci’s rules [Lgr] and 〈Rgr〉, in that
neither principals A and B need to be restricted to be primitive whereas the
(¬speaks) rule corresponds to Massacci’s 〈Ugr〉 rule but without requiring
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the introduction of new arbitrary requests since explicit reference to the
accessibility relations can be made in the ACCLDS system. Finally, the
(cons) rule is a new rule that states the consistency of a principal A. This
rule is, in particular, used for the derivation of the so-called “ hands-off”
axiom [1] (see Figure 1.5), which states that from ¬(Q says ⊥) : s0 can be
derived Q controls P =⇒ Q (i.e. Q says (P =⇒ Q) → P =⇒ Q) :s0.

Table 1.4. A collection of useful derived rules in the ACCLDS system

C〈(A|B) says α :λ〉

C
′

〈A says B says α) :λ〉 (quoteE)

C〈A says B says α :λ〉

C
′

〈(A|B) says α :λ〉
(quoteI)

C〈(A&B) says α :λ〉

C
′

〈A says α :λ,

B says α :λ〉

(&E)

C〈A says α :λ,
B says α :λ〉

C
′

〈(A&B) says α :λ〉
(&I)

C〈A =⇒ B :λ1,
A says α :λ2〉

C
′

〈B says α :λ2〉

(speaks)

C〈¬(A =⇒ B) :λ〉

C
′

〈RB(sp1

A,B , sp2

A,B),

¬RA(sp1

A,B , sp2

A,B)〉
(¬speaks)

C〈A =⇒ B :λ1〉

C
′

〈A =⇒ B :λ2〉
(univ)

C〈¬(A says ⊥) :λ〉

C
′

〈RA(λ, sA
⊥

(λ))〉
(cons)

C0〈¬(Q says ⊥) :w0〉 (assumption)

C̃0〈¬(Q says ⊥) :w0, [Q says (P =⇒ Q) :w0]〉 (assumption)

C̃1〈Q says (P =⇒ Q) :w0, RQ(w0, s
Q

⊥
(w0))〉 (cons)

C̃2〈P =⇒ Q :sQ

⊥
(w0)〉 ( says E)

C̃3〈P =⇒ Q :w0〉 (univ)

C
′

〈Q says (P =⇒ Q) → P =⇒ Q :w0〉 (→I)

Figure 1.5. Derivation of Q controls P =⇒ Q

Two example derivations are given in Figures 1.5 and 1.6 showing, respec-
tively, a proof of the “hands-off” axiom and a derivation of the (cons). These
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C0〈¬(A says ⊥) :λ〉 (Assumption)

C̃0〈[¬RA(λ, sA
⊥(λ))]〉 (Assumption)

C̃1〈¬RA(λ, sA
⊥(λ)), [RA(λ, sA

⊥(λ))]〉 (Assumption)

C̃2〈⊥ :sA
⊥(λ)〉 (⊥E)

C̃3〈¬(A says ⊥) :λ,A says ⊥ : λ〉 ( says I)

C̃4〈⊥ :λ〉 (∧I)

C
′

〈RA(λ, sA
⊥(λ))〉 (RI)

Figure 1.6. Derivation of rule cons

example derivations make use of the following convenient notation. Declara-
tive units introduced in a proof as temporary assumptions, mainly by intro-
duction rules, are written in square brackets, as they represent temporary as-
sumptions that need to be discharged once the rule has been applied. In the
example derivation in Figure 1.5, for instance, the given configuration (C0) is
extended to include the temporary assumption Q says (P =⇒ Q) :w0. The
configurations C̃1, C̃2 and C̃3 are then infered from C̃0 by applying (cons),
( says E) and (univ) respectively. In the last step of the derivation, the
configuration C

′

is derived by the initial configuration C0 using the (¬I)
rule.

4.2 Semantics for ACCLDS

The semantics of the ACCLDS system is based on the model theoretic se-
mantics defined in Section 2.3 for a general CLDS system. The extended
labelling algebra A+

Ac
of the ACCLDS system is formally given below.

DEFINITION 1.12.

Given the extended labelling language Mon(LP ,LL) and the labelling
algebra AAc of the ACCLDS system, the extended algebra A+

Ac
is the theory

in Mon(LP ,LL) given by the labelling algebra extended with the following
axiom schemas (Ax1)-(Ax7). For any wffs α and β of LP and principals A
and B:
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∀x([α ∧ β]∗(x) ↔ ([α]∗(x) ∧ [β]∗(x))) (Ax1)

∀x([¬α]∗(x) ↔ ¬[α]∗(x)) (Ax2)

∀x([α → β]∗(x) ↔ ([α]∗(x) → [β]∗(x))) (Ax3)

∀x((RA(x, sA
α (x)) → [α]∗(sA

α (x))) → [A says α]∗(x)) (Ax4)

∀x([A says α]∗(x) → (∀y(RA(x, y) → [α]∗(y))) (Ax5)

∀x((RB(sp1
A,B, sp

2
A,B) → RA(sp1

A,B , sp
2
A,B)) → [A =⇒ B]∗(x)) (Ax6)

∀x([A =⇒ B]∗(x) → (∀y, z(RB(y, z) → RA(y, z))) (Ax7)

The first three axiom schemas express the distributive properties of the
logical connectives among the monadic predicates of Mon(LP ,LL). The
axiom schemas (Ax4) and (Ax5) reflect the traditional Kripke semantic
definition of satisfiability of modal 2. The axiom schemas (Ax6) and (Ax7)
together express the specific semantic meaning of the operator =⇒ for the
logic for access control. These axioms facilitate the inference of dynamic
properties of the accessibility relations (i.e. by simply using the semantic
definition of the formula P =⇒ P |P ), as illustrated in the first-order proof
derivation given in Figure 1.7. This derivation clearly shows this main
feature of the ACCLDS system.

[P =⇒ P |P ]∗(λ1) (Assumption)
∀x, y(RP |P (x, y) → RP (x, y)) (Ax7)
∀x, y, z(RP (x, y) ∧ RP (y, z) → RP |P (x, z)) (QuotingI)
∀x, y, z(RP (x, y) ∧ RP (y, z) → RP (x, z)) (→I)

Figure 1.7. First-order derivation of transitivity of RP from P =⇒ P |P :λ1

The notions of satisfiability and semantic entailment of the ACCLDS sys-
tem, denoted with |=Ac, are as specified in Definitions 1.8 and 1.9, but based
on the extended algebra A+

Ac
.

5 Soundness and Completeness Properties

The soundness and completeness proofs given in this section are based re-
spectively on the two methodologies described in Section 2.3.

5.1 Soundness of ACCLDS

As described in Section 2.3 it is sufficient to show Lemma 1.13, called
“Soundness Lemma”. The proof of this lemma is by induction on the size of
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the derivation of C
′

from C, and makes use of the following property. Given
any first-order theory T and formula φ:

(1.4) If T ` φ then T ` T ∪ {φ}.

Each derivation rule has an associated size. The rule (C-R) has size equal
to 0. Rules such as ( says E) or (¬¬), in which no assumptions are made,
have size equal to 1. Rules in which a single assumption is made, such as
(→I) or (=⇒I), have size equal to 1 plus the size of the smallest possible
derivation that could be made for the antecedent sub-proof. The rule (&RE)
has size equal to 1 plus the maximum of the sizes of the smallest possible
derivations that could be made for the two antecedent sub-proofs.

LEMMA 1.13. Let C and C
′

be two configurations. If C `AC C
′

then A+
Ac
∪

FOT (C) ` FOT (C
′

),

Proof. Let 〈C0, . . . , Cn = C
′

〉 be a derivation of C
′

from C of size k, k ≥ 0.
The proof is by induction on the length of the derivation.

Base Case: The length of the derivation is k = 0. Then the derivation
consists only of (C-R) steps. For each i, 0 < i ≤ n, FOT (Ci) ⊆ FOT (Ci−1)
and hence, by the transitivity of ⊆, FOT (Cn) ⊆ FOT (C0) and hence by
first-order logic FOT (C0) ` FOT (Cn).

Inductive Hypothesis: Assume that if C `AC C
′′

has a derivation of size less
than k then A+

Ac
∪ FOT (C) ` FOT (C

′′

).

Inductive Step: The length of the derivation is k > 0. Then the proof is
by cases on the last derivation step between Cn−1 and Cn. For each case it
is shown that FOT (Cn−1) ` FOT (Cn). Then by the induction hypothesis,
since the size of the derivation C0 `AC Cn−1 is < k, FOT (C0) ` FOT (Cn−1)
and hence, by the transitivity of `, FOT (C0) ` FOT (Cn).

Case (∧E): By assumption [α∧β]∗(λ) ∈ FOT (Cn−1). By the (∀E) and (∧E)
natural deduction rules of first-order logic [α]∗(λ) and [β]∗(λ) are derivable
from Axiom (Ax1). Therefore, by property (1.4), FOT (Cn−1) ` FOT (Cn).

Case (=⇒E): By assumption [A =⇒ B]∗(λ) ∈ FOT (Cn−1) and RB(λ
′

, λ
′′

) ∈
FOT (Cn−1). By first-order natural deduction RA(λ

′

, λ
′′

) is derivable using
Axiom (Ax7). Therefore, FOT (Cn−1) ` FOT (Cn).

The cases for the rules of (→E), (∧I), (¬¬), (⊥E), (R-A) and ( says E)
are similar to the above cases.

Case (→I): By assumption there is a sub-derivation of C̃〈β : λ〉 from
C〈[α : λ]〉 with size < k. Therefore, by the induction hypothesis there is
a derivation of FOT (C) ∪ {[β]∗(λ)} from FOT (C) ∪ {[α]∗(λ)} and hence
by the (→I) natural deduction rule of first-order logic and property (1.4),
there is a derivation of FOT (C) ∪ {[α→ β]∗(λ)}.
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Case ( says I): By assumption there is a sub-derivation of C̃〈α : sA
α (λ)〉

from C〈[RA(λ, sA
α (λ))]〉 with size < k. Therefore, by the induction hy-

pothesis there is a derivation of FOT (C) ∪ {[α]∗(sA
α (λ))} from FOT (C) ∪

{RA(λ, sA
α (λ))} and hence by the (→I) natural deduction rule of first-order

logic and property (1.4) there is a derivation of FOT (C)∪{[A says α]∗(λ)}.
Case (&RE): By assumption there is a sub-derivation of C̃〈π〉 from each of
C〈[RA(λ1, λ2)]〉 and C〈[RB(λ1, λ2)]〉 both with size < k. Therefore, by the
induction hypothesis there are two derivations of FOT (C)∪{FOT (π)} from
FOT (C) ∪ {RA(λ1, λ2)} and from FOT (C) ∪ {RB(λ1, λ2)}. Hence by the
(→I) and (∨E) natural deduction rules of first-order logic and property (1.4)
there is a derivation of FOT (C) ∪ {FOT (Ψ)}.

The cases for the rules of (¬I), (=⇒I) and (RI) are similar to the above
cases. �

Using the method described in Section 2.3, the Soundness Lemma allows to
prove the soundness of ACCLDS:

THEOREM 1.14. Let C and C
′

be two configurations of the ACCLDS system.
If C `AC C

′

, then C |=AC C
′

5.2 Completeness of ACCLDS

The Completeness proof of the ACCLDS system follows the steps of the
completeness proof for a general CLDS outlined in Section 2.3. It makes
use of a main lemma, called the Model Existence Lemma whose proof uses
the results given in Propositions 1.15, 1.16 and 1.17. All the following proofs
make use of an additional notation. Let C = 〈D,F〉 be a configuration and
π be a declarative unit or a R-literal. If π is of the form α : λ, C + [α : λ]
is the configuration 〈D,F

′

〉, such that F
′

(λ) = F(λ) ∪ {α} and for any λ
′

different from λ, F
′

(λ
′

) = F(λ
′

). If π is an R-literal ∆, then C + [∆] is the
configuration 〈D

′

,F〉 such that D
′

= D ∪ {∆}.

PROPOSITION 1.15 (Consistency). Let C be an ACCLDS configuration,
α : λ be an arbitrary declarative unit and ∆ be an arbitrary R-literal. If
C 6`AC α : λ then C + [¬α : λ] 6`AC ⊥ : λ

′

. Similarly, if C 6`AC ∆ then
C + [∆] 6`AC ⊥ :λ

′

.

Proof. Suppose by contradiction that C + [¬α : λ] `AC ⊥ : λ
′

. Then by
rule (¬I) C `AC α : λ, which contradicts the hypothesis. Similarly, assume
that C + [∆] `AC ⊥ :λ

′

. Then by rule (RI) C `AC ∆, which contradicts the
hypothesis. �

A consistent configuration C can be extended into a maximal consistent
configuration Mccc by enumerating every possible formula of ACCLDS and,
starting from C add each formula in the enumeration, depending whether
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it is consistent or not. It is easy to prove that by construction a Mccc is a
consistent configuration (i.e. Mccc 6`AC ⊥ :λ for any label λ).

The following two Propositions 1.16 and 1.17 prove that an Mccc is max-
imal and satisfies various semantic properties on the accessibility relation
and logical operators.

PROPOSITION 1.16 (Maximality of Mccc). Let Mccc be a maximal consis-
tent configuration. For any declarative unit α :λ and R-literal ∆:

(1.5) If α :λ ∈ Mccc then ¬α :λ 6∈ Mccc,
and if ∆ ∈ Mccc then ∆ 6∈ Mccc.

(1.6) Either α :λ ∈ Mccc or ¬α :λ ∈ Mccc,
and either ∆ ∈ Mccc or ∆ ∈ Mccc.

Proof.

Property (1.5): Suppose by contradiction that ¬α : λ ∈ Mccc. Then
Mccc `AC ⊥ : λ by (∧I), which contradicts the fact that Mccc is consis-
tent. Similarly for any R-literal ∆ and its conjugate.
Property (1.6): Suppose by contradiction that α : λ 6∈ Mccc and ¬α : λ 6∈
Mccc. By construction, there exist configurations C

′

⊆ Mccc and C
′′

⊆ Mccc

such that C
′

+ [α :λ] `AC ⊥ :λ and C
′′

+ [¬α :λ] `AC ⊥ :λ. By monotonicity,
Mccc + [α : λ] `AC ⊥ : λ and Mccc + [¬α : λ] `AC ⊥ : λ. Therefore, by
(¬I), Mccc `AC α : λ and Mccc `AC ¬α : λ and hence Mccc `AC ⊥ : λ,
which contradicts the fact that Mccc is consistent. Similarly for ∆ and its
conjugate. �

PROPOSITION 1.17 (Properties of Mccc). Let Mccc be a maximal consis-
tent configuration. The following properties are satisfied, for any labels λ,
λ

′

, λ
′′

, wff α and principals A and B:

(1.7) RA&B(λ, λ
′

) ∈ Mccc if, and only if,

RA(λ, λ
′

) ∈ Mccc or RB(λ, λ
′

) ∈ Mccc

(1.8) if RA(λ, λ
′′

) ∈ Mccc and RB(λ
′′

, λ
′

) ∈ Mccc then RA|B(λ, λ
′

) ∈ Mccc

(1.9) if RA|B(λ, λ
′

) ∈ Mccc then

RA(λ, qA
B(λ, λ

′

)) ∈ Mccc and RB(qA
B(λ, λ

′

), λ
′

) ∈ Mccc

(1.10) if A says α :λ ∈ Mccc and RA(λ, λ
′

) ∈ Mccc then α :λ′
′

∈ Mccc

(1.11) if ¬(A says α) :λ ∈ Mccc then
RA(λ, sA

α (λ)) ∈ Mccc and ¬α :sA
α (λ) ∈ Mccc
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(1.12) if A =⇒ B :λ ∈ Mccc and RB(λ
′

, λ
′′

) ∈ Mccc then

RA((λ
′

, λ
′′

) ∈ Mccc

(1.13) if ¬(A =⇒ B) :λ ∈ Mccc then
RB(sp1

A,B , sp
2
A,B) ∈ Mccc and ¬RA(sp1

A,B , sp
2
A,B) ∈ Mccc

(1.14) α ∧ β :λ ∈ Mccc if, and only if,
α :λ ∈ Mccc and β :λ ∈ Mccc

(1.15) α→ β :λ ∈ Mccc if, and only if,
either ¬α :λ ∈ Mccc or β :λ ∈ Mccc

Proof.

Property (1.7): (Only if:) Suppose by contradiction that RA&B(λ, λ
′

) ∈
Mccc, RA(λ, λ

′

) /∈ Mccc and RB(λ, λ
′

) /∈ Mccc. By Property (1.6) the
literals ¬RA(λ, λ

′

) ∈ Mccc and ¬RB(λ, λ
′

) ∈ Mccc. By (R-A) rule Mccc `AC

¬RA&B(λ, λ
′

) which together with the assumption gives a contradiction.
(If:) A similar argument can be applied in this case, using the assumptions
either RA(λ, λ

′

) ∈ Mccc or RB(λ, λ
′

) ∈ Mccc, and RA&B(λ, λ
′

) /∈ Mccc.
The proofs for Properties (1.8), (1.9), (1.10), (1.12) and (1.14) are similar

to the proof for Property (1.7).
Property (1.11): Suppose by contradiction that ¬(A says α) :λ ∈ Mccc and
RA(λ, sA

α (λ)) /∈ Mccc. Therefore, by Property (1.6) ¬RA(λ, sA
α (λ)) ∈ Mccc.

Using the rules ( says I), (⊥E) and (∧I) it can be shown that Mccc `AC

⊥ :λ. On the other hand, suppose for contradiction that ¬(A says α) :λ ∈
Mccc and ¬α :sA

α (λ) /∈ Mccc. Therefore, by Property (1.6) α :sA
α (λ) ∈ Mccc.

Using the rules ( says I) and (∧I), it can be shown that Mccc `AC ⊥ :λ.
Property (1.13): Suppose by contradiction that ¬(A =⇒ B) : λ ∈ Mccc

and RB(sp1
A,B , sp

2
A,B) /∈ Mccc. Therefore, by Property (1.6) the literal

¬RB(sp1
A,B, sp

2
A,B) ∈ Mccc. Using the derived rule (¬speaks) it can be

shown that Mccc `AC RB(sp1
A,B , sp

2
A,B). The case for ¬RA(sp1

A,B , sp
2
A,B) is

similar.
Property (1.15): (Only If:) Suppose by contradiction that α → β :λ ∈ Mccc,
¬α : λ /∈ Mccc and β : λ /∈ Mccc. By Property (1.6) α : λ ∈ Mccc and
¬β :λ ∈ Mccc. By the (→E) and (∧I) rules Mccc `AC ⊥ :λ. (If:) Suppose for
contradiction that ¬α :λ ∈ Mccc and (α → β) :λ /∈ Mccc. By Property 1.6
neg(α → β) : λ ∈ Mccc. Using the rules (→I), (¬I) and (¬¬) it can be
shown that Mccc `AC ⊥ :λ. The case for β :λ is similar. �

The following Model Existence Lemma shows how to construct a ACCLDS

model for a maximal consistent configuration Mccc obtained from a initial
consistent configuration C.
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LEMMA 1.18 (Model Existence Lemma). Let Mccc be an ACCLDS maximal
consistent configuration. There exists an ACCLDS model M that satisfies
Mccc.

Proof. According to Definition 1.8 an ACCLDS model is a first-order inter-
pretation that satisfies the labelling algebra of ACCLDS and the semantic
axioms of ACCLDS, and it satisfies the Mccc if and only if (by definition) it
satisfies the FOT (Mccc). Such an interpretation M can be constructed as
follows.

• The domain of M is the set of ground labels in Func(LP ,LL).

• For each predicate [α]∗in the extended labelling languageMon(LP ,LL),
the interpretation M([α]∗) is given by the set {λ|α :λ ∈ Mccc}.

• For each R-literal RA in Mon(LP ,LL), the interpretation M(RA) is
given by the set {(λ, λ

′

)|RA(λ, λ
′

) ∈ Mccc}.

It is shown below that the interpretation M satisfies the three axioms of
the labelling algebra and the seven semantic axioms (Ax1) - (Ax7) and
it is therefore an ACCLDS model. It can then be easily shown that, by
construction, M satisfies the FOT (Mccc).
Case (Union): Let λ and λ′ be elements of Func(LP ,LL), the domain
of M . (If:) Assume that (λ, λ′) ∈ M(RA) or (λ, λ′) ∈ M(RB). Then by
construction either RA(λ, λ′) ∈ Mccc or RB(λ, λ′)) ∈ Mccc. In the first case,
by Property (1.7) of Lemma 1.17, RA&B(λ, λ′) ∈ Mccc and hence (λ, λ′) ∈
M(RA&B) Similarly for the second case. (Only if:) Assume that (λ, λ′) ∈
M(RA&B), then RA&B(λ, λ′) ∈ Mccc. By Property (1.7) of Lemma 1.17
either RA(λ, λ′) ∈ Mccc or RB(λ, λ′)) ∈ Mccc. Hence, by construction,
(λ, λ′) ∈M(RA) or (λ, λ′) ∈ M(RB).

The proof for cases (QuotingE) and (QuotingI) are similar to the case
for (Union).
Case (Ax2): Let λ be an arbitrary element of Func(LP ,LL). (Only if:)
Assume λ ∈ M([¬α]∗), then ¬α : λ ∈ Mccc and by Property (1.6) of
Lemma 1.16 α :λ /∈ Mccc and λ /∈M([α]∗). (If:) The proof is similar..

The proofs for (Ax1) and (Ax3) are similar to the proof for (Ax2).
Case (Ax4): Let λ be an arbitrary element of Func(LP ,LL). Assume
λ /∈ M([A says α]∗), then by construction A says α : λ /∈ Mccc and by
Property (1.11) of Lemma 1.17 RA(λ, sA

α (λ)) ∈ Mccc and α :sA
α (λ)) /∈ Mccc.

Therefore (λ, sA
α (λ)) ∈ M(RA) and sA

α (λ) /∈M([α]∗), and hence M satisfies
¬(RA(λ, sA

α (λ)) → [α]∗(sA
α (λ))).

Case (Ax7): Let λ be an arbitrary ground term of Func(LP ,LL) and as-
sume that λ ∈ M([A =⇒ B]∗). Hence A =⇒ B : λ ∈ Mccc. Suppose
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for arbitrary λ
′

and λ
′′

that (λ
′

, λ
′′

) ∈ M(RB) and hence by construction
RB(λ

′

, λ
′′

) ∈ Mccc. By Property (1.12) of Lemma 1.17 RA(λ
′

, λ
′′

) ∈ Mccc

and hence (λ
′

, λ
′′

) ∈M(RA).

The proofs for cases (Ax5) and (Ax6) are similar to the proofs for Cases
(Ax4) and (Ax7). �

Using the result of Lemma 1.18 and following the steps given in Sec-
tion 2.3 the completeness of the ACCLDS system with respect to its seman-
tics is proved.

6 Discussion

This paper introduces the ACCLDS system as a logic for access control and
proves its soundness and completeness. This system is more flexible than the
logic in [24] in the following ways. It can allow reasoning about formulae of
the form P =⇒ Q where neither P norQ is restricted to the atomic case, and
reasoning about implicit dynamic properties on the accessibility relations.
These are facilitated by the use of a labelling algebra that allows explicit
inferences about the accessibility relation of compound principals, which
can only be done implicitly in Massacci’s tableau system. As a consequence
the ACCLDS proof system is complete with respect to the semantics given
in Section 2.3. This semantics captures the same semantic principles of
Massacci’s logic, for which his tableau system is only partially complete
[24]. A formal correspondence between Massacci’s logic and the ACCLDS

system could be proved following the methodology described in [7, 11]. This
would require to show that the derivability relation in Massacci’s system
is equivalent to the ACCLDS derivability relation. Informally, this would
require to prove the following two steps. If a closed tableau in his system
exists for a formula 1:¬φ, then the declarative unit φ : w0, for any arbitrary
world w0, can be shown to be derivable from an empty configuration. And,
if there is an open branch in the complete tableau for 1:¬φ, then it can be
shown that there exists an ACCLDS model where φ :w0 is false.

In both [1] and [24] the definition of the controls operator causes pe-
culiarities in the reasoning process, namely that “if a principal A is making
a request r on which it is trusted, then every principal will be trusted on r”.
This arises from their definition of the formula A controls r as a short-
hand for A says r → r. In fact, assuming A controls r (read as A can
be trusted on r) and A says r (read as A makes the request r), it can be
proved that B controls r for any principal B as follows. From the defini-
tion of controls the two assumptions give r, which implies B controls r
for any B. Clearly, this is a rather unsatisfactory result and should not
be the case for such a plausible scenario when B has no relationship to A.
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The underlying problem is that in the definition of controls the conse-
quence that r gets granted is unrelated to the principal making the request.
This could be addressed by, for instance, redefining A controls r either as
A says r → 3(A)r, or as A says r(A) → r(A). In the first case it would
require the accessibility relation for each principal to satisfy the seriality
property, whereas the second case is not so restrictive, but would require
the parameter of the modality to be a ground term in the language, in a
similar way as in Fitting’s Term Modal Logics [17]. The current ACCLDS

system can be extended to include either of these solutions.
An additional peculiarity with the definition of controls is regarding

the concept of denial of access. Assuming denial of access by a principal B
on request r to be expressed by ¬(B controls r), an inconsistency would
immediately arise whenever a second unrelated principal A makes a request
r on which it is trusted. Clearly this is an unexpected behaviour of an
access control system. The above suggested solutions would also stop this
problem from occurring and allow the concept of negative authorisation
to be expressed using classical negation Other approaches, in which the
concepts of control and denial are taken as independent primitives, don’t
seem to suffer from these problems [4, 13, 22, 23].

An additional benefit of the ACCLDS system is its first-order translation-
based semantics, which provides already a “semi-compiled” formalisation
of the multi-modal logic into first-order logic. This semi-compiled theory
(i.e. the extended labelling algebra) can be used to develop a first-order
automated theorem prover for the ACCLDS system. The following example
illustrates this process. Consider the derivation from ¬(Q says ⊥) : w0

of Q says (P =⇒ Q) → P =⇒ Q given in Figure 1.5. The OTTER the-
orem prover [25] can be used to show the same derivation by means of
resolution. Resolution is a refutation technique and requires the conclu-
sion to be negated, which, after translation gives the first-order sentences
¬[Q says ⊥]∗(w0), [Q says (P =⇒ Q)]∗(w0) and ¬[P =⇒ Q]∗(w0).

Using the extended labelling algebra the instantiations of the axiom
schema needed for this proof are the following:

∀x([P =⇒ Q]∗(x) → ∀y, z(RQ(y, z) → RP (y, z))) (Ax 7)
∀x, y([Q says (P =⇒ Q)]∗(x) → ∀y(RQ(x, y) → [P =⇒ Q]∗(y))) (Ax 5)
∀x((RQ(sp1

P,Q, sp
2
P,Q) → RP (sp1

P,Q, sp
2
P,Q)) → [P =⇒ Q]∗(x)) (Ax 6)

∀x((RQ(x, sQ
⊥(x)) → [⊥]∗(sQ

⊥(x))) → [Q says ⊥]∗(x)) (Ax 4)

In order to use OTTER, some further notational changes are needed; some
terms and predicates are introduced as a short-hand, P and Q are replaced
by p and q and variables x, y and z are replaced by X , Y and Z and are
assumed to be universally quantified.
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1. ¬says(q, b1, w0) data
2. says(q, s1(p, q), w0) negation of goal(i)
3. ¬s2(p, q, w0) negation of goal(ii)
4. (s2(p, q,X) ∧ R(q, Y, Z)) → R(p, Y, Z) instance of (Ax 7)
5. (says(q, s1(p, q), X) ∧ R(q,X, Y )) → s2(p, q, Y ) instance of (Ax 5)
6. (R(q, sp1, sp2) → R(p, sp1, sp2)) → s2(p, q,X) instance of (Ax 6)
7. (R(q,X, s(X)) → b2(s(X))) → says(q, b1, X) instance of (Ax 4)

Figure 1.8. Compiled data required for an automatic derivation

list(sos).

1 [] -says(q,b1,w0).

2 [] says(q,s1(p,q),w0).

3 [] -s2(p,q,w0).

4 [] -s2(p,q,X)| -R(q,Y,Z)|R(p,Y,Z).

5 [] -says(q,s1(p,q),X)| -R(q,X,Y)| s2(p,q,Y).

6 [] s2(p,q,X)|R(q,sp1,sp2).

7 [] s2(p,q,X)| -R(p,sp1,sp2).

8 [] says(q,b1,X)|R(q,X,s(X)).

9 [] says(q,b1,X)|-b2(s(X)).

end of list.

1 [] -says(q,b,w0).

2 [] says(q,s1(p,q),w0).

3 [] -s2(p,q,w0).

4 [] -s2(p,q,X)| -R(q,Y,Z)|R(p,Y,Z).

5 [] -says(q,s1(p,q),X)| -R(q,X,Y)| s2(p,q,Y).

6 [] s2(p,q,X)|R(q,sp1,sp2).

7 [] s2(p,q,X)| -R(p,sp1,sp2).

8 [] says(q,b1,X)|R(q,X,s(X)).

11 [binary,6.1,3.1] R(q,sp1,sp2).

12 [binary,7.1,3.1] -R(p,sp1,sp2).

13 [binary,8.1,1.1] R(q,w0,s(w0)).

15 [binary,4.2,11.1,unit del,12] -s2(p,q,A).

16 [binary,5.1,2.1,unit del,15] -R(q,w0,A).

17 [binary,16.1,13.1] $F.

Figure 1.9. Proof using OTTER
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In particular, in the formulation shown in Figure 1.8, the term s1(p, q)
stands for P =⇒ Q when it occurs as a sub-formula of Q says (P =⇒ Q),
while the predicate s2(p, q,X) is shorthand for the atom [P =⇒ Q]∗(X) and
the atom says(q, s1(p, q), Z) stands for [Q says (P =⇒ Q)]∗(Z). Similarly,
the constant b1 represents ⊥ when it occurs as a sub-formula in Q says ⊥,
the term s(X) is a short-hand for the Skolem sq

⊥(X) and the atom b2(s(X))

stands for [⊥]∗(sQ
⊥(x)). The constants sp1 and sp2 are short-hands for the

Skolem terms in the instance of (Ax 6). Atoms such as R(p,X, Y ) stand
for RP (x, y). More general instances of the axiom schema could have been
used, such as (s2(A,B,X) ∧ R(B, Y, Z)) → R(A, Y, Z) for the instance of
Axiom (Ax 7). After converting the data in Figure 1.8 into clausal form
and submitting it to the OTTER theorem prover the refutation shown in
Figure 1.9 was returned, which is equivalent to the natural deduction proofs
in Figures 1.5 and 1.6.
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