
Abstract Policy Evaluation for Reactive Agents

Krysia Broda and Christopher John Hogger

Department of Computing, Imperial College London
South Kensington Campus, London SW7 2AZ UK

{kb, cjh}@doc.ic.ac.uk

Abstract. This paper describes a method for constructing and evaluat-
ing teleo-reactive policies for one or more agents, based upon discounted-
reward evaluation of policy-restricted subgraphs of complete situation-
graphs. The combinatorial burden that would potentially ensue from
state-perception associations can be ameliorated by suitable use of ab-
stractions and empirical simulation results indicate that the method af-
fords a good degree of scalability and predictive power. The paper for-
mally analyses the predictive quality of two different abstractions, one for
applications involving several agents and one for applications with large
numbers of perceptions. Sufficient conditions for reasonable predictive
quality are given.

1 Introduction

Teleo-reactive (TR)-agents were introduced in [16] and further developed in [1]
and [18]. Such agents act in response to stimuli received from their environment
in such a way to predispose them towards achieving known goals. Their simplest
program structure is a set (called a policy) of mutually-exclusive production
rules of the form perception → action, usually intended to control durative be-
haviour: given a current perception the agent performs the corresponding action
until acquiring a new perception, whereupon it reacts likewise. We make two
key assumptions about TR-agents: they have (i) little or no access to cognitive
resources, such as beliefs or reasoning systems, and (ii) only partial observational
capability, in that their perceptions may not capture the whole environmental
state. A policy identified on this basis is implicitly goal-oriented. A significant
advantage is the relatively low resources a TR-agent needs for its internal logic;
unlike a deliberative agent [13] it does not need computational facilities capable
of executing complicated software. Moreover, since the agent’s policy is designed
to be effective whatever the state in which it finds itself, unexpected exogenous
changes in the environment do not cause difficulties. A framework for evaluating
policies was proposed in [3] and extended in [4, 5] to use abstraction to deal with
scalability, especially in multi-agent contexts. This paper investigates in Theo-
rems 1 and 2 the level of approximation entailed in using abstractions by giving
some sufficient conditions for reasonable predictive quality.

Our work is similar to, but different in approach from, those who seek to
optimize simple agents, comparable to our own, by the use of Markov Decision

Processes (MDPs) or – when the agents cannot perceive the state’s entirety –
Partially Observable MDPs (POMDPs) [7, 10, 15]. The key assumption made
in these design methods is that beliefs about the agent’s current state can be
inferred on the basis of its previous action and/or current perception together
with beliefs about its previous state, thence enabling a suitable next action to
be chosen. This assumption yields algorithms capable of identifying policies that
are optimal or near-optimal relative to one’s ability to estimate probabilities
given the agent’s assumed powers of state observation. These methods are very
successful when the above key assumption holds, but are more complicated to
apply in the multi-agent context where the updating of each agent’s beliefs
has to consider the combinatorial impact of the other agents’ actions upon the
state. Our species of TR-agents are also different from those envisaged by [16],
where the design of a good policy rests on the assumption that the goal state
is totally observable. The content and ordering of the rules constituting the
desired policy are inferred by a reductive planning process that constructs and
orders rules so that the operation of each one may suitably enable the operation
of others, the whole intended to ensure that the goal state eventually becomes
achievable. We would also contrast our approach with those methods [9, 12,
14, 19, 21] that rely upon learning. Here the evolving experience of the agent
is effectively translated into merit-oriented weightings of the alternative actions
available to each perception. The outcome is typically a non-deterministic policy
allowing the agent to choose, for its current perception, between alternative
actions according to the weightings, which may be interpreted as the relative
probabilities of those actions being the best to perform.

The next section describes our framework and presents two abstractions.
Subsequent sections detail each kind of abstraction and analyse the approxima-
tions imposed on policy evaluation. The paper concludes with a discussion of
the ramifications of our results.

2 Overview of Framework

Any world in which our agents operate is capable of assuming various states.
An agent has three main features: a set P of perceptions it may have of its
environment, a set A of actions it may take and a policy relating actions to
perceptions. We here restrict the language of states, perceptions and actions to
be propositional. In any state o ∈ O, the agent’s possible perceptions form some
subset P (o) ⊆ P. A situation is any pair (o, p) for which o ∈ O and p ∈ P (o).
We call the tuple 〈O,P ,A〉 a TR-application. A perception does not, in general,
capture the entire world state and the agent normally perceives only limited
information about that state. The problem is therefore how to find an optimal
policy for a given goal for an agent that (generally) cannot recognize it.

2.1 Situation Graphs

Our framework is based upon a structure called the unrestricted situation graph
G, which shows the situations that a representative agent called self may be

in and the possible actions it may take. Each directed arc in G is labelled by
some action. When the agent is in a situation (o, p) its possible actions depend
only upon p and form a set denoted by A(p). A key feature of our framework
is the process of pruning selected arcs from G according to some policy f , to
leave the f -restricted graph, denoted by Gf . This graph commits the agent to
take, in any situation, the action determined by policy f , and shows what will
actually happen. We assume that every node in Gf other than a goal situation
has a successor, possibly itself. Goal situations are not given a successor, as we
are primarily interested in the effectiveness of policies to reach a particular goal
and not necessarily in what happens afterwards. These things are summarised
in Definition 1 and illustrated in Example 1 using BlocksWorld. (Of course,
BlocksWorld is just an exemplar of a wide range of state transition systems.)

Definition 1. Let 〈O,P,A〉 be a TR-application. The unrestricted situation
graph, denoted by G, is a directed graph whose nodes are all the acceptable sit-
uations admitted by the given application. A policy f is a total function from P
to A and the restricted situation graph, denoted by Gf , is the result of pruning
all arcs from G except those sanctioned by policy f .

Example 1 There are 2 blocks on a table and an agent may see either the table
(s0), or a block (s1), or a 2-tower (s2) if it exists, and may be holding (h), or not
holding (nh), a block. The state is a list of the heights of towers present on the
table. (Situations 4a, 3d and 3e are possible only if there are several agents and
are used in Example 2.) An agent may take one of the actions: wander (w), pick
(k) or put (t). See Figure 1. The goal for this example is that at least one agent

States

1 [1, 1]
2 [2]

States

3 [1]
4 []

p O(p) A(p)

a s0, h {3, 4} {t,w}
b s1, h {3} {t,w}
c s2, nh {2} { }

p O(p) A(p)

d s1, nh {1, 3} {k,w}
e s0, nh {1, 2, 3} {w}

Fig. 1. States, Situations and Actions for Example 1

shall reach state 2 and see the 2-tower (i.e. be in situation 2c). There is no action
prescribed for perception c, since it occurs only in the goal situation. In what
follows we will consider the policies Policy 1 and Policy 2, where Policy 1 always
takes the wander action and Policy 2 is given by a → w, b → t, d → w, e → w.
Figure 2 shows restricted graphs for these two policies, in which all actions are
wander except as indicated. The wander action is special in that it permits an
agent to change its perception without a state change. Depending on the level
of abstraction of the model the result of wander taken from situation s may, or
may not, include s. In this example we assume it cannot be s.

3a

3b

1e

1d 2c 2e

Policy 1

3a

3b

1e

1d 2c 2e

Policy 2

t

Fig. 2. Policies 1 and 2 (Example 1)

2.2 Measuring Policy Values

We measure the value of a policy f by the method of discounted rewards [10].

Definition 2. Let f be a policy for a TR-application 〈O,P,A〉, let s = (o, p)
be a situation in Gf and SS be the successor set of s. The discounted reward
V (s, f), effectively measuring the benefit of the agent proceeding from s, is given
by the formula V (s, f) = Σu∈SS(χsu × (Υsu + γ × V (u, f))).

In the above, Υsu is the immediate reward for the action that takes s to u, χsu

is the probability that from s the agent proceeds next to u and the factor γ
discounts the benefit of taking that action at s. We choose 0 < γ < 1 to reflect
the diminishing returns to the agent of performing successive actions. Since we
are interested in policies that perform well, on average, from whatever state an
agent may find itself, these values of V are used to compute the overall value
of f , denoted by Vpre(f), given by the average of V (s, f) taken over all nodes s
in Gf . We distinguish two reward values: R for an arc leading immediately to a
goal situation and r for all other arcs in Gf . The situations’ values are related
by a set of linear equations which, since γ < 1, have unique finite solutions.

There are two issues of scalability for which we propose abstractions. The first
occurs when there are several agents. If every combination of agents were to be
represented, then each situation would need to include each agent’s perception.
For applications with up to m perceptions and n agents this could potentially
expand the number of situations and policies by a factor of nm. We choose to
approximate the restricted graph by focusing on the actions of a single agent
called self (see[5]). Ramifications of the behaviour of other agents, necessarily
in the same state as self but possibly having different perceptions, are reflected
in Gf by the use of exogenous arcs (denoted by x-arcs). The second issue of
scalability arises when the environment’s size is increased – for example if there
are many blocks. The increase in the number of states is usually accompanied
by a gain in the number of perceptions and if every possible perception were to
be represented even a small increase in G leads to a large increase in the number
of policies. For example, having 10 blocks and allowing a single agent to have
the 11 distinct perceptors s0, . . . , s10 would give the agent 21 perceptions in
all and one million policies to consider. Results presented in [6] show that both
approximations still give reasonable predictions of relative policy values.

3 Formulation for Several Agents

If one were to use our framework to explicitly represent all situations for a group
of n agents, the situations would necessarily consist of a state and an n-tuple
of perceptions. This is the approach taken in [15], for example. Even for the
simple case of BlocksWorld with 2 agents and 2 blocks, this gives 17 situations
as opposed to 6 situations for a single agent. Nevertheless, we could imagine (but
not actually construct) such an unrestricted situation graph; we call it the group
graph denoted Gg . In [5] for several agents of the same kind (i.e. having the same
policy and called clones), we introduced the self graph, denoted Gs

f , which focuses
on a single agent. This graph is a projection of the group graph over the first (or
any other) agent for a given policy and we showed it could be used to predict
a good joint policy. Here, we do not require agents to be clones and instead
call the various self graphs viewpoint graphs, denoted Gv . It is desirable that
the joint policy value should be approximated well by the policy value obtained
for any single agent viewpoint. We illustrate for two small examples and in the
following section consider under what restrictions the values of policies might
be invariant when taken from the viewpoint any individual agent. The notion of
TR-application is extended to allow for more than one kind of agent. We use the
notation 〈O,P,A,R〉, where R is a set of one or more policies and each agent
follows one of them (not necessarily uniquely). We assume here that all agents
possess similar perceptive capabilities, although that need not always be so.

Definition 3. Let 〈O,P,A,R〉 be a TR-application with n agents. The list
[(o, p1), . . . , (o, pn)] is a valid group if in state o it is simultaneously possible
for each agent i to have perception pi. The set Sg of possible situations is given
by Sg = {(o, p1, . . . , pn)|[p1, . . . , pn] is a valid group for the n agents }. The set Sg

forms the nodes of the group graph Gg and its transitions Tg are derived from the
possible transitions any agent could make from each situation: s = (o, p1, . . . , pn)
is connected to s′ = (o′, p′1, . . . , p

′
n) by action ai if some agent i in the group can

take the action ai in s to bring about s′. In particular, agent i, when in the in-
dividual situation (o, pi) and taking action ai, causes itself to make a transition
to (o′, p′i) and other agents to their perceptions given by s′.

That is, each valid group of simultaneous perceptions gives rise to a situation in
the group graph and each valid transition of a single agent gives rise to a transi-
tion in the group graph. The probabilities on each transition are proportional to
those of the individual transitions; e.g. if Agent 1 has a non-deterministic action
from some situation (o, p1) with two equi-probable outcomes, then if there are
3 agents these transitions would each have probability 1/6 from any group situ-
ation (o, p1, p2, p3). When there are several agents it is possible that self’s best
policy is to wait for some other agent to change the state, whence it continues.
We introduce the x action for this purpose. To obtain a viewpoint graph from
a group graph, first a particular policy is fixed for each agent and a restricted
group graph formed by omitting all arcs except those of the policy given for each
agent. Then a projection of the restricted group graph is taken from the point

of view of a particular agent i. It is also possible that, from the view of self, the
state is exogenously changed by another agent. We call this passive updating of
self and label such transitions (in the viewpoint graph) also by x.

Definition 4. Let 〈O,P,A,R〉 be a TR-application with n agents and Gg be a
restricted group graph based on the set Sg of situations of the form (o, p1, . . . , pn)
and having set of transitions Tg. Then Gv

i is the viewpoint graph for agent i
obtained from Gg as follows. The situations of Gv

i are projections of those in Gg

and have either the form (a) (o, pi), in case (o, p1, . . . , pn) is not a goal situation
of Gg, or the form (b) (o, pj) in case it is, where agent j is responsible for
(o, p1, . . . , pn) being a goal situation. The set Tv of transitions in Gv

i is given by
Tv = {((o, pi), (o

′, p′i))}, where (o, p1, . . . , pi, . . . , pn) to (o′, p′1, . . . , p
′
i, . . . , p

′
n) is

a transition in Gg and the action for a transition not due to the action of agent
i is x, and otherwise is the action taken by agent i.

A situation in a viewpoint graph may correspond to several situations in the
group graph from which it is derived. The abstraction function ab, a mapping
from situations in Gg to situations in Gv , records the correspondences and induces
an equivalence relation Ea on the situations in Gg . The Ea equivalence class of
a situation s in Gg , denoted [s], is {s′|ab(s) = ab(s′)} = ab−1(ab(s)). In other
words, the inverse images of situations in Gv are the Ea equivalence classes of
the situations in Gg . The transition probabilities for Gv (for Agent i) are derived
in proportion to those in Gg as follows: for a transition between s1 and s2 in Gv

due to an action ai of Agent i, the sum of probabilities between each situation in
ab−1(s1) and a situation in ab−1(s2) in Gg due to action ai of Agent i is computed
and divided by |ab−1(s1)|. If there are x-arcs between s1 and s2 due to actions
of some other Agent j, j 6= i the sum of probabilities over all corresponding arcs
between ab−1(s1) and ab−1(s2) is divided by |ab−1(s1)| to give the probability of
an x-transition between s1 and s2. The sum of all resulting probabilities of arcs
from s1 will be 1, since in Gg the probabilities summed to 1 for each situation
in ab−1(s1).

Example 2 (extends Example 1) The group graph Gg is shown in Figure 3,
including the various situations, in which the leftmost arrow indicates the status
(either seeing the table or a block, and holding (H) or not) of Agent 1 using
Policy 1 and the rightmost the status of Agent 2 using Policy 2. All probabilities
are 0.5 unless shown otherwise and all actions are w except as indicated. There
are 17 nodes; nodes 5, 6 and 17 are designated goal situations, when at least
one agent is seeing the 2-tower (situation 2c). The joint policy, obtained using
Gg , has the following approximate node values: v(1) = v(2) = v(3) = v(4) =
v(8) = v(9) = v(10) = v(16) = v(11) = −10; v(5) = v(6) = v(17) = 0;
v(7) = v(12) = v(14) = 90; v(13) = v(15) = 59 and total value of 298/14.

To form the viewpoint graphs we use abstraction maps ab1 and ab2 between
situations in Gg and Gv1 and Gv2, which are shown together with the viewpoint
graphs for the two agents in Figure 4. All probabilities are 0.5 unless indicated
otherwise. From the view of Agent 2 there would initially appear to be no possible

5

6

7

1 H

2 H

3 H

4 H

H
11

H
.25

1

2 4

.25

.25

.25

.25

3

8

9

16

10
.25

.25
.25

111

.25

.25

.25

12 13

1514

5

67

17

.25

.25

.25 .25

.25

.25
.25

put

put

8

9

10

16

H14

13 H

15
H

17

12 H

Fig. 3. Group Graph for two Agents using Policies 1 and 2 (Example 2)

exogenous transitions to passively update Agent 2, for since Agent 1 can only
wander it cannot alter the state. However, Gv2 has a reflexive x-arc from 3b to
itself arising from the transitions in Gg between situations 12 and 14 due to the
actions of Agent 1. We illustrate the computation for situation 3b in Gv2. The
arcs between situations 12 and 14 and the respective arcs on these nodes all
arise from the wander action of Agent 1 and summing these probabilities in Gg

gives 1. Similarly, the result of summing the probabilities on transitions in Gg

between 12 or 14 and any of the goal situations, corresponding to a transition
in Gv2 between 3b and 2c, is 1. The size of ab−1(3b) is 2, giving probabilities of
0.5 on both arcs from 3b in Gv2. The correspondence between situation 6 and 2c
for Agent 2 is obtained by case (b) of Definition 4. On the other hand, from the
view of Agent 1, there are some obvious exogenous behaviours. When Agent 1
is in situation 3d or 3e, then Agent 2 would necessarily be in 3a or 3b and, if in
3b, Agent 2’s action would be put, so constructing a 2-tower.

If the joint policy is now evaluated from Gv2, the node values obtained are:
v(3b) = v(2e) = 90, v(3a) = 59, v(2c) = 0 and other node values = −10.
The total value is 189/8, quite close to the value obtained for Gg . However,
if a weighted average of the node values is taken, according to the number of
elements in ab−1(s), for each s, the average is (9×−10+2×90+1×90+2×59 =
298/14. If the joint policy is now evaluated from Gv1, the node values obtained
are: v(2e) = 90, v(3d) = v(3e) = 74.6, v(2c) = 0 and −10 for the remainder.
The weighted average is also 298/14, again exactly the value of the joint policy
obtained from the group graph. This desirable circumstance does not always
prevail, as the next Example shows.

Example 3 This example is from PlanksWorld, in which two identical agents
aim to dispose of a plank, for which each must be holding a (different) end. This
time the joint policy values for the group graph and viewpoint graphs differ.

s in Gg s in Gv1 s in Gv 2

1
2
3
4
8

10
16
11
5
6

17
7

12
13
14
15

3a
3a
3b
3b
1d
1e
1e
4a
2c
2c
2c
2e
3e
3e
3d
3d

3d
3e
3d
3e
1d
1e
1d
4a
2c
2c
2c
2e
3b
3a
3b
3a

Viewpoint Policy 1

3a 3b

1d

1e

2c

2e

3d

3e.25

.25

.25

x

x

4a
1

Viewpoint Policy 2

x

3a 3b

2c

2e

put

x.25.75

4a1

1d

1e

3d

3e

x

x

Fig. 4. Viewpoint Graphs Gv1 and Gv2 for Example 2

The states and situations are given in Figure 5. Each agent is capable of the

States

0 []
1 [f]

States
2 [t]
3 [r]

p O(p) A(p)

a s0, nh {0, 1, 2} {w, x}
c su, nh {1, 2} {li, w, x}
e sh, nh {2} {w, x}

p O(p) A(p)

f sh, h, nr {2} {dr, x}
g sh, h, r { 3} { di, dr, x}

Fig. 5. States, Situations and Actions for Example 3

actions wander, drop, lift, x and dispose. The situation (0, a) is the goal
and the states 1-3 are given by describing whether the single plank is (f)lat,
(t)ilted or (r)aised. The agents can perceive whether they are holding an end
(h) or not (nh), seeing a held or unheld end (sh or su) and, if holding, whether
the plank is raised (r) or not raised (nr). It is assumed that an agent can see
a held end if it is holding. Policy 3 specifies the following actions for each per-
ception: a → w, c → li, e → w, f → x, g → di and the viewpoint
graph (projected over Agent 1) and a fragment of the group graph are given
in Figure 6, in which all actions are wander unless shown otherwise and unla-
belled transition probabilities are 0.5. If the joint policy value is computed from
the group graph, the approximate node values obtained are: v(1a, 1a) = 35;
v(1c, 1a) = v(1a, 1c) = 42; v(1c, 1c) = 55; v(0a, 0a) = 0; v(3g, 3g) = 100;
v(2f, 2c) = v(2c, 2f) = 80; v(2f, 2a) = v(2f, 2e)) = v(2a, 2f) = v(2e, 2f) = 44
with total policy value of 610. If instead the joint policy value is computed from
the viewpoint graph Gv , the node values obtained are: v(1a) = 36, v(1c) = 50,
v(2a) = v(2e) = 44, v(2f) = 56, v(2c) = 80, v(3g) = 100 and v(0a) = 0 with
approximate total weighted value of 608. (e.g. the probabilities of the two arcs

incident to situation 2f are derived from the single transition to (3g, 3g) (the one
to 3g) and the 9 transitions between situations (2f, 2c), (2f, 2e) and (2f, 2a) (the
reflexive arc). In fact, the wander arcs contribute 1/3 and the x-arcs contribute
0.5 to the reflexive arc.) Although the two values obtained for the joint policy
are very close, they are not equal. In the next section we give criteria which are
sufficient to force the two computations to give identical values. These criteria
are satisfied for Example 2, but not for Example 3.

1a

1c

2f

3g 0a

2c

2e

2a

0.25 0.25

x

1/6

0.25

5/6
x

x 1/6

li

x
1/6

2/3

1/6

2/3

1/8 1/8

x

x

x

di
Viewpoint graph

(1a,1c) (1a,1c)

(1c,1a) (1c,1c) (2a,2f)

x

0.25

0.25

0.25 0.25

1/6

0.25

(2f,2a) (2f,2c)

(2f,2e)

(3g,3g)

x

x

li

1/6

1/6

1/6

1/6

1/6

x

Fragments of
Group Graph

Fig. 6. Graphs for Example 3

4 Relationship between Group and Viewpoint Graphs

Examples 2 and 3 above have shown that the policy values of a group graph and
viewpoint graphs derived from it need not be equal. In Example 3, the value of
node 2f (56) was exactly one-third of the sum of the values of the three nodes in
the equivalence class ab−1(2f) (80+44+44). This isn’t a coincidence, but does
not always obtain; for instance, also in Example 3, the value of node 1c (50) is not
one-half the sum of the values of the two nodes in ab−1(1c) (55+42). Theorem 1
states some sufficient conditions for the above property to hold.

Theorem 1. Let Gg be a group graph and Gv be the viewpoint graph for one of
the Agents. Let s be a situation in Gv and N be the set of situations in Gg that
are mapped to s by ab. Assume also that the rewards on arcs directed to nodes
in the same equivalence class of Gg are equal. Then the quantity v(s) × |N | is
equal to Σn∈Nv(n) if either of the following two circumstances holds.
(i) For each m in Gg not in N and not of type (ii), and for which there is an
arc to m from some node in N , there is an arc from every node in N to every

node in [m], the Ea equivalence class of m, all with the same probability, and
either the probabilities on all those kind of arcs are equal for every node in [m]
or every node in [m] has equal value.

(ii) For each m in Gg not in N such that the Ea equivalence class of m is a
singleton, exactly one node n in N has an arc leading to m, which is n’s only
non-reflexive arc, all other arcs from situations in N lead to other nodes in N
and the probabilities on these are in certain proportions: for each n′ ∈ N , n′ 6= n
the probability of the reflexive arc must be pr + pn′ , where pr is the same for all
n and the probability of transitions between other nodes in N and n′ is pn′ .

Proof If N is the set of situations in Gg that are mapped by ab to s in Gv , we
shall write ab(N) = s. We shall also write v(s) for the value of a situation as
computed by the discounted reward formula. The conditions on (i) imply that if
any node in N satisfies them, then each node in N satisfies them and except in
the trivial case, when N and [m] are both singletons, the two cases are disjoint.

Let the size of N be k and each node in N have a bundle of arcs to nodes m
belonging to some set DM . We shall denote the value of ab([m]) in Gv by vM
and the reward for reaching a node in N or ab(N) by rN and for reaching a
node in [m] or ab([m]) by rm.

Case (i) Each node in DM is of the type described in (i), hence for each node
m ∈ DM the probability pnm of the arc directed to m from n ∈ N is the same.
The sum of the probabilities of arcs from a node n ∈ N to other nodes in N is
1−Σm∈DM (pnm) and in the viewpoint graph Gv the probability from ab(N) to
itself is 1 − K, where K = Σm∈DM (pnm). There are two sub-cases:

(a) In Gv the probability of the transition from ab(N) to ab([m]) is Km, where
Km is #[m] × pnm, where pnm is the same probability for the transition in Gg

from each node in N to each node in [m] and #[m] is the size of [m]. The values
of the nodes in [m] may be different, but their mean is V m.

(b) In Gv the probability of the transition from ab(N) to ab([m]) is Σm′∈[m]Km′ =
Km, where Km′ is the same probability for the transition in Gg from each node
in N to m′. The values of the nodes in [m] are equal and denoted by V m.

Case (a) Using the discounted reward formula on ab(N) (= s) in Gv gives
v(s) = γ(1 − K)v(s) + γΣm∈ab(DM)(Km.V m) + (1 − K)rN + K.rm, and hence
v(s) = (γΣm∈ab(DM)(Km.V m) + (1 − K)rN + K.rm)/1 − γ(1 − K)) = C/(1−
γ(1 − K)), where C = γΣm∈ab(DM)(Km.V m) + (1 − K)rN + K.rm.

The values in Gg of nodes in N can be computed as the sum of the con-
tributions derived from transitions to nodes in N , denoted by restn, and other
transitions (to nodes in DM). The probability from a node in N to each node
in [m] is Km/#[m]. The second contribution is the same for all nodes in N and
is given by γΣ[m]⊆DM((Km/#[m])Σm′∈[m]v(m′)) + K.rm + (1 − K)rN = C.

It is required to show that Σn∈Nv(n) = k × v(s). For each n ∈ N ,

restn = γΣn′∈N (pnn′ .v(n′)) = γΣn′∈N (pnn′(C + restn′))

= γCΣn′∈N(pnn′) + γΣn′∈N (pnn′ .restn′) = γC(1 − K) + γΣn′∈N (pnn′ .restn′).

Now, Σn∈Nv(n) = kC + Σn∈Nrestn, where Σn∈Nrestn = kγ.C(1−K) + γ(1−
K)Σn∈Nrestn. This follows since the full expression for Σn∈Nrestn has a unique

solution (and one solution is to set all restn equal). Hence Σn∈Nv(n) = kC +
(kγC(1 − K)/(1 − γ(1 − K)) = kC/(1 − γ(1 − K)).

Case (b) This time the value of v(s) is γ(1 − K)v(s) + (1 − K)rN + K.rm +
γΣm∈ab(DM)(Km.V m) and hence v(s) = C/(1 − γ(1 − K)).

In the group graph Gg the probabilities of transitions from nodes n ∈ N
to each node m′ ∈ [m] are the same, denoted by Km′ , although they may be
different for each m′. Then, for a node n ∈ N ,

v(n) = γΣ[m]⊆DM (Σm′∈[m](Km′ .V m)) + K.rm + (1 − K)rN + restn
= γΣ[m]⊆DM(Km.V m) + K.rm + (1 − K)rN + restn,

where again restn is the sum of contributions to v(n) derived from arcs to nodes
in N . The first three parts are the same for every n and their sum is C. It is
again required to show that Σn∈Nv(n) = k × vN and similar computations for
restn can be made as before, giving the result.

The proof of Case (ii) is simpler and makes similar sorts of calculations. 2

Example 2 meets the criteria of Theorem 1 whereas Example 3 does not. For
instance, consider Gv1 of Example 2. For s = 3a and N = {1, 2}, [m] = {3, 4}
and case (ia) is satisfied. For s = 3d and N = {14, 15}, [m] can be either {12, 13},
and case (ia) is satisfied, or {5} and case (ib) is satisfied. On the other hand, in
Example 3 criteria (ii) is satisfied for 2f : pr = 0.5 and pn = 1/6 for both (2f, 2a)
and (2f, 2e). For 1a it is not satisfied, as the reader can easily check.

Although seemingly restrictive, in practice the restrictions on probabilities
are often nearly satisfied. Even when not, the proof method shows that, unless
the relevant probabilities are wildly variant, the two quantities will still be fairly
close since the viewpoint policy averages the various probabilities as if they were
equal. This result gives some foundation to our empirical results, obtained in [6],
which show that the ranks of the viewpoint policy values, computed using Gv ,
are a good guide to the ranks of the group policy values, computed using Gg .

If the criteria are not met some variation should be expected between the
joint policy value as computed by the group and viewpoint graphs. In particular,
paths may exist in the viewpoint graph that are not realizable. The viewpoint
graph of Example 3 contains the path {1a, 1c, 2e, 2c, 3g, 0a}, which abstracts
the real path {(1a, 1c), (1c, 1c), (2e, 2f), (2c, 2f), (3g, 3g), (0a, 0a)}, but also im-
plicitly includes impossible paths. For instance, after starting from the possible
transition {(1a, 1a), (1c, 1a)} Agent 1 cannot move to 2e. In this example ev-
ery path in the viewpoint graph corresponds to at least one path in the group
graph, but if there are 2 planks and 2 agents, then paths can be found in the
viewpoint graph that do not correspond to any realizable path. The viewpoint
graph has abstracted away details of the groups, and although there may be arcs
leading through situations {s1, s2, s3} the group that occurs as a result of the
first transition may not be a correct one from which to make the second. We
call this the group incoherence problem. In extreme cases, the valuation of nodes
that apparently, but incorrectly, lead to a goal situation can inflate the policy
value, so that a bad policy appears better than it really is. On the other hand,
the extreme case appears to be fairly rare, so the benefit of viewpoint graphs for
scalability outweighs the disadvantages due to the group incoherence problem.

5 Policy Abstraction

There is another way to obtain abstractions. Consider an agent operating in a
BlocksWorld with many (e.g. 10) blocks; assuming just the actions wander, pick
and put there are 21 perceptions and over a million policies to evaluate. The
number of policies can be reduced by generalising the perceptions. For example,
it could be that an agent can, and only needs to, detect a tower of height = 0, < 5
or = 5 or > 5. This generalisation can be seen either to be an enhancement of the
capabilities of the agent, for example by allowing it to perceive disjunctions, as
in seeing a tower of height 1, 2, 3 or 4 (the perception < 5), or by giving it more
power to sense the height of a tower; or to be an increase in expressiveness of the
policy language, for instance by using first order logic and allowing perceptions
of the form {size(x), x < 5, x > 0}. Either way, not only do the perceptions need
to be abstracted, but also several states may need to be combined in order for
situations of the form (o, p) to be meaningful. In [4] we investigated this kind of
abstraction, and our simulation studies showed it still gave good ranking charts
for policies in cases where the number of policies was too large for individual
computation. The discrepancies are again due to a coherence problem and to
explain it we consider what approximations are involved in calculating policy
values for such abstractions.

5.1 Generic Situations

From any TR-application 〈O,P ,A〉, we can form a generic TR-application, in
which the actions remain unchanged, but the states and perceptions are gener-
alised, which means to introduce, respectively on P and O, equivalence relations
Ep and Eo. The Ep(Eo) equivalence classes are called generic perceptions(states)
and if perceptions p1 and p2 are Ep equivalent they will always specify the same
action. We could require that an agent is capable of taking the same actions for
all perceptions in each Ep equivalence class, or that the policy specifies such an
action, but it is not necessary, since if, for some generic perception P , the action
specified is not possible for an actual perception in P it could be modelled by a
failed action. For each generic state O and generic perception P the generic sit-
uation S = O ×P is disjoint from all others, which is important since it ensures
that no policy can specify two different actions for any real situations.

Example 4 This can be illustrated straightaway for BlocksWorld by using a
generalisation with just two generic states [e3] and [ne3], denoted by 1 and 2,
and three seeing perceptors, s0, s3 and sx, the latter denoting “seeing nei-
ther the surface nor a 3-tower”. This yields the 6 perceptions a − f given
by {(s0, h), (sx, h), (s3, h), (s0, nh), (sx, nh), (s3, nh)}. This abstraction suits the
goal of building a 3-tower from an arbitrary but sufficient number of blocks. The
situations and transitions for the policy whereby the agent, if seeing a tower of
height neither 0 nor 3 (sx), can pick if not-holding (nh) or put if holding (h),
but in all other cases wanders, is shown for 3 blocks in Figure 7 (perception c is
impossible). The intended goal is the situation 1f (i.e. ([e3], (s3, nh)).

1f1d
2d

w

2b

2a 2ek

w
t
k t

w

a (s0,h)
b (sx,h)
d (s0,nh)
e (sx,nh)
f (s3,nh)

1 [e3]
2 [ne3]

Fig. 7. Using generic situations (Example 4)

A comparison with any standard restricted graph G for 3 or more blocks
shows a second incoherence problem called piecewise incoherence. In the generic
restricted graph there is a path through situations {2e, 2b, 1f}. However, this
path could never actually occur – both parts of the path from 2e to 1f are
possible, but not in succession. The situation 2e corresponds to an agent seeing
a tower of height 1, 2 or ≥4 and no 3-tower in existence. The policy specifies
the pick action causing the agent to move to 2b. In fact, that means the agent
could not have been seeing a tower of height 1 or of 4 when in situation 2e and
the agent must now be seeing a tower of height 1 or ≥4, for which the policy
specifies a put action. The outcome of this action in this particular circumstance
could never be 1f . In G there would be nodes from which a 3-tower cannot be
built due to pick and put actions between situations where the agent sees a
tower of height 2 or ≥5 and is not holding. For 3 blocks and the above policy G
has a value of 51.6, whereas the graph in Figure 7 has a value of 71.5 (where
node values are weighted by the number of concrete situations represented by
each generic situation and assuming equi-probable transitions in both cases).

The reader may think the problem could be overcome by enhancing the agent
with an extra sense, e.g. allow it to recall its previous action, so distinguishing
between having arrived at 2b via 2e or via 2a. This splits the b perception into
two, one in which the agent remembers its previous action was wander, and
one in which it remembers it was pick, but it results in non-disjoint generic
situations unless a similar perceptive capability obtains in the standard graph
G and illustrates the care that must be taken when constructing generic graphs.

5.2 Evaluating Generic Policies

This section discusses the relation between the policy value of a generic graph,
and the policy value of the non-abstracted graph for the corresponding policy.
The analysis made in the proof of Theorem 2 will also yield a criterion that
guarantees no piecewise incoherence in a generic graph.

Definition 5. Let 〈O,P,A〉 be a TR-application and Ep and Eo be equiva-
lence relations on the sets O and P respectively. Then 〈Eo, Ep,O,P,A〉 is the
generic TR-application based on 〈O,P ,A〉 and the set of generic situations is
{S|S = O×P}, where O and P are, respectively, Eo and Ep equivalence classes.
〈O,P,A〉 is called the parent application.

The elements of a generic situation that also exist in its parent application
are called concrete situations. The probability of a transition from S1 to S2
in a restricted generic graph Ga is computed as the mean of the probabilities
of transitions from a concrete situation in S1 to a concrete situation in S2
and is denoted by χa. We also make two assumptions: (a) the rewards on any
transition leading to an element of a generic situation S1 are the same, and (b) if
generic policy F specifies P → a, then the corresponding policy f for the parent
application specifies the rules p → a for every p ∈ P . Assumption (a) imposes
the restriction on the equivalence classes Ep and Eo that goal situations and
non-goal situations cannot be equivalent.

Theorem 2. Let Ga be a restricted graph for a generic TR-application and Gf

be the restricted graph for the parent application using corresponding policy f .
Then, for each generic situation S in Ga, k × VS = Σi∈Svi if the probabilities
on each transition between S and U in Ga are the average of the transition
probabilities between each i ∈ S and j ∈ U . (VS and vi are the values of situations
S and i in Ga and Gf and k is the number of concrete situations in S.)

Proof For simplicity, zero probabilities are assigned to non-existent transitions.
Let S be a generic situation in Ga. Then the sum of values of concrete situations
in S is given by Σi∈Svi = γΣi∈S(Σ

j∈U,U∈Ga
(χij .vj))+Σi∈S(Σ

j∈U,U∈Ga
χij .rij),

where rij is the reward on the transition between i and j if it exists (and is
irrelevant otherwise). By the assumption (a) each of rij is the same for and
j ∈ U and all i ∈ S, so the contribution due to reward values can be simplified
to Σ

U∈Ga
(rSUΣi∈S,j∈Uχij).

The quantity k×VS is given by kγΣ
U∈Ga

(χa
SU .VU)+kΣ

U∈Ga
(χa

SU .rSU), The
contributions due to reward values are the same in both cases for each U since
k × χa

SU = k(Σi∈S,j∈Uχij)/k. The other contribution to Σi∈Svi can be written
as kγΣ

j∈U∈Ga
(χSjvj), where χSj is the mean of the transition probabilities

between each concrete situation in S and each concrete situation j ∈ U . If the χSj

are further averaged over each j, each to be equal to χSU , then the contribution
becomes kγ(Σ

U∈Ga
χSUΣj∈Uvj). By comparing the expressions for k × VS and

Σi∈Svi, it can be seen they would be equal if VS were the average of vi, i ∈ S. 2

In other words, the policy value using generic situations is obtained by assum-
ing that the transition probabilities between generic situations are an average
of the actual transition probabilities and that the node values are an average of
the concrete situation values. Therefore, in the case that some transitions do not
exist, piecewise incoherence is a possibility. In cases where the transition prob-
abilities between the concrete situations making up two generic situations vary
widely and/or the values of the concrete situations also vary widely, the generic
policy will not be a good reflection of the policy using concrete situations.

In Example 3, notice that if there are many blocks then the probability
of situation 2b occurring when the agent is seeing a tower of height > 4 is
much increased. Thus the probability of the arc between 2b and 1c would, in
practice (i.e. if measured by simulation), be quite small compared with that
of the arc between 2b and 2e. This would cause a corresponding reduction in

the policy value and improve the approximation, since the generic policy value
over-estimates the contribution to the value of 2b made by the arc to 1c. The
absolute policy values are not as crucial as their relative ranking – even if the
policy values computed using Ga are higher than those computed using the full
graph Gf , if the values are ranked in the same order in both cases this will
still allow for the best policies to be found. In experiments conducted so far
(see [4, 6]) this has been the case. This abstraction has some similarities with
that introduced in [11], where a theorem similar to Theorem 2 is quoted. In
the circumstances when a transition in Ga between (O, P) and (O′, P ′) implies
there is a transition between every (o, p) ∈ (O, P) and (o′, p′) ∈ (O′, P ′) generic
policies always give reasonable approximations. Piecewise coherence cannot then
occur, since the destination in (O′, P ′) of a concrete transition from (O, P) would
always be a source for the next transition from (O′, P ′) to some other generic
situation. Abstractions satisfying this criterion were considered in [17] and arise
naturally when the goal situation is also changed to reflect the changes in the
environment due to scaling; e.g. in BlocksWorld this kind of goal might be to
build a tower of all available blocks, or in PlanksWorld it might be to dispose of
all planks however many there were initially.

6 Conclusions and Future Work

We have analysed the approximations involved in using abstractions to evaluate
policies for TR-agents, in order to test the predictive quality of such abstractions
in contexts involving several agents and/or many situations. In the case of several
agents we approximated the group behaviour by focusing on a single agent and
Theorem 1 shows that the policy values are generally affected and may be subject
to group incoherence. This phenomenon is more likely in case there are few states
and many perceptions for each state; however, as we assume fairly simple agents,
this circumstance appears to be relatively uncommon, which is borne out by our
empirical studies in [5, 6]. Moreover, it is less likely in case of a large number
of agents, since all perceptions of a given state will be more common, in turn
making exogenous transitions in Gv more likely to occur in practice.

We are investigating the benefits obtainable when agents possessing different
perceptive capabilities operate in the same environment. For example, some
agents may be endowed with global perceptions, and be capable of few actions,
whereas other agents may be capable of more specific actions and perceptions.
The former kind of agent could act as an information source for other agents.

We also analysed the approximations due to perceptual abstractions and we
found they could give rise to piecewise incoherence and that this was a more
common phenomenon than group incoherence. However, empirical results in [4,
6] show that in case the transition probabilities are well estimated, the abstract
policy values give fair relative predictions for exact policy values. The results
depend on the particular generic situations chosen and this is a topic for our
future investigation, together with a comparison of our work with that of [11].
well under changing environmental conditions.

References

1. Benson, S. Inductive Learning of Reactive Action Models, PhD, Dept. of Computer
Science, Stanford University, 1996.

2. Benson, S. and Nilsson, N. Reacting, planning and learning in an autonomous
agent, Machine Intelligence 14, Eds. Furukawa, K., Michie, D. and Muggleton, S,
Clarendon Press, Oxford, 1995.

3. Broda, K. , Hogger, C.J. and Watson, S. Constructing Teleo-reactive Robot Pro-
grams, Proc. 14th European Conf. on A.I. (ECAI-2000), Berlin, pp. 653-657, 2000.

4. Broda, K. and Hogger, C.J. Designing and Simulating Individual Teleo-Reactive
Agents, Poster Proceedings, 27th German Conf. on AI, Ulm, pp. 1-15, 2004.

5. Broda, K. and Hogger, C.J. Policies for Cloned Teleo-Reactive Agents, 2nd Conf.
on Multi-Agent System Technologies, Erfurt, LNAI 3187, pp. 328-340, 2004.

6. Broda, K. and Hogger, C.J. Determining and Verifying Good Policies for Several
Cloned teleo-Reactive Agents, Intelligent Systems Journal, MATES Special Issue,
2005 (to appear).

7. Cassandra, A.R., Kaelbling, L.P. and Littman, M. Acting Optimally in Par-
tially Observable Stochastic Domains, Proceedings 12th National Conference on
AI (AAAI-94), Seattle, pp 183-188, 1994.

8. Chades, I., Scherrer, B. and Charpillet, F. Planning Cooperative Homogeneous
Multiagent Systems using Markov Decision Processes, Proc. of the 5th Interna-
tional Conf. on Enterprise Information Systems (ICEIS 2003), pp 426-429, 2003.

9. Dickens, L. Learning through Exploration, MSc Dissertation, Dept of Computing,
Imperial College, 2004.

10. Kaelbling, L.P., Littman, M.L. and Cassandra, A.R. Planning and Acting in Par-
tially Observable Stochastic Domains, Artificial Intelligence 101, pp 99-134, 1998.

11. Kersting, K. and De Raedt, L. Logical Markov Decision Programs and the Con-
vergence of Logical TD(λ), Proc. of ILP2004, LNAI 3194, pp180-197, 2004.

12. Kochenderfer, M. Evolving Hierarchical and Recursive Teleo-reactive Programs
through Genetic Programming, EuroGP 2003, LNCS 2610, pp 83-92, 2003.

13. Kowalski, R.A. and Sadri, F. From logic programming to multi-agent systems, in:
Annals of Mathematics and Artificial Intelligence, 25, pp. 391-419, 1999.

14. Mitchell, T., Reinforcement Learning, in Machine Learning, McGraw Hill, 1997.
15. Nair R., Tambe, M., Yokoo, M., Pynadath, D. and Marsella, M. Taming Decen-

tralised POMDPs: Towards Efficient Policy Computation for Multiagent Settings,
Proc. of the 18th Int. Joint Conf. on A.I. (IJCAI-03), pp 705-711, 2003.

16. Nilsson, N.J. Teleo-Reactive Programs for Agent Control, Journal of Artificial In-
telligence Research, pp. 139-158, 1994.

17. Nilsson, N.J. Learning Strategies for Mid-level Robot Control: some preliminary
Considerations and Results, Report, 2000.

18. Nilsson, N.J. Teleo-Reactive Programs and the Triple-Tower Architecture, Elec-
tronic Transactions on Artificial Intelligence 5:99-110 (2001)

19. Ryan, M.R.K. and Pendrith, M.D. An Architecture for Modularity and Re-Use in
Reinforcement Learning, Proceedings 15th International Conference on Machine
Learning, Madison, Wisconsin, 1998.

20. Snedecor, G.W. and Cochran, W.G. Statistical Methods, Iowa State Univ. Press,
1972.

21. Sutton, R. and Barto, A.G. Reinforcement Learning An Introduction, MIT Press,
1998.

