
Pandora: A Reasoning Toolbox

using Natural Deduction Style

KRYSIA BRODA, JIEFEI MA, GABRIELLE SINNADURAI, ALEX

SUMMERS, Department of Computing, Imperial College London, South

Kensington Campus, Exhibition Road, London SW7 2AZ, UK.

E-mails: {kb,jm103,apgs,ajs300m}@doc.ic.ac.uk

Abstract

Pandora is a tool for supporting the learning of first order natural deduction. It includes a help
window, an interactive context sensitive tutorial known as the “e-tutor” and facilities to save, reload
and export to latex. Every attempt to apply a natural deduction rule is met with either success
or a helpful error message, providing the student with instant feedback. Detailed electronic logs of
student usage are recorded for evaluation purposes. This paper describes the basic functionality, the
e-tutor, our experiences of using the tool in teaching and our future plans.

Keywords: natural deduction, Fitch box proof, first order logic, predicate logic, teaching, learning,

e-learning, reasoning about programs

1 History and Context

Natural deduction has been taught to first year undergraduates in the Department
of Computing at Imperial College since 1991. Most students find the high degree of
rigour required in formal natural deduction proofs daunting. Pandora (Proof Assistant
for Natural Deduction using Organised Rectangular Areas) is a learning support tool
designed to guide the construction of natural deduction proofs [1]. The acronym
was coined by Lloyd Kamara. It was conceived in 1996 and is based on the Fitch-
style “proof box notation” for natural deduction as described in [2], which has been
the recommended text for the course since it was developed from the course lecture

1L. J. of the IGPL, Vol. 0 No. 0, pp. 1–13 0000 c© Oxford University Press



2 Pandora: A Reasoning Toolbox using Natural Deduction Style

notes. The first version of pandora was written by a final year student, Patrick Chan,
using Tcl/Tk in 1996 and was available for students to use in tutorials but was not
promoted in lectures. A second version was written in an early release of Java in
1999 by another project student, Dan Ehrlich. This second version was more robust
and was used for demonstrations in class as well as in tutorials. It was available
for students to download onto their own machines and promoted vigorously and was
consequently widely used. The third and current version, also written in Java, was
developed as a group project in 2002 and has since been further enhanced by several
summer students, Jiefei Ma, Alex Summers and Tom Weedon. It provides the basic
functionality together with a help module, a context sensitive tutorial and the facility
to export proofs as latex. An applet version is available for use via the pandora web
site [8] and we hope to make it available for download in the near future.

2 Basic Functionality

Pandora provides learning support to guide students in their construction of a natural
deduction proof of a conclusion or goal from given premisses. It allows the user to
reason “forwards”, that is, from one or more given formulas to deduce another formula
using one of the rules, and to reason “backwards”, that is, to reduce one of the current
goals to one or more subgoals from which the current goal can be deduced using one
of the rules. The rules are all the usual introduction and elimination rules of first
order natural deduction with equality plus a few derived rules found useful by more
advanced users.

We will explain the usual use of the tool by working through a small example to
derive p→ q from the premiss ¬p∨ q. On starting a new proof pandora first requires
the premisses and goal to be given. These are typed by the user into a text box. In
our example there is only one premiss so we type ~p|q then click on the “no more
given” button. Pandora then requires us to give the goal. We type p>q into the text
box. Pandora checks that these are well formed formulas and then displays the initial
state of the partial proof with the premisses at the top and goal at the bottom. This
is shown om the left below.

1 ¬p ∨ q given
< empty >

2 p→ q conclusion

1 ¬p ∨ q given
< empty >

2 p ass
< empty >

3 q
4 p→ q →I(2,3)

Notice that we input the symbols for “not”, “or” and “implies” as the plain text
characters ~, | and > but pandora displays them as ¬, ∨ and →. We experimented
with using buttons to represent the symbols but found that plain text was more con-
venient for user input and having to learn a second set of symbols for the connectives
did not present any problem to our students. Now for the proof. First we apply the
→ introduction rule backwards by selecting the goal, p→ q, and clicking on the →I
button. Pandora displays the new proof state, shown on the right above. The box
shows the scope of the assumption, p, which is discharged by the →I rule and the
conclusion, p→ q, now has the justification →I(2, 3).



Pandora: A Reasoning Toolbox using Natural Deduction Style 3

Next we would like to apply the ∨ elimination rule to split the premiss ¬p ∨ q into
its two cases. The current goal is q and we want to maintain this so we must use the
rule backwards by selecting the goal, q, and clicking on the ∨E button then clicking
on the premiss ¬p ∨ q. The new proof state is displayed.

1 ¬p ∨ q given
< empty >

2 p ass
< empty >
3 ¬p ass

< empty >
4 q

5 q ass
< empty >

6 q
7 q ∨E(1,3,4,5,6)
8 p→ q →I(2,7)

In the right hand box we have q as an assumption and q as the goal so we can just
use the “tick” rule to note that the goal is proven. So we select the goal q, then click
on the � button, then on the assumption q. Pandora displays the new proof state
with the < empty > line removed from the right hand box which is greyed out as
that part of the proof is completed.

To save space we will not show it yet, but first apply a rule in the left hand box.
This will be our first application of a rule forwards. We have both p and ¬p in scope
so we can deduce ⊥ by the ¬ elimination rule. To do this in pandora we select the
< empty > line in the left box, then click the ¬E button, then click on the two
formulas which give the contradiction. The new proof state displayed by pandora is
the one in the screen shot on the first page.

Next we apply ⊥ elimination backwards from the goal q in the left hand box by
selecting the goal then clicking on the ⊥E button. This gives ⊥ as the new goal. As
usual, pandora would display the new proof state.

Finally we use the tick rule again to note that we have ⊥ and we need to show ⊥.
The proof is now complete. Pandora removes all the empty lines and greys out the
proof and is intelligent enough to remove the last application of the tick rule which
is not needed in the final proof. Note that the line numbers and references to them
in the justifications were consistently updated as the proof emerged. Note also that
in the completed proof every line has a justification.

1 ¬p ∨ q given
2 p ass

3 ¬p ass
4 ⊥ ¬E(2,3)
5 q ⊥E(4)

6 q ass

7 q �(6)
8 q ∨E(1,3,5,6,7)
9 p→ q →I(2,8)

If at any stage the student tries to apply a rule wrongly they are given an error
message. The use of the tool to construct a proof as outlined above is augmented
by a help window, interactive tutorial known as the “e-tutor” and export to latex



4 Pandora: A Reasoning Toolbox using Natural Deduction Style

facility. All the proof states shown above were generated using pandora’s export to
latex option. The student can save and reload partially constructed or complete proofs
and work on several proofs at once, each in its own proof window. They can undo
proof steps with the undo button allowing them to try alternative proof strategies.

3 The e-tutor

On loading pandora, the user is presented with the pandora home page, which offers
various options, including loading a previously stored proof, starting a new proof or
starting an e-tutorial. When the e-tutorial is started, four tutorials of propositional
exercises are available. The first consists of fixed exercises and is useful in teaching
when we demonstrate the tool in class or run a laboratory session in which all the
students are required to attempt the same exercise. The other three, known as “easy”,
“medium” and “hard”, consist of sets of five exercises which are randomly selected at
run time by the e-tutor.

In normal mode, pandora just responds to the student’s actions by either applying
the rule they request or giving appropriate error messages. The student’s strategy is
not checked and if a student applies a rule correctly but unwisely, turning an achiev-
able goal into an unprovable goal they are not warned. When an exercise is attempted
in the e-tutor the level of support is greatly enhanced. Hints and explanations are
provided, a warning and counter-model are given if the student applies a rule which
creates an unprovable goal, and the friendly e-tutor will simply do a step for the
student if asked.

We will explain the use of the e-tutor by following a hypothetical student’s attempt
to derive Pierce’s law ((p→ q)→ p)→ p which is one of the fixed tutorial exercises.
In the e-tutor the view is split into a left window in which the proof is constructed
and a right window in which the e-tutor offers advice. Initially the proof window
just contains the goal ((p → q) → p) → p and the advice window just contains the
remark “I am always here to help you” and a clickable link “I need some advice”.
Suppose our student clicks the link. The tutor suggests “Arrow introduction rule”
and the suggestion is itself a clickable link to an explanation of the rule. On clicking
this link the student is given an explanation of the usual use of the rule and what
will happen if it is applied in this particular case and another clickable link “How do
I do it?”. On clicking this link the student is told exactly what to click on to apply
the rule and given two more clickable links. In this case the advice is to select the
goal, ((p → q) → p) → p, and click on the →I button. The links are “Do the steps
for me!” and “Show the advice again”. When our lazy student selects the former the
proof window is updated as shown in the proof state below and the advice window
goes back to showing the remark “I am always here to help you” and a clickable link
“I need some advice”.

< empty >
1 (p→ q)→ p ass

< empty >
2 p
3 ((p→ q)→ p)→ p →I(1,2)



Pandora: A Reasoning Toolbox using Natural Deduction Style 5

Our student can again ask for advice and this time will be offered the choice of
“Law of Excluded Middle” or “Proof by Contradiction”. Again these are clickable
links to explanations of the rules and on selecting them further offers of links “How
do I do it?” and “Do the steps for me!” would be supplied as above. But suppose our
overconfident student reasons that the goal p could be proved by→E using (p→ q)→
p if p→ q can be proved and so decides to ignore the advice and instead applies the
→E rule backwards by clicking on the goal p then the→E button then the assumption
(p→ q)→ p. The friendly e-tutor allows the rule to be applied in the proof window
but responds with a warning in the advice window “Be careful, one or more of your
goals are not provable!” and offers the links “Why?”, “Undo last step” and “I want
to carry on anyway”. If the student asks why, the tutor provides a counter-example
truth value assignment as shown in the screenshot below. If the student decides to
carry on anyway the tutor reports that “No advice is available at the moment because
the goal is not provable”.

Our student can undo the incorrect step and apply Excluded Middle (EM) as
advised instead and then continue either with or without the help of the tutor. The
e-tutor just sits quietly presenting the link “I need some advice” unless the student
either clicks that link or makes a move which results in an unprovable goal.

4 Using Pandora in Teaching

We have two different cohorts of students learning logic in their first year. One class
(JMC) is small (20-25 students) and studying for a joint Mathematics and Computer
Science degree, whereas the other class (COMP) is large (over 100 students) and
studying for a Computing degree. The treatment in respect of using pandora was
different for the two cohorts.

The JMC group is taught by an enthusiastic lecturer, has enthusiastic tutors, and
uses pandora in an integrated way to teach natural deduction which constitutes about



6 Pandora: A Reasoning Toolbox using Natural Deduction Style

25% of the logic module. Initially, the propositional natural deduction rules are
presented and hand written examples of proofs are given. Only after they have seen
several proofs and tried a few on paper themselves is pandora introduced. Pandora
is demonstrated using several of the same examples so the students can focus on
how to drive pandora rather than on how to prove the theorems. Over the next few
weeks, in the lab and tutorials, we give the students many exercises, some assessed,
and introduce them to the first order and equality rules. The course finishes with a
“driving test” consisting of ten problems which the students have one hour to attempt
under exam conditions. Last year the test problems were:

1. ⊢ (p→ (q → r))→ ((p→ q)→ (p→ r))

2. ¬p ∨ q ⊢ (p→ q)

3. ¬(p→ q) ⊢ p ∧ ¬q
4. p→ (q → (r ∨ s)),¬(r ∨ t), (s ∧ q)→ t ⊢ q → ¬p
5. ∀x¬p(x) ⊢ ¬∃xp(x)

6. ¬∃xp(x) ⊢ ∀x¬p(x)

7. ¬∀xp(x) ⊢ ∃x¬p(x)

8. ¬∃x∃y(¬x = y) ⊢ ∀x∀y(p(x, y)→ p(y, x))

9. ∀x(x = a ∨ x = b),¬(a = b), g(a) = b, ∀x∀y(g(x) = g(y)→ x = y) ⊢ g(b) = a

10. ∀x∀y∀z(r(x, y) ∧ r(y, z)→ r(x, z)), ∀x(r(x, a) ∨ r(x, b)), r(a, b) ⊢ ∃y∀xr(x, y)

Pandora has been enhanced with various features to facilitate automatic marking.
For assessed coursework we provide the students with exercise “skeletons”. These
include the given premisses and conclusion together with a “magic number” which
encodes any restrictions we care to impose on the rules they are allowed to use. For
example, this feature allowes us to disable certain derived rules (eg the PC rule) or
to disable all the predicate rules which may be a distraction when they are proving a
propositional assertion. The magic number also encodes the current state of the proof
so the students cannot take the number from one proof and put it on another. The
students download the skeletons from our web based continuous assessment tracking
system and the first time they save a proof (usually when they have completed it!)
their identity is also coded into the magic number. Whenever the proof is saved
subsequently, the coded identity is unchanged so the first saver can be checked against
the submitter of the proof. We are pleased to say that for the two cohorts we have
checked there was no evidence of “work sharing” at all even though the students did
not know about this feature. The electronically gathered proofs from both the driving
test and assessed coursework are checked for correctness and converted to latex by
“text to text” command line programs included in the pandora package. We can
thus produce a report for each student and a summary of results for their tutors with
minimal human intervention.

The experience of the larger class (COMP) has been variable over the last three
years. The first year the current version of pandora was available its use was not
encouraged, with the result that few students tried it. In the second year there was
light encouragement and a demo, and more students tried it out, some using it to
do their coursework. Only in the third year of its availability was pandora seriously
encouraged, but there was still no driving test and no requirement to use it for assessed
coursework.



Pandora: A Reasoning Toolbox using Natural Deduction Style 7

For both cohorts, all exercises done throughout the term, including the driving test
for the JMC, are essentially formative. The main summative assessment is an end of
year written examination.

5 Evaluation

We have put considerable effort into evaluating pandora and used three methods.
Firstly, we asked the students what they think of it, both verbally and using anony-

mous feedback forms. The feedback is generally encouraging and students say and
write that they enjoy using pandora and find it useful. The JMC classes, who learned
pandora thoroughly, enjoyed using pandora more and gave more encouraging feedback
than the COMP cohort. Moreover, the feedback from the COMP cohort improved
as pandora was more actively encouraged. We concluded that perhaps students tell
us what they think we want to hear! Students also made useful criticisms: for exam-
ple the first release of the current version only had the facility to undo the last rule
application but the facility to repeatedly undo steps was added by popular demand.

Secondly, we compared performance on the written exam by the two cohorts. This
did not give the clearcut advantage to pandora users that we hoped for and in fact
there was little difference in terms of marks between the two cohorts. We believe the
reasons for this were that (i) natural deduction, being only 25% of the course, did
not form a large part of the exam and (ii) the questions had to be small enough to
be completed under exam conditions. We also believe that a difference between the
cohorts may have shown up if the questions had been substantial. There did, however,
seem to be a difference in style, namely that those who used pandora were much more
at home with using rules backwards and did not make “arbitrary” assumptions which
they had no hope of discharging whereas the cohort who did not use pandora mainly
reasoned forwards and frequently made arbitrary assumptions. We had feared that
pandora users may find it hard to adapt to writing proofs by hand but it turned out
that the users were more precise syntactically in their hand written proofs than were
the non-users.

For the third evaluation method we electronically recorded detailed logs of the
students’ use of pandora; essentially we recorded every “click” they make so that we
can see in detail how they actually use it. This allowed us to see which rules were
applied, whether undo, help or the tutorial were used, and so on. We computed
proportions of attempted rule applications that were correct and counted error rates
for various types of errors. Some of the results from analysing the logs came as a
disappointment in that they showed that the help and tutorial facilities were used
rather infrequently. The logs also showed a surprisingly high failure rate in students’
attempts to apply the rules. A small number of students had virtually no failures
but many had almost as many failures as successes. Analysis of the logs showed
that many students were not selecting the < empty > line or a goal line before
applying a rule. Comparing the logs for the driving test with those for the previous
work we were pleased to observe that, with experience, the proportion of failed rule
applications decreased. The logs yielded detailed information about the common
errors made by students for each rule but, perhaps surprisingly, not many general
problems could be diagnosed. The one fact that really jumped out of the data was
that students frequently tried to apply the ¬I rule backwards to a formula which



8 Pandora: A Reasoning Toolbox using Natural Deduction Style

was not a negation, whereas it was comparatively rare for them to try applying →I
backwards to a formula which was not an implication. We believe they were confusing
the ¬I rule with the derived PC rule.

Overall the evaluation has taught us that pandora is well liked and considered
useful by the students, but that to improve the learning outcomes we should modify
our teaching in a number of ways. We have run the course again since the evaluation
and made some improvements, notably (i) we gave an advertisement for the e-tutor
and help as part of the initial demonstration, (ii) when demonstrating the individual
rules we emphasised that either the < empty > or < goal > line needs to be selected
before clicking the rule application button, and (iii) we explained how to avoid what
the logs showed to be the common pitfalls in applying the rules. The course only
finished last week and we have not yet had time to analyse the logs so we do not know
whether the actions mentioned in (ii) and (iii) above made a difference. Anecdotally
we believe they did. The demo of the e-tutor producing the counter-model initially
illicited surprise from the students and they were very keen for me to select “I want
to carry on anyway”. When the e-tutor said “No advice is available at the moment
because the goal is not provable” the students laughed because they identified with
its predicament. We think the laugh indicated a warm feeling towards the e-tutor as
well as an understanding of the semantic checks it was making.

6 Future direction 1: Pandora and Prolog

We teach Prolog [4] in the third term of the first year by which time our students
are very familiar with natural deduction and pandora. If natural deduction is applied
to the subset of first order logic consisting only of Horn clauses, it is quite easy to
simulate the action of a Prolog interpreter. So why not use pandora to help their
understanding of backtracking and clausal reasoning?

Prolog can be introduced without resolution by viewing Prolog derivations of query
Q from program P as natural deduction proofs of a goal Q from premisses P . A Prolog
program consists of definite clauses which have the general form A← B1,∧ . . . ∧Bn,
where A, B1,. . .,Bn are atoms. In case n = 0 the clause has the form A and is
called a fact; otherwise it is called a rule. Any variables in a clause are implicitly
universally quantified. The query is a conjunction of atoms, in which variables are
implicitly existentially quantified. Prolog finds all solutions for an existential query
by back-tracking. This is conveniently modelled in pandora by use of UNDO.

Currently in ∀E forwards and ∃I backwards only a ground term can be substituted
for the bound variable. These rules will be generalised to allow the introduction of a
fresh unknown in place of the bound variable. The tick rule currently just checks that
two ground formulas match. For Prolog this must be extended to include unification
between atoms. Similarly backwards application of the rule →E must allow for the
atomic goal to unify with the head atom of the major (→) premise. For convenience
backwards application of ∧I will be generalised for an arbitrary number of conjuncts.

Below is an illustration of the deduction of a query from a five clause program in
which it is assumed that a derivation using b for x has already been found and undone
and a second derivation is sought.

When a rule is applied which binds an unknown the replacement of variables by
values must happen throughout the proof. This overwriting means that the unknowns



Pandora: A Reasoning Toolbox using Natural Deduction Style 9

are lost from the proof state. The diagram below is not itself a proof state because
we have left some of the unknowns in so that you can see a shadow of earlier states.
One such replacement, which was caused by the tick rule used to justify line 7, is
applied to line 10 and indicated by ⇑.

1 arc(a, b) program fact
2 arc(a, d) program fact
3 arc(b, c) program fact
4 ∀u∀v[path(u, v)← arc(u, v)] program rule
5 ∀u∀v∀w[path(u, w)← arc(u, v) ∧ path(v, w)] program rule
6 path(?u1, ?w1)← arc(?u1, ?v1) ∧ path(?v1, ?w1) ∀E(5)

7 arc(?x1, ?v1)
√

(1) if ?x1/a, ?v1/b

8 path(?u2, ?v2)← arc(?u2, ?v2) ∀E(4)
9 arc(b, c)

√
(3)

10 path(b, c) (if ?u2/b, ?v2/c) →E(8)
⇑ caused by justification (7)

10 path(?v1, c)
11 arc(?x1, ?v1) ∧ path(?v1, c) ∧I(7,10)
12 path(?x1, c) (if ?u1/?x1, ?w1/c) →E(6)
13 ∃x[path(x, c)] ∃I(12)

7 Future direction 2: Reasoning about Programs

We are also working on enhancing pandora with Hoare logic for reasoning about
programs. A clear simple account of Hoare logic with its semantic justification was
given by Winskel [14] and formalised in the generic theorem prover Isabelle [6] by
Nipkow et al [7, 10]. We have done some work on adapting the formalism to pandora
style but have not yet started the java implementation of the upgraded tool.

The Hoare rules as used in the Isabelle theory are:
skip : ⊢ {P}SKIP{P}
assg : ⊢ {λs.P (s[x 7→ as])}x = a{P}
semi : [[⊢ {P}c{Q};⊢ {Q}d{R}]] =⇒⊢ {P}c; d{R}
if : [[⊢ {λs.Ps&bs}c{Q};⊢ {λs.Ps&¬bs}d{Q}]] =⇒⊢ {P}IF b THEN c ELSE d{Q}
while : ⊢ {λs.Ps&bs}c{P} =⇒⊢ {P}WHILE b DO c{λs.Ps&¬bs}

where s varies over states, that is, functions from memory locations to values, and
arithmetic expressions and boolean expressions are represented as functions from
states to natural numbers and states to booleans respectively.

1 sx = a ∧ sy = b pre
< empty >

P1 x = x + y; y = x− y; x = x− y

2 sx = b ∧ sy = a < goal >

We present a partial correctness proof of a simple swap program to give an indica-
tion of what we are trying to do. We start with the precondition, the program and the



10 Pandora: A Reasoning Toolbox using Natural Deduction Style

< goal > or hoped for postcondition as shown above. We assume that ; associates
to the right so that the outer connective is the second ;. We can apply the rule semi

by clicking on the program line P1 then the rule semi to get the proof state below.

1 sx = a ∧ sy = b pre
< empty >

2 ?P < goal >
P1 x = x + y; y = x− y; x = x− y

3 ?P ass
< empty >

P2 x = x + y; y = x− y

4 ?MID < goal >
5 ?MID ass

< empty >
P3 x = x− y

6 ?Q < goal >
7 ?Q semi P1 (3,4)(5,6)

< empty >
8 sx = b ∧ sy = a < goal >

Here the ?P ?Q and ?MID are unknown formulas which can be unified with any
formula using the tick rule. At this point rule semi could be applied again to line
P2 or we can use the tick rule to unify the formula at line 8 with ?Q and remove the
redundant line. If we do the latter we can then use the assg rule on P3 to bring the
< goal > at line 6 above the code line P3 to get the proof state below.

1 sx = a ∧ sy = b pre
< empty >

2 ?P < goal >
P1 x = x + y; y = x− y; x = x− y

3 ?P ass
< empty >

P2 x = x + y; y = x− y

4 ?MID < goal >
5 ?MID ass

< empty >
6 sx− sy = b ∧ sy = a < goal >
P3 x = x− y

7 sx = b ∧ sy = a assg P3 (6)
8 sx = b ∧ sy = a semi P1 (3,4)(5,7)

Now we use the tick rule to unify the formula at line 6 with ?MID. This causes
the redundant line to be removed and the bottom box which is now complete to be
greyed out. Next we must use the semi rule on P2 and then we can proceed as above



Pandora: A Reasoning Toolbox using Natural Deduction Style 11

using tick to unify and assg to bring the goal above the code until we get up to the
precondition and complete the proof. The resulting proof is shown below.

1 sx = a ∧ sy = b pre
2 sy = b ∧ sx = a TML(1)
P1 x = x + y; y = x− y; x = x− y

3 sy = b ∧ sx = a ass
P2 x = x + y; y = x− y

4 sy = b ∧ sx = a ass
5 sy = b ∧ (sx + sy)− sy = a TMA(4)
P3 x = x + y

6 sy = b ∧ (sx− sy) = a assg P3 (5)
7 sy = b ∧ (sx− sy) = a ass
8 sx− (sx− sy) = b ∧ (sx− sy) = a TMA(7)
P4 y = x− y

9 sx− sy = b ∧ sy = a assg P4 (8)
10 sx− sy = b ∧ sy = a semi P1 (4,6)(7,9)
11 sx− sy = b ∧ sy = a ass
P5 x = x− y

12 sx = b ∧ sy = a assg P5 (11)
13 sx = b ∧ sy = a semi P1 (3,10)(11,12)

Note that when the rule assg was applied backwards at line 9 over program line
P4 and backwards at line 6 over program line P3 the resulting expressions at lines 8
and 5 needed simplifying to get the lines 7 and 4 respectively. In the long term we
hope to be able to add an arithmetic module to pandora to enable it to simplfy, or
at least check the correctness of simplifications, itself. In order to get started we will
initially build in a “trust me arithmetic” (TMA) rule. Applications of this rule will
be accepted by the tool if some simple semantic plausibiliy checks are passed. Note
also that in going backwards to the precondition from line 2, which like line 3 was
obtained by unification with line 4, we use the TML rule which stands for “trust me
logic” and will be used for simple logical checking.

For these ideas to scale up for use with larger programs we need the ability to
collapse and expand parts of the proof so they take up less screen space when they
are not being actively worked on. Also, undo/redo needs to be made smarter so that
a small change required in a loop invariant does not cause all the work since the
invariant was first given to be lost.

This is a useful challenge - simple enough to provide hope of progress but substantial
enough to give us some confidence that good solutions will scale up to larger proof
systems.

The big advantage of pandora over text based interactive theorem provers like
Isabelle is that the student can see the proof emerge graphically and non-essential
details like line numbers are automatically taken care of. Unlike the final proof pro-
duced by Isabelle, which is more naturally viewed as an “assembly code” program for
generating a proof rather than a proof itself, the pandora proof is human readable.
Its overall structure can be viewed at a glance and the detailed steps can easily be
followed.



12 Pandora: A Reasoning Toolbox using Natural Deduction Style

8 Related Work

Pandora is not the only teaching tool for first order natural deduction using Fitch-style
boxes. Two others of which we are aware are Jape [5] and AProS [9, 12].

Jape was originally developed about the same time as pandora by Richard Bornat
and Bernard Suffrin. It has recently been enhanced and although it does not currently
have an e-tutor to give hints it does have the useful ability to look for first order
counter-models. It includes some unification on formulas, for example applying the
or introduction rule to the formula A gives A∨?B and the unknown can later be
unified with any formula. The interface allows the user to input their own problems,
import valid formulas and save and print proofs. Jape silently carries out the tick

rule whenever it can, even when unification is involved. From a teaching point of
view we believe this is a draw-back as the students are not in control of the whole
proof construction. Also, when this happens the proof state “jumps” which is visually
confusing.

AProS is integrated into a complete teaching programme for online learning. AProS
is used for a variety of courses so there are several different interfaces appropriate to
the course; for example, the user is allowed to use De Morgan’s laws on some problems
but not on others. It does not allow the user to input their own problems as these
are built in as part of the course. We understand that the next version of AProS
will allow user input and that it is currently being enhanced with an e-tutor. The
AProS project has an automated reasoning dimension incorporating a second tool
which generates proofs and will be a basis for the e-tutor.

This paper is an extension of [3] presented at Salamanca where also AProS was
presented. In pandora →E backwards is currently: if A→ B is in the data and B is
a goal then that goal can be reduced to the goal A. This can be generalised to “→E
middle-out”: given the data A → B and a goal G we get two new proof obligations
(i) to prove A and (ii) to prove G with the additional assumption B. If G is B this
reduces to our current →E backwards and if A is part of the data it reduces to the
usual→E forwards. We much enjoyed and appreciated conversations with Sieg about
his investigations into the intercalation calculi [13] where →E middle-out is called
→↓. We will implement →E middle-out as an updated →E backwards in the next
version of pandora. Jape already includes this generalisation.

References

[1] K. Broda, S. Eisenbach and L. Kamara. Tools for Natural Deduction, Proceedings of First

Australian Conference on Computer Science Education, ACSE96, CACM, pp 119-126, 1996.

[2] K. Broda, S. Eisenbach, H. Khoshnevisan, S. Vickers. Reasoned Programming, Prentice-Hall,
1994.

[3] K. Broda, J. Ma, G. Sinnadurai and A. Summers. Pandora: Natural Deduction made Easy, in
[11], pp 11-14.

[4] W. Clocksin and C. Mellish. Programming in Prolog: Using the ISO Standard, Springer-Verlag
2003.

[5] http://jape.comlab.ox.ac.uk:8080/jape/

[6] http://www.cl.cam.ac.uk/Research/HVG/Isabelle/

[7] http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/library/HOL/IMP/index.html

[8] http://www.doc.ic.ac.uk/pandora/

[9] http://www.phil.cmu.edu/projects/apros/



Pandora: A Reasoning Toolbox using Natural Deduction Style 13

[10] T. Nipkow. Winskel is (almost) Right: Towards a Mechanized Semantics Textbook, Founda-

tions of Software Technology and Theoretical Computer Science, ed. V. Chandru and V. Vinay,
Springer LNCS 1180, pp 180-192, 1996.

[11] Proceedings of the second international congress on tools for teaching logic, Eds: Maria Man-
zano, Belen Perez Lancho and Ana Gil, Salamanca, 2006.

[12] W. Sieg. STRATEGIC THINKING: web-based and dynamically tutored, in [11], pp 199-200.

[13] W. Sieg and J. Byrnes. Normal Natural Deduction Proofs (in classical logic), Studia Logica 60:
pp 67-106, 1998.

[14] G. Winskel. The Formal Semantics of Programming Languages, MIT, 1993.

Received 22 December 2006


