Policies for Cloned Teleo-Reactive Robots

Krysia Broda and Christopher John Hogger

Department of Computing, Imperial College London
kb@doc.ic.ac.uk, cjh@doc.ic.ac.uk

Abstract. This paper presents a new method for predicting the values
of policies for cloned multiple teleo-reactive robots operating in the con-
text of exogenous events. A teleo-reactive robot behaves autonomously
under the control of a policy and is pre-disposed by that policy to achieve
some goal. Our approach plans for a set of conjoint robots by focusing
upon one representative of them. Simulation results reported here in-
dicate that our method affords a good degree of predictive power and
scalability.

1 Introduction

This paper examines the problem of designing optimal or near-optimal policies
for a group of teleo-reactive (TR) robots operating in the context of exogenous
events. From the viewpoint of any individual robot an exogenous event is any
change in the world not caused through its own actions. The characteristics of
a TR robot are, typically, that it behaves autonomously under the control of
a stored program or policy, that the policy alone instructs it how to react to
perceptions of the world, that it possesses very limited computing resources for
program storage and interpretation and that it is predisposed by the policy to
achieve some goal. The main features of TR robots were introduced in [11] and
further developed in [12]. We make two key assumptions about a robot: that
it has (i) little or no access to cognitive resources, such as beliefs or reasoning
systems, and (ii) only partial observational capability, in that its perceptions
may not fully capture the whole environmental state. Such robots could find
uses in those applications, for instance nano-medicine or remote exploration,
where physical or economic constraints might preclude such access. Informally,
a good policy is one which disposes a robot to perform well in pursuit of a defined
goal whatever state it is currently in.

A reactive robot responding only to its current perception of the state can
be modelled naturally by a Markov Decision Process (MDP). When that per-
ception captures less than the entirety of the state it is often modelled using the
framework of Partially Observable MDPs (POMDPs) [7,5,10]. Seeking good
policies for a given robot within the POMDP framework typically requires, in
order to compensate for the lack of full state information, that the actual state
be estimated using a history of previous events. When the history is owed only
to actions of known robots, it is accurately representable. However, it is not ac-
curately representable if arbitrary exogenous events can occur, which is exactly

the case in which we, by contrast, are interested. Our approach is somewhat
similar in motivation to that of [6], in that we plan for a set of conjoint agents
by focusing upon some representative subset of them.

Our position must also be distinguished from that taken by many in the
multi-agent community who equip their agents with complex theories about the
environment and elaborate communication mechanisms, because of our focus on
minimally equipped robots. Nevertheless, the problem remains of dealing with
a robot having limited perception.

Choosing a good policy for a given goal is generally difficult. Even simple
robots and worlds can offer huge numbers of policies to consider. Most ways of
designing TR-(teleo-reactive) policies are learning-based, as in [1] which applies
inductive logic programming to determine advantageous associations between
actions and consequences. Other learning schemes for TR-planning are [9], [14]
and [8].

The core concepts in our approach, first proposed in [2], are as follows. The
world in which the robot operates has a total set O of possible states. The robot
is presumed to possess perceptors through which it may partially perceive these
states; the set of all its possible perceptions is denoted by P. The robot is also
presumed capable of certain actions which form a set A. In any state o € O, the
robot’s possible perceptions form some subset P(0) C P, and in response to any
perception p € P(0) the robot’s possible actions form some subset A(p) C A.
A policy (or program) for the robot is any total function f:P — A satisfying
Vp € P, f(p) € A(p). The number of possible policies is the product of the
cardinalities of the A(p) sets for all p € P. A situation for the robot is any pair
(0,p) for which o € O and p € P(0). We denote by S the set of all possible
situations, one or more of which may be designated goal situations. Associated
with the robot is a unique unrestricted situation graph G in which each node is
a situation. This graph has an arc labelled by an action a directed from node
(0,p) to node (0,p’) in every case that a € A(p) and execution of action a
could take the world state from o to o’ and the robot’s perception from p to
p’. The possibilities that o = o' and/or p = p’ are not inherently excluded.
The policies are evaluated using discounted-reward principles [7] applied to the
situation graphs.

A key feature of this approach is that the graph for the robot can represent,
besides the effects of its own actions, the effects of exogenous actions, whether en-
acted by other robots or by other indeterminate agencies. This obviates analysing
comprehensively the explicit combinations of all the robots’ behaviours. This
treatment is one contribution to the control of scalability and is in contrast to
that presented in [13], who explicate entirely the joint perceptions of the robots.
Scalability can be further controlled by abstraction, by way of replacing sets of
concrete situations by abstract generic situations [4]. Situation graphs have also
been employed to represent and exploit inter-robot communication [3].

This paper demonstrates the use of situation graphs to predict optimal or

near-optimal policies for groups of cloned TR-robots, and assesses their effec-
tiveness on the basis of simulation results. The main contribution is to show

that useful designs for robot clones can be obtained by analysing a single robot
acting in the context of events instigated by others. Section 2 illustrates how
TR-scenarios are formulated and Sect. 3 discusses the evaluation and testing of
policies. In Sect. 4 we describe the treatment of multi-robot contexts and some
case-studies are presented in Sect. 5. Section 6 uses the results of those studies
to discuss some ramifications of the design method, whilst Sect. 7 summarizes
our conclusions.

2 An Illustration

The above ideas are now illustrated using Blocks World for a single robot case. Of
course, BlocksWorld is just a generic exemplar of a wide range of state transition
Systems.

In BlocksWorld the world comprises a surface and a number of identical
blocks. A state is an arrangement of the blocks such that some are stacked in
towers on the surface whilst others are each held by some robot, and is repre-
sentable by a list of the towers’ heights. Suppose there are just 2 blocks and one
robot which can, at any instant, see just one thing — the surface, a 1-tower or a
2-tower, denoted by s0, s1 and s2 respectively. Further, it can sense whether it is
holding a block or not doing so, denoted by h and nh respectively. Its perception
set P then comprises just 5 legal pairings of “seeing” status and “holding” status.
At any instant the robot performs whichever action a € A corresponds, accord-
ing to its policy, to its current perception p € P; this behaviour is assumed to be
durative — the action cannot change while perception p persists. The action set
A in BlocksWorld is {k,1,w}. In a k-action (“pick”) the robot removes the top
block from a tower it is seeing, and afterwards is holding that block and seeing
the resulting tower (or the surface, as appropriate). In an 1-action (“place”) the
robot places a block it is holding upon what it is seeing (the surface or some
tower), and afterwards is not holding a block and is seeing the resulting tower. In
a w-action (“wander”) the robot merely updates its perception without altering
the state. Figure 1 shows these aspects of the formulation, labelling the states
1...3 and the perceptions a...e.

(b) perceptions and actions

(a) states and perceptions D A(p)
o P(o) a|[s0,nh] {w}
1([1, 1] {a, b} b|[s1,nh] {k,w}
2| 1] {d, e} c|[s2,nh] {k,w}
3| 2] {a,c} d| [s0, h] {1,w}

el [s1,h] {1,w}

Fig. 1. Formulation of the 2-block world

Figure 2a shows the unrestricted graph G, where each node (o,p) is abbre-
viated to op. There are 16 policies, one being

f={a—w, b—w, c—w d—w e—1}

To adopt this policy is to eliminate certain arcs from G to leave the f-restricted
graph G ¢ shown in Fig. 2b. G ¢ gives the transitions the robot could make under
policy f. For a given goal, choosing f partitions the set S of nodes in G into

W «— w — w
(a) la «plb _K;Zd <«——p2e 4K_ 3cqe——p3a

w w L w
(b) la «—plb 2d —p2e—p 3cq—p3a

Fig. 2. (a) Unrestricted graph G; (b) f-restricted graph Gy

two disjoint subsets Ty and Ny called the trough and non-trough respectively.
Ty comprises exactly those nodes from which there is no path in G to the goal,
and N; comprises all others. Choosing, say, the goal 3c in the example yields
Ty = {la,1b} and Ny = {2d, 2¢, 3¢, 3a}. Here, no arc in Gy is directed from Ny
to T'y. When such an arc does exist, Gy is described as NT-bridged. In that case
a robot able in principle to reach the goal from some initial node may traverse
the bridge and thereafter be unable to reach the goal, since no arc directed from
Ty to Ny can exist. Define X = 100|Nf|/|S|. Then for a series of experiments
choosing initial situations randomly, the robot’s predicted success rate SRpye(f)
(as a percentage) is < X if Gy is NT-bridged but is otherwise exactly A. For the
example above SRpe(f) = 66.67%.

3 Predicting and Testing Policies

This section explains how policies are evaluated in a single-robot context. The
extension to the multi-robot context then follows in the next section.

The predicted value Vie(f) of a policy f is the mean of the values of all
situations in Gy, assuming they are equally probable as initial ones. The value
of a situation S should reflect the reward accumulated by the robot in proceeding
from S, favouring goal-reaching paths over others. If S has immediate successor-
set SS then its value V' (S) can be measured by the discounted-reward formula

V() = Yiess(ps-(rwd(s) +~.V(5:)))

where pj is the probability that from S the robot proceeds next to s, rwd(s) is the
reward it earns by doing so and -~ is a discount factor such that 0 <~ < 1. In a
single-robot context equal probabilities are assigned to those arcs emergent from

S. We employ two fixed numbers R and r such that rwd(s) = R if s is a goal and
rwd(s) = r otherwise, where R >> r. The situations’ values are therefore related
by a set of linear equations which, since v < 1, have unique finite solutions and
so determine a finite value for Vj..(f). In general, choosing R >> r ranks more
highly those policies well-disposed to the reaching of the goal, whilst v controls
the separation (but not, in general, the ranks) of the policies’ values. A Policy
Predictor program is used to compute policy values by this method, and also to
compute (as above) the upper bounds (\) on their success-rates.

We tested the quality of the Policy Predictor by using a Policy Simulator
program. Each run of the simulator takes an initial situation S and subsequently
drives the robot according to the given policy f. The simulated robot then
implicitly traverses some path in Gy from S. The run terminates when it either
reaches the goal or exceeds a prescribed bound B on the number of transitions
performed. As the path is traversed, the value V(S) is computed incrementally
on the same basis as used by the predictor. Equal numbers of runs are executed
for each initial situation S and the mean of all observed V(.S) values gives the
observed policy value Vops(f). The simulator also reports the observed success

rate SRopbs(f)-

The simulator supports both positionless and positional simulation modes.
The former associates no positional data to the robot or the towers, and so uses
the same information about the problem as the predictor. Thus, if the robot picks
a block from the 2-tower in the state [1, 2], it is indeterminate as to which tower
it will see afterwards in the new state [1, 1]. By contrast, the positional mode
assigns discrete grid coordinates to the robot and the towers, and exploits these
to effect transitions in a manner somewhat closer to physical reality through
knowing precisely where the robot is located and what it is seeing. This paper
gives results only for positionless simulation, using parameter values R = 100,
r=—1and y=0.9.

To visualize the correlation of predictions with test outcomes for a set F of
n policies, those policies’ observed values are charted against the ranks of their
predicted values. Overall predictive quality is reflected by the extent to which
the chart exhibits a monotonically decreasing profile. A precise measure of this
can be computed as the Kendall rank-correlation coefficient 7+ for F, as follows.
Let (f, g) be any pair of distinct policies in F satisfying Vire(f) < Vpre(g). This
pair is said to be concordant if Vops(f) < Vobs(g), but is otherwise discordant.
Then 77 = 2(C — D)/n(n — 1) where C' and D are the numbers of concordant
pairs and discordant pairs, respectively, in F x F. Its least possible value is -1
and its greatest is +1. It is convenient to map it to a percentage scale by defining
QrF = 0% when they disagree maximally.

Figure 3 shows the chart for the 2-block example above, choosing the goal as
(3,¢), i.e. “build and see a 2-tower”. Observed policy values are measured along
the vertical axis, and predicted ranks (here, from 1 to 16) along the horizontal
one. Arcs emergent from (3, ¢) were suppressed from G to mirror the fact that the
simulator terminates any run that reaches a goal. For each policy the simulator
executed 1002 runs with B = 100. The chart is perfectly monotonic and Q r =

100%. The optimal policy is {a = w, b—k, ¢— w(ork), d— w, e— 1},
which picks a block only from a 1-tower and places a block only upon a 1-tower.
Its success rate is 100%.

80.00C

60.06 “
40.00
20.04Q AN

N\

Fig. 3. Policy ranking chart for building a 2-tower

4 Policies for Multiple Robots

Whether or not it is useful to employ multiple robots in the pursuit of a goal
depends upon the nature of the world and of the robots’ interactions with the
world and with each other. With limited perceptions, incognizance of the goal
and lack of communication, simple TR-robots of the kind we have considered
may cooperate advantageously only by serendipity. Predicting accurately the be-
haviour of multiple robots presents not only analytical difficulties, in attempting
to assess the overall impact of their interactions, but also problems of scale — for
just a modest case of a 4-block world with 2 robots there are potentially more
than 13,000 policies to consider.

This section explains how a situation graph focusing upon one robot, termed
“self’, can express the effects of other robots acting in concert with it. The
key question is whether such a graph enables prediction of good policies for the
combined robots without requiring explicit analysis of all the combinations of
the situations they occupy.

For this purpose we introduce a special domain-independent action named x
that all robots possess in their A sets. So for Blocks World A is now {k, 1, w, x}.
In any situation graph an x-arc directed from (o, p) to (o', p’) signifies that, from
the viewpoint of self, the state transition from o to o’ is effected exogenously
by some other agent(s), here restricted to be other robot(s). So, when selfs
policy prescribes an x-action for perception p, this is interpreted operationally
as requiring self to “wait” (that is, to become inactive) until its situation is
updated exogenously to (o', p’). On the other hand, when self’s policy prescribes
some action other than x self may alternatively undergo an exogenous transition
caused by the action of another robot. We call this passive updating of self.

Whether or not the robots all have the same policy, it is desirable to reduce
the possibility of deadlocks in which they would all be waiting. One way to
do this is to arrange that whenever a robot’s policy requires it to wait, the

transition that it awaits should be achievable in one step by some other robot.
In the case that all robots have the same policy f (i.e. are clones) this is called
the clone-consistency principle, defined as follows. Suppose f contains p — x.
If G¢ has an x-arc from (o,p) to (o/,p’) then (i) Gy must also have an arc from
(0,q) to (0',¢') labeled by an action a other than x and (ii) f must contain
q — a. Besides reducing deadlock this principle also reduces very significantly
the number of policies requiring to be examined. A weaker one could require that
the progression from o to o’ be achieved within k& > 1 steps for some specified
k, allowing a more liberal dependence upon exogenous behaviour but at the
expense of having more policies to consider.

In the multiple-robot context the predictor assigns probabilities to the arcs
of a graph Gy as follows. Each node S = (0, p) has emergent arcs for the action
a that self performs according to the rule p — a in its policy f. If a = x then
these x-arcs are the only arcs emergent from S. The predictor counts, for each
one, the number of distinct ways its transition could arise, taking account of
the number of other robots that could effect it. Their probabilities are then
required to be proportional to these counts and to have sum Y'x = 1. If a # x
then S additionally has arcs labeled a and these are assigned equal probabilities
having sum Y3. In this case X3 and Yx are made to satisfy Y3 + X'x = 1 and
Yx = (n — 1)X5 where n is the total number of robots, reflecting the relative
likelihood in situation S of self being the robot selected to act or one of the
others being selected to act.

In the multiple-robot context the simulator effects transitions between multi-
situations, which generalise situations. A multi-situation is a physically possi-
ble assignment of the robots to situations that share a common state and dif-
fer (if at all) only in perceptions. An example of a multi-situation for the 2
robot example shown in Fig. 4 is {(r1,(3,d)), (72, (3,d))}. On the other hand,
{(r1,(3,d)),(r2,(3,a))} is not a multi-situation as it is physically impossible.

At any given moment in a simulation, some robots may be flagged as wait-
ing, because they previously performed x-actions for which they still await
the required transitions. Robots not currently so flagged are called active. A
run begins with an initial multi-situation chosen randomly from the set of all
multi-situations distinguishable up to robot identity. Each subsequent transition
from a state o is made by randomly choosing some active robot and performing
the action a prescribed by its policy, causing the state to become some o’. If
a € {w, x} then o = o’ and the other active robots’ perceptions remain un-
changed. If a € {k, 1} then o # o' and the other active robots are passively
updated in a manner chosen randomly from all possible ways of updating them
to state o/, whilst any waiting robots whose required transitions have now been
effected become active and acquire the perceptions in state o’ that they had
awaited.

A transition from the multi-situation {(r1, (2,d)), (r2,(2,d))} (again for the
example shown in Fig. 4) might be: r1 is selected, its policy (say) dictates ac-
tion k and the new multi-situation would be either {(r1,(6,h)), (r2,(6,%))} or
{(r1,(6,h)), (r2,(6,d))}. The situation change for 2 in this transition is an ex-

ample of a passive update corresponding to an x-arc from either (2,d) to (6,14)
or (2,d) to (6,d). The simulator chooses randomly from these two possibilities.

A run is terminated when any active robot in the group reaches a goal situa-
tion or when the simulation depth bound B is reached. The simulator’s successive
random choosing of which robot acts next provides an adequate approximation
to the more realistic scenario in which they would all be acting concurrently.
Owing to the physical constraint that there can be only one state of the world
at any instant, any set of concurrent actions that produced that state can be
serialized in one way or another to achieve the same outcome. The simulator’s
randomness effectively covers all such possible serializations.

An x-arc in the graph thus represents two notions at once. On the one hand
it represents the action of deliberate waiting in accordance with self's own policy.
On the other hand it indicates how self can be impacted by the actions of others.

5 Multiple Clone Examples

0 P(o)
B [i | [p 1w
2 [1,1,1,1]| {d,d} a| [s1,h] [{1,w,x}
31[1,1,2] | {d,e,i} b| [s2,h] |{1,w,x}
41 [1,3] | {4, f,i} c| [s3,h] |{1,w, x}
5| [4] {g,1} d|[s1,nh]|{k,w,x}
6| [1,1,1] |{a,d, h,i} e|[s2,nh]|{k,w, x}
7|1 [1,2] | {a,b,d, f[s3, nh]|{k,w, x}
e, h,i} g|[s4, nh]|{k,w,x}
81 B |{e f,h,i} h| [sO,] |{1,w,x}
9| [1,1] {a,h} i|[s0, nh]| {w,x}
100 [2] {b,h}

Fig. 4. Formulation of 4-block world with 2 robots

All these examples are for a world having 4 blocks, but with various goals
and various numbers of cloned robots. The total number of policies is 13,122 but
only 480 are clone-consistent. Each of these 480 was given about 1000 simulation
runs with B = 100, and the reward parameters used were R = 100, r = —1 and
v=0.9.

Example 5.1: [2 robots building a 4-tower] The formulation is shown in Fig. 4.
The unrestricted graph G has 30 nodes, among which is the goal (5, g). Figure 5
shows a fragment of G (4d appears twice only for drawing convenience). Even this
fragment has some incident and emergent arcs omitted from the figure. Figure 6
shows the policy ranking chart for the set F of the best 240 policies. For these,

IX IX L IX IX
w «— w
Sie——» 8 T —»10b «—»10h
1%

ATW 4

4d ——4 4- - >

Fig.5. Graph G for 4-blocks and 2 robots

Qr is 87.90%. The best ones are ranked almost perfectly. The observed optimal
one, having predicted rank 2, is

{a—=1, b—>w, c—w, d—k e—k, f—ow g—ow h—ow >}

This picks only from a tower of height < 3 and places upon any tower of height
< 4 (but not upon the surface).

40.00

30.00"‘

20.00

10.00
0.00 , I., = e

-10.00

Fig. 6. Policy ranking chart for Example 5.1

Example 5.2: [3 robots building a 4-tower] The graph G is now a little larger,
as there is an extra state. It has 36 nodes. Figure 7 charts the best 240 policies,
for which Q# is 89.94%. For the best 20 it is 85.79%. The observed optimal
policy is the same as for 2 robots, and is the predicted optimal one.

Example 5.3: [/ robots building a 4-tower] The graph G now has yet one more
state (in which every block is being held). It has 39 nodes. Figure 8 charts the
best 240 policies, for which Q£ is 90.02%. For the best 20 it is again 85.79%.
The observed optimal policy is the predicted optimal one, being

{a—=1, b—>1, ¢—1, d—k, e—w, f—ow g—ow h—w i—wu}

which picks only from a tower of height 1 and places only upon a tower of height
< 4.

40 .00

30.00
20.00 ‘\
10.00
0.00 f"ll M
|1 W
~10.00

Fig. 7. Policy ranking chart for Example 5.2

30.00

20.00“

10.00 \111"

0 .0 04

IIL“\F”UL-..J-“W‘M—J-‘M

Fig. 8. Policy ranking chart for Example 5.3

-10.00

Example 5.4: [2 robots building a 2-tower and two I-towers] Here, G is the
same graph as in Example 5.1. The goal is now (3,4), i.e. “build one 2-tower,
two 1-towers and see the surface”. This example is different from the previous
three, in that a robot cannot, using a single perception, recognise that the goal
has been reached. Figure 9 charts the best 240 policies, for which Q£ is only
78.61%. For the best 20, however, it is 90.53%. The three observed best policies

{a—w, bow, c—>w, d—>w, e—w, f—ok g—k h—1 i—wu}

(or ¢ — x or ¢ — 1) are the three predicted best ones, sharing the property
that they pick only from a tower of height > 2 and can place upon the surface.
They differ only in the case that a robot is holding a block and seeing a 3-tower
(perception ¢), and their values are virtually identical. In the case ¢ — x the
robot waits for another robot to pick from the 3-tower. The case ¢ — 1 is a
retrograde choice as there is no merit in building a 4-tower, and it may seem
surprising that it occurs in a high-value policy. However, the probability of a
3-tower actually arising is made very low by the other rules in these policies,
so that choosing ¢ — 1 has no significant impact upon the policy value. The
chart is more volatile in this example. This may be due in part to the looser
coupling of state and perception in the goal situation. In the 4-tower examples
the perception “seeing a 4-tower” implies that the state contains a 4-tower. In
the present example there is no single perception that implies that the goal
state has been achieved, so the robots have poorer goal-recognition. However,
the volatility in all these examples has other causes as well, as discussed in the
next section.

30

20

10

.00

.0 04

.0 04

'L*Jnlllﬂjl

Fig. 9. Policy ranking chart for Example 5.4

-10.00

Though limited in scope, these case studies suggest that, in order to select
a good policy, the robot designer is unlikely to go far wrong in choosing from
the best 10% according to the predictor. The predictor is clearly imperfect,
and is inevitably so due to the approximations it makes, but unless the design
imperatives are very demanding it is sufficient to seek policies yielding reasonable
rather than optimal behaviour.

The option remains open to filter ostensibly high value policies using a more
sophisticated predictor, in order to eliminate those that are actually worse than
the basic one suggests. Such refinements can employ, for a small selection of
policies, analyses that would be impractical in scale if applied to all policies.

6 Factors Affecting Predictive Quality

We dealt with a multi-clone context by optimizing a single clone using only the x-
action to represent the effects of other clones. This is our alternative to analysing
comprehensively how the clones behave conjointly. The latter analysis would
need an unrestricted graph in which each node were a complete multi-situation
having emergent arcs for all the real (non-x) actions its members could perform.
From this group-graph one could then seek the best policy for any one clone.
The combinatorial nature of such an analysis makes it generally impractical.
Figure 10 repeats the chart for Example 5.4 but highlights two of its many

30

20

10

0

-10

Fig.

anomalies.

{a—w, b—>1, c—w, d—>w, e—w, f—k g—k h—1 i—wu}

.00

.0 01

.0 04

.0 01

.00

/predicted rank too low

N

Lu_thlA__j\ i

predicted rank too high

10

. Prediction anomalies in Example 5.4

The policy indicated with too high a predicted rank is

If we examine how its predicted value is calculated, we find that a node S = (4, f)
in Gy is assigned a positive value V(S) even though, in reality, the goal is
unachievable from S. As noted earlier, the calculation of policy values must take
into account passive transitions of self (x-updating). Our method sees paths from
S to the goal that contain steps in which self is assumed to be x-updatable by
the other robot, although, in fact, the goal is unachievable from S. In situation
S no block is held and self is seeing a 3-tower and must pick. From S there is
the following ostensible path in G'¢ that reaches the goal:

(a) self is in situation (4, f) and — because of what happens next to it in this
path — the other robot must also be in (4, f);

(b) the other robot takes action k and moves to (7,b), whilst self is passively
updated to (7,e);

(c) self performs two wander actions taking it to (7,4), whilst the other robot
remains at (7,b);

(d) the graph shows an x-action from (7,7) to the goal (3,d), which is correct
since another robot could be in situation (7,4). However, if this particular
path is followed, the other robot would not be in the required (7, %) but in
(7,0).

This path is infeasible because to achieve it would require self to perform actions
and undergo x-updates that the other robot could never fulfil. In the group-graph
this joint scenario would not be feasible and any group situations containing
(4, f) would be assigned negative node values thereby reducing the policy’s rank.

Figure 10 also indicates a policy with too low a predicted rank. Anomalies of
this kind arise primarily from inaccuracy in the probabilities on the x-arcsin G,
again owing to insufficient information about the situations actually occupied
by self's partners.

7 Conclusions

We have presented a method using situation graphs for predicting policies for
TR-robots in multi-robot contexts. The use of situation graphs enables policies
to be evaluated taking account of objective states, yielding greater discrimi-
nation than approaches (e.g. [7]) that focus primarily upon perceptions. This
discrimination is necessary due to our assumption that exogenous events are not
only possible but an inherent fact in a multi-robot context, so that we cannot
rely on using histories to estimate current situations. Furthermore, since we wish
to find policies to achieve goals not detectable by a single perception, we cannot
use the method of back-chaining and the so-called regression property used in
[11], since a given perception may not be unique to the goal.

However, inclusion of objective state information poses a greater need for
scalable methods, especially in multi-robot contexts. We have demonstrated here
that in such contexts good policies are obtainable by analysing how any single
robot responds to exogenous effects caused by other robots. This applies whether
or not the robots are cloned. It has further been shown in [4] that the approach

continues to yield good results in positionally sensitive formulations, even when
abstraction is also employed.

Our future work will seek to understand better the relationship between our
“self-based prediction graph” and the group graph and to investigate how the
use of the former might be refined to give even better predictive power.

References

1. Benson, S. Learning Action Models for Reactive Autonomous Agents, PhD, Dept.
of Computer Science, Stanford University, 1996.

2. Broda, K., Hogger, C.J. and Watson, S. Constructing Teleo-Reactive Robot Pro-
grams, Proceedings of the 14th European Conference on Artificial Intelligence,
Berlin, pp 653-657, 2000.

3. Broda, K. and Hogger, C.J. Designing Teleo-Reactive Programs, Technical Report
2003/8, Dept. of Computing, Imperial College London, UK, 2003.

4. Broda, K. and Hogger, C.J. Designing and Simulating Individual Teleo-Reactive
Agents, Poster Proceedings, 27th German Conference on Artificial Intelligence,
Ulm, 2004.

5. Cassandra, A.R., Kaelbling, L.P. and Littman, M. Acting Optimally in Par-
tially Observable Stochastic Domains, Proceedings 12th National Conference on
Al (AAAI-94), Seattle, pp 183-188, 1994.

6. Chades, 1., Scherrer, B. and Charpillet, F. Planning Cooperative Homogeneous
Multiagent Systems using Markov Decision Processes, Proceedings of the 5th Inter-
national Conference on Enterprise Information Systems (ICEILS 2003), pp 426-429,
2003.

7. Kaelbling, L.P., Littman, M.L. and Cassandra, A.R. Planning and Acting in Par-
tially Observable Stochastic Domains, Artificial Intelligence 101, pp 99-134, 1998.

8. Kochenderfer, M. Evolving Hierarchical and Recursive Teleo-reactive Programs
through Genetic Programming, FuroGP 2003, LNCS 2610, pp 83-92, 2003.

9. Mitchell, T. Reinforcement Learning, Machine Learning, pp 367-390, McGraw Hill,
1997.

10. Nair R., Tambe, M., Yokoo, M., Pynadath, D. and Marsella, M. Taming Decen-
tralised POMDPs: Towards Efficient Policy Computation for Multiagent Settings,
Proceedings of the 18th International Joint Conference on Artificial Intelligence
(IJCAI-03), pp 705-711, 2003.

11. Nilsson, N.J. Teleo-Reactive Programs for Agent Control, Artificial Intelligence
Research 1 pp 139-158, 1994.

12. Nilsson, N.J.Teleo-Reactive Programs and the Triple-Tower Architecture, FElec-
tronic Transactions on Artificial Intelligence 5 pp 99-110, 2001.

13. Rathnasabapathy, B. and Gmytrasiewicz, P., Formalizing Multi-Agent POMDPs
in the Context of Network Routing, Proceedings of 36th Hawait International Con-
ference on System Sciences (HICSS’03), 2003.

14. Ryan, M.R.K. and Pendrith, M.D. An Architecture for Modularity and Re-Use
in Reinforcement Learning, Proceedings of the 15th International Conference on
Machine Learning, Madison, Wisconsin, 1998.

