
Ontology Oriented Programming in Go!

K.L. Clark
klc@doc.ic.ac.uk

F.G. McCabe
frank.mccabe@us.fujitsu.com

Abstract

In this paper we introduce the knowledge representation features of
a new multi-paradigm programming language called Go! that cleanly
integrates logic, functional, object oriented and imperative program-
ming styles. Borrowing from L&O [1], Go! allows knowledge to be rep-
resented as a set of labeled theories incrementally constructed using
multiple-inheritance. The theory label is a constructor for instances
of the class. The instances are Go!’s objects.

A Go! theory structure can be used to characterize any knowledge
domain. In particular, it can be used to describe classes of things,
such as people, students, etc., their subclass relationships and charac-
teristics of their key properties. That is, it can be used to represent
an ontology. For each ontology class we give a type definition - we
declare what properties, with what value type, instances of the class
have - and we give a labeled theory that defines these properties. Sub-
class relationships are reflected using both type and theory inheritance
rules. Following [2], we shall call this ontology oriented programming.

This paper describes the Go! language and its use for ontology
oriented programming, comparing its expressiveness with Owl, par-
ticularly Owl Lite[3]. The paper assumes some familiarity with ontol-
ogy specification using Owl like languages and with logic and object
oriented programming.

1 Introduction

Go! has many features in common with the L&O [1] object oriented extension
of Prolog. Both languages allow the grouping of a set of relation and function
definitions into a lexical unit called a labeled theory that characterise some

1

1 INTRODUCTION 2

class of ’things’. Go! extends L&O in also having action procedures defined
by action rules. It also differs from L&O in having moded type declarations
for programs with compile time type checking. Mercury[7] also has types
and modes but these differ from Go!’s.

Go! is multi-threaded with asynchronous message communication be-
tween the threads using mailboxes. A mailbox is essentially a queue object
shared by the communicating threads. Typically only one thread has read
access to a given mailbox, while several threads can have write access.

Go! has been primarily designed to allow fast development of intelligent
agent based applications involving multi-threaded agents. A Go! agent typi-
cally comprises several threads that implement different aspects of the agent’s
behaviour and which share a set of updatable objects, usually dynamic rela-
tions or hash tables. These are used to represent the agent’s changing beliefs,
desires and intentions. As an example, the dancer agents described in [4]
have the architecture depicted in the figure below.

Dancer agent architecture

Negotiation
‘neg’
thread

DS
Interface

Intention
Execution

‘exec’
thread

beliefs intentionsdesires

Messages
To/From DS Messages

from Band

Messages
to/from
other dancers

Messages
to/from
other dancers

Memory stores

Data flow

In the dancer agent application beliefs are just a set of facts, but in a
more complex agent application it is useful to structure the beliefs in terms
of an ontology. The beliefs then record descriptions of individuals belonging
to different ontology classes and must be consistent with the ontology. We
can also augment the extensional held partial descriptions with inferences
that are licensed by the ontology. For example, to infer that bill is a child of
mary if we believe that mary is a parent of bill where the ontology tells us
that ’child of’ and ’parent of’ are inverse properties.

The emphasis of this paper is Go!’s class type and labeled theory nota-

1 INTRODUCTION 3

tion and its use for representing ontological concepts. Its multi-therading
and thread coordination and communication features are described in [4].
We introduce these ontology related features through a series of increasingly
complex examples. As we do so, we shall compare the way ontological con-
cepts can be represented in Go! with the way they can be represented in Owl
Lite[5][3]. We use the Owl abstract syntax of [3] rather than the XML syntax
of [5].

Owl Lite, and its extension Owl DL, are ontology definition languages in
which classes of things are characterised in terms of subclass and identity
relationships with other classes, and by restrictions on unary properties for
instances of the class. They are based on description logics[6]. These are
logics with fast tailored inference procedures that support reasoning about
the subsumption relationships between classes - inferring that all instances
of one class must also be instances of another given their respective class
descriptions, as well as reasoning about individuals of a class. They are
more declarative than Go!, but they are not general purpose programming
languages1. We shall mostly make comparisons with Owl Lite rather than
Owl DL as the mapping between Owl Lite and Go! class notation is more
direct, and, according to [6], Owl Lite has nearly all the expressive power of
Owl DL.

We shall see that in Go! many of the restrictions on property values that
one can express in Owl Lite become type constraints for the properties cap-
tured in a type definition. These can be checked at compile time. Others
become run-time constraints that are checked when we try to create instances
of a class. Ontological concepts such as transitivity of a property are imple-
mented in Go! as explicit recursive definitions of the closure relation. This
approach to representing ontologies is what Goldman[2] calls ”ontology ori-
ented programming”. He shows how a hierarchy of ontology classes, and
implementations of their respective interface properties, can be reflected in
the class and interface type hierarchy of a C# or Java application.

In the next section we give a brief introduction to the basic elements of
Go!- introducing the different forms of definition and Go!’s dynamic relations,
which are objects. In section 3 we introduce labeled classes. In section 4 we
illustrate the building of new classes as extensions of existing classes using

1For example, a communicating agent that reasons using an ontology cannot be im-
plemented in Owl. An Owl reasoner would have to be embedded inside an outer wrapper
written in a language such as Java, Prolog or Go!. In contrast, the entire agent can be
implemented in Go!.

2 BASE ELEMENTS OF GO! 4

inheritance. Section 5 gives an example of a recursive class - one that must
make use of the very class concept it is defining. Section 6 covers multiple
inheritance. In section 7 we introduce the use of dynamic relations in a class
to give us objects with changeable state. In section 8 we investigate using Go!

rules to define n-ary relations over objects allowing us to define relationships
that can only be captured using a rule extension of Owl. We summarise and
discuss related work in section 9.

2 Base elements of Go!

Go! is a multi-paradigm language with a declarative subset of function and
relation definitions and an imperative subset comprising action procedure
definitions.

2.1 Function, relation and action rules

Functions are defined using sequences of rewrite rules of the form:

f (A 1,..,A k)::Test => Exp

where the guard Test is omitted if not required. For each function there must
also be an associated type definition of the form:

f :[t 1,..,t k]=>t

where ti is the type of the i’th argument and t is the type of the value. These
must all be data types. Go! is not higher order but we can program in a
higher order way by passing in and returning object values.

As in most functional programming languages, the testing of whether a
rule can be used to evaluate a function call uses matching not unification.
The first function rule to match some function call, whose test also succeeds,
is used to evaluate the call.

Example function definitions are:

father of:[person]=>person.

father_of(C)::C.parent(F),F.gender()==male => F.

number_of_children:[person]=>integer.

number_of_children(P) => len({C || P.child(C)}).

2 BASE ELEMENTS OF GO! 5

len:[list[T]]=>integer.

len([]) => 0.

len([Hd,..Tl]) => len(Tl)+1.

The operator :: can be read as such that. An expression of the form:

{T || Cond }

is a set expression, it is Go!’s equivalent to the Prolog findall. len is
declared to be a polymorphic function from a list of any type T to an integer.
,.. is Go!’s list data constructor to be read as followed by. It is the same as
the Prolog |, which in Go! has other uses.

Relation definitions comprise sequences of Prolog-style :- (if) clauses of
the form:

r (A 1,..,A k):- Cond 1,...,Cond n

or sequences of :-- (iff) committed chouice clauses of the form:

r (A 1,..,A k)::Test :-- Cond 1,...,Cond n

with an associated type definition of the form:

r :[t 1,..,t k]{}

Prolog’s cut (!) is not allowed2 and evaluable expressions may be used as
condition arguments inside the bodies of the clauses. The type expressions
may be moded using annotations We can say that an argument of type t

is input using t+, that it is output using t-. In a relation type expression
no annotation means that the argument may be input or output, allowing
multiple uses. In contrast, an un-annotated argument type in a function or
action procedure type expression means that the argument is input. The
mode information is used by the type inference system to reason about sub-
types. For an input argument a sub-type value can be given in the call, for
an output argument or a function value a sub-type value can be generated.

The following is a single clause relation definition:

2We have found that all our uses of the cut when programming in Prolog may be
achieved in Go! using function rules, :-- clauses and other high level control features such
as conditionals and single solution conditions.

2 BASE ELEMENTS OF GO! 6

takes_only_maths_courses:[student+]{}.
takes_only_maths_courses(S) :-

(S.takes(C) *> C.dept()=’maths’).

This defines a property that holds of any student S such that every C that S
takes has dept() attribute ’maths’3. The preceding mode annotated type
definition tells us that this is a test relation. The type expression student+

signals that the argument must be given when the relation is called and be an
object of type student, or an object with a type that is a declared sub-type
of student, say a married student.

*> is Go!’s forall. A condition:

(Cond1 *> Cond2).

holds if for every solution to Cond1, there exists a solution to Cond2. Cond1
and Cond2 typically share variables.

The locus of action in Go! is a thread ; each Go! thread executes an action
procedure. These are defined using non-declarative action rules of the form:

a (A 1,..,A k)::Test -> Action 1;...;Action n

with associated type definitions of the form:

a :[t 1,..,t k]*

* is the annotation for an action type. We use ”:” rather than ”,” to separate
the action calls in the body of an action rule to emphasise the imperative
aspect of the rule.

As with equations, the first action rule that matches some call, and whose
test is satisfied, is used; once an action rule has been selected there is no
backtracking on the choice of rule should one of its actions fail. Failure to
find a rule for an action call is a run-time error.

The permissible actions of an action rule include: message dispatch and
receipt, I/O, updating of dynamic relations, the calling of a procedure, and
the spawning of any action, or sequence of actions, to create a new action
thread. The new thread executes concurrently with the spawning thread.
The two threads can communicate using shared objects - typically mailboxes.

An example action procedure definition is:

3Note that ’maths’ is singly quoted. This is because, unlike Prolog, Go! does not have
a variable name convention - most identifiers can be used as variable names, so must be
quoted when used as a symbol.

2 BASE ELEMENTS OF GO! 7

display info about:[person]*.

display info about(P) ->

case P.age() in

(A::A>=18 -> stdout.outLine(P.name()<>" is an adult")

|A::A>12 -> stdout.outLine(P.name()<>" is a teenager")

|_ -> stdout.outLine(P.name()<>" is a child").

This procedure is defined using one action rule. It is a procedure for display-
ing on the standard output channel, usually a terminal window, the values
of the name and age attributes of any P that is a person or a sub-type of
person. stdout is a Go! system object with various methods for sending
strings to the standard output channel. <> is a polymorphic primitive for
concatenating lists of any values. Go! strings are lists of single character
symbols.

2.2 Go! dynamic relations

In Prolog we can use assert and retract clauses to change the definition of
a dynamic relation whilst a program is executing. The most frequent use of
this feature is to modify a definition comprising a sequence of unconditonal
clauses. In Go!, such a dynamic relation is an object with updateable state. It
is an instance of a polymorphic system class with interface type dynamic[T],
T being the type of the argument of the dynamic relation. All Go! dynamic
relations are unary, but the unary argument can be a tuple of terms.

The dynamic relations class has methods: add, for adding an argument
term to the end of the current extension of the relation, del for removing the
first argument term that unifies with a given term, delall for removing all
argument terms unifying with a given term, mem, for accessing terms in the
current extension using unification, and finally ext for retrieving the current
extension as a list of terms.

A dynamic relation object can be created and assigned to a variable as
in:

eats:dynamic[(symbol,symbol,integer)].

eats=$dynamic([(’peter’,’apples’,2),(’john’,’icecream’,1)])

The given list of 3-tuples is the initial extension. The preceding type declara-
tion tells us that eats is a dynamic relation object comprising three-tuples -
two symbols and an integer. We can now manipulate and query the relation
using:

3 LABELED THEORIES 8

eats.del((’peter’,’apples’,N)); deletes tuple, binds N to 2

eats.add((’peter’,’apples’,N+1)); add new tuple (...,...,3)

(eats.mem((’john’,F,K)),K>1 ? ... | ...);

The last action is a conditional action. ? can be read as then, | as else.
State information can also be recorded in special cell obects and in

hash table objects. cell objects have set and get methods for updating
and accessing a single stored value. hash tables are like dynamic relations
except that every stored value must have a unique associated key which can
be used for fast access to the value.

3 Labeled theories

The following set of definitions constitute a mini-theory of a person:

Gender::= male | female.

person <˜ {dayOfBirth:[]=>day. age:[]=>integer.

gender:[]=>Gender. name:[]=>string.

home:[]=>string. lives:[string]{}}.
person:[string,day,Gender,string]$=person.

person(Nm,Born,Sx,Hm)..{
dayOfBirth()=>Born.

age() => yearsBetween(now(),Born).

gender()=>Sx.

name()=>Nm.

home()=>Hm.

lives(Pl) :- Pl=home().

yearsBetween:[integer,day]=>integer.

yearsBetween(...) => ..

}.
newPerson:[string,day,Gender,string]=>person.

newPerson(Nm,Born,Sx,Hm)=>$person(Nm,Born,Sx,Hm).

The ::= rule defines a new algebraic type - a data type with only data
constructors. The <˜ rule defines an interface type - it tells us what properties
are characteristic of a person and also gives us type constraints on these

3 LABELED THEORIES 9

properties. It tells us that age is a functional property with an integer
value, that lives is a unary relation over strings, and that dayOfBirth is a
functional property with a value that is an object of type day4

The $= type rule tells us that there is also a theory label, with the functor
person, for a theory that defines the characteristic properties of the person

type - implements the person interface - in terms of four given parameters of
types string, day, Gender and string. This overloading of the type name
person is allowed, but not required. We could equally have used personC,
or any other name, as the label functor5

The theory labeled person(Nm,Born,Sx,Hm) is an implementation of the
person interface type. The label parameters Nm, Born, Sx, Hm, are global vari-
ables of the theory. Their values, given when an instance is created, transform
the template theory into a mini-theory of a specific person. The characteris-
tic properties dayOfBirth, gender, name, home, age, and lives are defined
in terms of these parameters. The compiler will check that the given defini-
tions conform to the type signatures of the person type. yearsBetween is
a function used to implement the changing age property. It is not an exter-
nally visible property of a person. now is a system function for returning the
Unix time.

The newPerson function is not strictly necessary as a $label expression,
as used in the function definition, can be used to generate an instance of
any labeled theory. However, using expliclty defined functions to construct
objects has certain advantages. For one thing it allows us to hide or add
default values for some of the label parameters. We could, for example, also
define newMalePerson and newFemalePerson that do not need to be given
the Gender argument.

Creating class instances We can create two instances of the person class,
i.e. two person objects, and query them as follows:

P1=newPerson("Bill",$day(1982,3,15),male,"London,England")

P2=newPerson("Jane",$day(1980,11,23),female,"Cardiff,Wales")

P1.name() returns name "Bill" of P1

4This is an object type that we do not define. It will have interface properties year,
month etc that are used by the yearsBetween utility function.

5Go! allows us to give several different labeled theories implementing the same interface
type, all with different labels. For purposes of this paper we shall only need one labeled
theory per interface type so we shall always re-use the type name as the label functor.

3 LABELED THEORIES 10

P2.age() returns current age, say 25, of P2

P2.lives(Place) gives solution: Place="Cardiff,Wales"

The expression:

(P1.name(),P1.dayOfBirth().year(),P1.home())

will evaluate to the tuple:

("Bill",1982,"London,England")

Ontological reading In ontological terms, the person interface type de-
fines a person as a ’thing’ that has:

• a functional property dayOfBirth with a value that belongs to the day
class/type

• a functional integer valued property age

• a functional string valued property name

• a functional string valued property home

• a functional property gender with a value from the data type Gender

• a multi-valued property lives with values that are strings

In addition, its associated labeled theory tells us that:

• the property age is dependent upon the value of their yearOfBirth

• that one value for the lives property is the value for their home prop-
erty

3.1 Class definition in Owl

Using Owl Lite concrete abstract syntax[3], the above ’ontological’ reading
can in part be captured by the Owl class axiom:

3 LABELED THEORIES 11

Class(person partial

restriction(dayOfBirth Cardinality(1) allValuesFrom(day))

restriction(age Cardinality(1) allValuesFrom(integer)

restriction(name Cardinality(1) allValuesFrom(string))

restriction(home Cardinality(1) allValuesFrom(string))

restriction(lives Cardinality(1) allValuesFrom(string))

restriction(gender maxCardinality(1)

allValuesFrom(Gender))

Datatype(Gender).

Alternatively, if we are prepared to ’globalise’ the cardinality and range con-
straints of the property names so that they apply to every use of these prop-
erty names, in every class of the ontology, we can use a much simplified class
axiom and several property axioms:

Class(person partial)

ObjectProperty(dayOfBirth range(day) Functional)

DatatypeProperty(age range(number) Functional)

DatatypeProperty(name range(string) Functional)

DatatypeProperty(home super(lives) range(string) Functional)

DatatypeProperty(lives range(string))

DatatypeProperty(gender range(Gender) Functional)

Datatype(Gender).

In Owl a distinction is made between data valued properties, properties that
have scalar values such as strings and numbers, and object properties which
have instances of some ontology class as values. Note that in Owl Lite we
can only say that values for the functional property gender are from a data
type called Gender. We cannot further constrain this data set. In Owl DL
we can; we can explicitly enumerate the two allowed values for the gender

property:

DatatypeProperty(gender range(oneOf(male female)) Functional)

For none of the property axioms have we given a domain restriction. This
allows them to be used as properties of any Owl Lite class. The equivalent of
this type of globalisation of property names in Go! is a self imposed constraint
that whenever we use the same name, such as age, in a class interface type
definition, we always give it the same type. However, Go! does not allow us
to declare that age will always be functional with an integer value. As in

3 LABELED THEORIES 12

most OO programming languages, the same property/method name can be
used with a quite different associated type in different class interface types.
This is an intended feature of the language. The only constraint on re-use in
Go! is in a sub-class definition. Any re-definition of age in a sub-class of the
person class must define it to have the same type.

Notice that in the first Owl formulation we do not capture the restriction
that one value for the lives property is the value of the home property. We
cannot express this sub-property relationship using the class specific property
restrictions of Owl Lite or Owl DL. By using separate property axioms, we
can capture it by saying that home has lives as a super-property. In other
words, that every value of the home property of an object is a value of the
lives property of that object. Capturing this restriction comes at the cost
of ’globalising’ these two properties. As far as we understand, Owl does not
allow us to express the restriction that age is functional dependent upon
dayOfBirth, we can only express the restriction that age is functional.

In Owl we can tighten the restriction on the age attribute and say that
its range is the data type nonNegativeInteger. Since nonNegativeInteger
is not a base type of Go!, to capture this restriction we must add a constraint
to the class label parameter Born. The theory label becomes:

person(Nm,(Born::yearsBetween(now(),Born)>=0),Sx,Hm)

The test will be applied to the given Born value when an instance of the
person class is created - when we instantiate the theory to describe a par-
ticular person. Note that the test uses the yearsBetween function defined
inside the class which is in scope for the label.

3.2 Owl complete class axioms

The class axiom for person has modality partial. In Owl this means that
when an individual is known to be a member of the class we can infer that it
belongs to any super-classes mentioned in the axiom, and that its properties
satisfy the extra restrictions given in the class axiom.

The other Owl class axiom modality is complete. This tells us that the
membership of the super classes, and satisfaction of the restrictions given
for the properties, may also be considered as defining restrictions - that any
’thing’ satisfying all the restrictions of the class axiom can be inferred to be
an instance of the class.

An example would be:

3 LABELED THEORIES 13

Class(marriedPerson complete person

restriction(spouse Cardinality(1))

allValuesFrom(marriedPerson))

This says that a married person is a person with exactly one married person
spouse. It also says that any person with a married person spouse is, ipso
facto, a married person. It gives defining characteristics for a married person.
So, even if some object is not known to be a marriedPerson, it can be inferred
to be one if they are known to be a person, perhaps because they belong to
a subclass of person, and they have a spouse that is a marredPerson.

To define the marriedPerson type in Go! we can use two <˜ rules:

marriedPerson <˜ person.

marriedPerson <˜ {spouse:[]=> marriedPerson}.

The first rule says that marriedPerson includes all the properties, with the
same type signature, as the person type - that marriedPerson is a sub-
type of person. The second says that, in addition, marriedPerson includes
a spouse functional property returning a marriedPerson value. The first
rule allows us to use a marriedPerson object where ever a person object is
required as a given value. The second marriedPerson rule tells the compiler
about the additional spouse property of a marriedPerson object.

The complete class concept of Owl does not have a direct mapping into
Go!. In Go! programming terms it means that any other type that has all
the properties of the marriedPerson interface must be such that the Go!

compiler treats it as a sub-type of marriedPerson. Suppose we want to
characterize in Go! some new class otherPerson which happens to include
all the properties of the marriedPerson type as well as some additional prop-
erties. We could give a single interface type definition for otherPerson that
explicitly enumerates all its properties and associated types, but the Go!

compiler would treat this as a completely separate type not related to the
marriedPerson type. To ensure that the compiler will treat objects of type
otherPerson as objects of type marriedPerson, we must explicitly declare
that otherPerson is a sub-type marriedPerson, and in a separate type rule
enumerate its extra properties and their types. That is, we define the in-
terface for otherPerson indirectly by referring to the marriedPerson type.
So, the complete class concept of Owl is captured in Go! as an ontological
programming pattern - always define a new interface type that includes all

3 LABELED THEORIES 14

the properties of a type that is completely characterized by its interface, by
explicitly declaring that the new type is a sub-type of this ’complete’ type.

As an example, suppose we want to characterize the marriedStudent

class in Go!. Instead of using one type definition rule:

marriedStudent <˜ {dayOfBirth:[]=>day. age:[]=>integer. ...

lives:[string]{}.
spouse:[]=> marriedPerson. college:[]=>string. ...}.

or even the two rules:

marriedStudent <˜ person.

marriedStudent <˜ {spouse:[]=> marriedPerson.

college:string. ...}.

that tell us marriedStudent is a sub-type of the person type, we define the
marriedStudent interface type using:

marriedStudent <˜ person.

marriedStudent <˜ marriedPerson.

marriedStudent <˜ {college:[]=>string. ...}.

or, more concisely as:

marriedStudent <˜ marriedPerson.

marriedStudent <˜ {college:string,...}.

The two rule definition is equivalent to the three rule definition since:

marriedStudent <˜ person.

can be inferred from:

marriedStudent <˜ marriedPerson.

marriedPerson <˜ person.

by transitivity of <˜. This enables a marriedStudent object to be used
wherever a marriedPerson or a person object is required. The Go! compiler
does this class membership inference using the type inheritance rules.

3 LABELED THEORIES 15

3.3 Describing class instances in Owl

In Owl, class instances, called individuals, are created and given properties
as follows:

Individual(person1 person

value(name "Bill")

value(dayOfBirth Individual(day value(year 1982)

value(month 3)

value(day 15)))

value(gender male)

value(age 23)

value(home "London,England"))

The value terms give the property values for the instance. Giving an individ-
ual an indentifier, such as person1, is the analogue of assigning an object to
a variable, such as P1 in Go!. Note that the individual that is the day is not
given an identifier, it is an anonymous individual. Also note that age has to
be given a value. Owl does not allow us to define the function that computes
the value of age using dayOfBirth, just as it does not allow us to state the
functional dependency between age and dayOfBirth. In this respect Owl
is weaker than the frame concept for knowledge representation [8]. We do
not need to give a value for the lives property if the Owl axiomatization
with separate property axioms is used. An Owl inference engine will infer
the value "London,England" for the lives property from the axiom:

DatatypeProperty(home super(lives) range(string) Functional)

by making use of the super(lives) declaration. This is the equivalent of
Go!’s use of the rule:

lives(Pl) :- Pl=home().

given in the person labeled theory to infer that the home location is a place
where a person lives.

3.4 Querying on Owl Ontology

There is no specific Owl query language but Owl-QL[9] is a recent proposal
for a language that could be used to query an Owl ontology held inside some

3 LABELED THEORIES 16

ontology server. A Owl-QL query essentially comprises an answer template,
which is usually a list of variables appearing inside the query pattern, and
a query pattern, which is a list of query conditions. Variables are prefixed
with ?. A query condition is a term of the form:

(propertyId propertyValue propertyValue)

or the form:

(type propertyValue classId)

An example query, in pseudo Owl-QL is:

Answer Pattern: {(?N ?Y ?H)}
Query Pattern: {(name person1 ?N)(dayOfBirth person1 ?D)

(year ?D ?Y)(home person1 ?H)}

This queries the description of the individual named person1 to find some
of their property values. It is the equivalent of the Go! expression:

(P1.name(),P1.dayOfBirth().year(),P1.home())

given earlier.
More generally, in Owl-QL, one can use type conditions to find the prop-

erty values of all the individuals of some class.

Answer Pattern: {(?N ?Y ?H)}
Query Pattern: {(type ?P person)(name ?P ?N)

(dayOfBirth ?P ?D)(year ?D ?Y)(home ?P ?H)}

can be used to find the name, year of birth and home location of all instances
of the person class described in the ontology.

3.5 Class search queries in Go!

In Go!, to be able to find property values of all instances of a class, or to find
all the instances that have particular property values, we need to be able to
iterate over all the created objects of the class. One way to do this is to store
each one, when it is created, in a dynamic relation:

Person:dynamic[person]=$dynamic([]).

isaPerson(P) :- Person.mem(P).

4 THEORY AND TYPE INHERITANCE 17

Person:dynamic[person] declares the type of the global variable Person as
a dynamic relation object holding person objects. We must now add each
person object to the dynamic relation as it is created. We can do this by
adding the action:

${Person.add(this)}

to the person class. Any $ prefixed action, or action sequence, inside a class
is executed each time an object of the class is created. this denotes the
created object.

The equivalent of the second Owl-QL query is now the succinct Go! set
expression:

{(P.name(),P.dayOfBirth().year(),P.home()) || isaPerson(P)}

4 Theory and type inheritance

We may define a new class as a modification/extension of an existing class
using inheritance.

Below we give an interface type definition and a labeled theory charac-
terizing the student class. The first type rule says that student is a sub-
type of person. The <= theory inheritance rule says that when an instance
student(Nm,Born,Sx,Hm, ,) of the student labeled theory is created all
the definitions for the instance person(Nm,Born,Sx,Hm) of the person la-
beled theory, not over-ridden in the student theory, are implicitly added to
the student theory instance. In addition, any $ action of the person the-
ory is to be executed before and in addition to any $ action of the student

theory.
There is a $ action inside the student theory that adds each new student

to the extension of an associated Student dynamic relation. We also define
an auxiliary class college - the class of values for the enrolled property of
a student.

student <˜ person.

student <˜ {enrolled:[]=>college. studies:[string]{}}.
student:[string,day,Gender,string,college,list[string]]$=

student.

student(Nm,Born,Sx,Hm, ,)<= person(Nm,Born,Sx,Hm).

student(, , , , ,Cge,Sbjs)..{

4 THEORY AND TYPE INHERITANCE 18

lives(Pl) :- Pl=Cge.location().

lives(Pl) :- person.lives(Pl).

enrolled()=>Cge.

studies(Sbj):-Sbj in Sbjs.

${Student.add(this)}.
}.
Student:dynamic[student]=$dynamic([]).

isaStudent:[student]{}.
isaStudent(S) :- Student.mem(S).

newStudent:[string,day,Gender,string,college,list[string]]=>

student.

newStudent(Nm,Born,Sx,Hm,Cge,Sbs) =>

$student(Nm,Born,Sx,Hm,Cge,Sbs).

college <˜ {name:[]=>string,location:[]=>string}.
college:[string,string]$=college.

college(Nm,Lct)..{
name()=>Nm.

location()=>Lct

${College.add(this)}.
}.

... -- defs for isaCollege and newCollege

In the student theory the relation lives is redefined. However, the
second clause for this relation explicitly invokes the over-ridden definition in
the person class. This means that the student lives relation extends the
person lives relation.

We can create a specific student description and query it as follows:

S1=newStudent("june",$day(1984,4,3),female,"Bath,England",

$college("Imperial","London,England"),

["computing","mathematics"])

S1.lives(Place) has two answers:

Place="Bath,England", Place="London,England"

4 THEORY AND TYPE INHERITANCE 19

S1.studies(Sub) has two answers:

Sub="computing", Sub="mathematics"

{(S.name(),S.enrolled().name(),S.age(),{Sb||S.studies(Sb)})
|| isaStudent(S)}

is list of 4-tuples giving name, enrolled college name, age

and the list of study subjects of all current students

Finding a person that is a student Every student can also be treated
as a person because we have declared that student is a sub-type of person.
In addition, because the student theory inherits from the person theory,
each time we create a new student we will not only execute the $ action of
the student theory, to add it to the Student dynamic relation, we shall also
first execute the $ action of the person theory, which adds it to the Person

dynamic relation. When we are searching for a person using isaPerson we
will thus have automatic access to the set of student objects - viewed as
person objects.

4.1 Inheritance in Owl

In Owl the student class could be axiomatised as:

Class(student complete person

restriction(studies allValuesFrom(string))

restriction(enrolled Cardinality(1)

allValuesFrom(college)))

Class(college partial

restriction(location Cardinality(1))

allValuesFrom(string)))

Note that the above does not capture the information expressed in the go

class that the location of a student’s enrolled college is a value for their
lives property. To capture this restriction we would have to lift the name

and location properties of a college to make them direct properties of a
student, perhaps naming them collegeName and collegeLocation. In a
separate property axiom we can then say that collegeLocation is a sub-
property of lives. This is a bit convoluted and loses the separate concept
of a college as a property value for a student.

5 RECURSIVE CLASSES, SYMMETRIC PROPERTIES 20

Class(student complete person

restriction(studies allValuesFrom(string))

restriction(collegeName Cardinality(1)

allValuesFrom(string)))

DatatypeProperty(collegeLocation super(lives)

range(string) Functional)

When querying an Owl ontology the condition (type ?P person) will in-
clude all individuals declared to be instances of the class student because
the student class axiom says that this is a sub-class of the person class.

5 Recursive classes, symmetric properties

A married person is a person who has a spouse, that spouse being a married
person. This is a recursive class since we cannot properly characterise a
married person without making use of the concept being defined.

spouse is also a symmetric property. Symmetry is a meta-property of a
property that can be declared in an Owl axiom. The declaration enables an
Owl reasoner to infer that "peter" is married to "mary", when all that is
explicitly recorded is that "mary" is married to "peter".

The following Go! marriedPerson definition implicitly uses symmetry
of the spouse property in the second rule for the spouse() function defi-
nition, as described below. Note the recursive characterisation of the type
marriedPerson in the second type rule.

marriedPerson <˜ person.

marriedPerson <˜
{spouseName:[]=>string. spouse:[]=>marriedPerson)}.

marriedPerson(string,day,Gender,string,string)$=

marriedPerson.

marriedPerson(Nm,Born,Sx,Hm,)<=person(Nm,Born,Sx,Hm).

marriedPerson(Nm, ,Sx,Hm,SpNm)..{
spouseName()=>SpNm.

defaultSpouseFor:[marriedPerson]=> marriedPerson.

defaultSpouseFor(MP)=>

$person(SpNm,$day(0,0,0),oppGender(Sx),Hm)..{

5 RECURSIVE CLASSES, SYMMETRIC PROPERTIES 21

spouseName()=>Nm.

age()=>0.

spouse()=>MP}.

spouse()::SpNm!="",isaMarriedPerson(MP),MP.name()==SpNm

=>MP.

spouse()::SpNm=="",isaMarriedPerson(MP),MP.spouseName()==Nm

=>MP.

spouse()=>defaultSpouse(this).

${MarriedPerson.add(this)}
}.

oppGender:[Gender]=>Gender.

oppGender(male) => female.

oppGender(female) => male.

... -- defs for isaMarriedPerson and newMarriedPerson

The spouse function is defined by three rules. The first is used when the
name of the spouse was known when the instance of the class was created -
SpNm is not the empty string "" - and a marriedPerson MP with the name
SpNm has been created and hence can be accessed using the isaMarriedPerson
relation. MP is returned as the spouse. The second rule is used if SpNm was
unknown when this marriedPerson was created - so its SpNm is the empty
string - but again the spouse has been created. In this case we can find the
spouse by using the isaMarriedPerson relation to look for one that has Nm,
the name of the married person whose spouse we want to find, as spouseName.
This second rule makes use of the symmetry of the spouse relationship. The
last rule is used only when the tests of the first two rules fail. It returns a
default spouse object. Note that as soon as information about the spouse
becomes available, and the appropriate instance of the marriedPerson class
is created to record this information, the third rule will no longer be used.

The defaultSpouse function returns an instance of a Go! anonymous
class. This instance is a modification and extension of the instance:

$person(SpNm,$day(0,0,0),oppGender(Sx),Hm)

of the person class that implements the marriedPerson interface type. It
has its own definition of the age function, that returns a default age of 0,

5 RECURSIVE CLASSES, SYMMETRIC PROPERTIES 22

and definitions for the spouseName and spouse functions as required for the
marriedPerson type. Otherwise, the defaultSpouse for a married person
MP is given opposite gender, name SpNm as recorded in MP, the name Nm of
MP as its spouse name, and this, i.e. MP, as its spouse. It is given the same
home location Hm as MP. The day of birth has a default value $day(0,0,0).
Note that oppGender is defined outside the class so is a global utility function
that can be used in other labeled theories.

An example use is:

H=newMarriedPerson("peter",$day(1976,5,16),male,"Bath,UK","");

H.spouseName() has value ""

H.spouse().name() has value ""

H.spouse().age() has value 0

H.spouse().spouseName() has value "peter"

H.spouse().home() has value "Bath,UK"

W=newMarriedPerson("mary",$day(1978,2,24),female,"Bath,UK",

"peter");

W.spouseName() has value "peter"

W.spouse().name() has value "peter"

H.spouse().name() now has value "mary"

H.spouse().age() now has value, say 27

Because of the inference capability programmed into spouse(), we should
use spouse().name() when querying a marriedPerson object to find the
name of its spouse, and not spouseName, which might have been unknown
when the object was created.

In Owl the marriedPerson class and the symmetry of the spouse prop-
erty would be axiomatised as:

Class(marriedPerson complete person

restriction(spouse marriedPerson))

DatavaluedProperty(spouseName

domain(marriedPerson) range(string) Functional)

ObjectProperty(spouse Functional Symmetric)

An Owl reasoner will also use the Symmetry property to infer values for the
spouse property which are not explicitly recorded. However, when no details
of the spouse are known, it will not return a default description.

6 MULTIPLE INHERITANCE 23

6 Multiple inheritance

In both Go! and Owl a class may inherit from more than one superclass.
To illustrate multiple inheritance, we define marriedStudent as a class that
inherits from both student and marriedPerson.

marriedStudent <˜ student.

marriedStudent <˜ marriedPerson.

marriedStudent:[string,day,Gender,string,string,

college,list[string]]$=marriedStudent.

marriedStudent(Nm,Born,Sx,Hm,Cge,Sbjs,)<=

student(Nm,Born,Sx,Hm,Cge,Sbjs).

marriedStudent(Nm,Born,Sx,Hm, , ,SpNm)<=

marriedPerson(Nm,Born,Sx,Hm,SpNm).

marriedStudent(_,_,_,_,_,_,_)..{
lives(Pl) :- student.lives(Pl).

${MarriedStudent.add(this)}
}.

...

The marriedStudent type is characterised by the two <˜ rules. Its la-
beled theory is defined using two inheritance rules and a small auxiliary
labeled theory. The type rules say that marriedStudent is a sub-type of
both the student and marriedPerson types. The theory inheritance rules
say that it inherits all the definitions from both the student class and the
marriedPerson class unless these are overridden in the marriedStudent

class. Where there is duplication in the super classes, there is an arbitrary se-
lection of which definition is inherited. In this case all duplicated definitions
are the same except that for lives which is different in the two inherited
classes. This is the only definition to be overridden. The overriding definition
selects the definition of the student super class as the one to be used for a
marriedStudent.

We can also use a overriding definition to union definitions from super
classes. Suppose the marriedPerson class had itself extended the lives

relation, say by a definition:

lives(Pl) :- Pl=home().

lives(SpH) :- SpH=spouse().home(),SpH!=home().

7 OBJECTS WITH CHANGEABLE STATE 24

This has a married person also living in the home location of their spouse, if
it is different from their own home location. We might then use the definition:

lives(Pl) :- student.lives(Pl).

lives(Pl) :- marriedPerson.lives(Pl),\+student.lives(Pl).

in the marriedStudent class. \+ is Go!’s negation-as-failure operator[10].
The second rule picks up as extra lives locations all those that can be
inferred using the marriedPerson definition that cannot be inferred using
the student definition.

6.1 Multiple inheritance in Owl

The Owl Lite axiom for marriedStudent is:

Class(marriedStudent complete student marriedPerson)

This says that marriedStudent is defined to be the intersection of the
student and marriedPerson classes. Any restrictions on properties ex-
pressed in the class axioms for student and marriedPerson will also apply
to properties of marriedStudent.

However, to express the concept that the home of the spouse is a pos-
sible extra value the lives property of a marriedPerson we must make
spouseHome a property. We then use the property axiom:

DatavaluedProperty(spouseHome super(lives) Functional)

Now, any recorded value for the spouseHome property of a married person
will automatically be returned as a value for the lives property of that
married person. Unfortunately we cannot in Owl define spouseHome as the
home of the spouse, since the language does not allow us to define properties
using rules. We will be forced to explicitly add values for this property to
descriptions of individual married persons whenever its value is different from
their home location. There is no way of stating in Owl that the value of the
spouseHome property must be the same as the home of the spouse.

7 Objects with changeable state

We can use dynamic relations, cells and re-assignable variables inside a Go!

labeled theory. Instances of such a class are objects that have changeable

7 OBJECTS WITH CHANGEABLE STATE 25

state. Below we define the familyPerson subclass of the person class. This
has two dynamic relations that can be accessed and augmented for stor-
ing other familyPerson objects which are the children and parents of the
familyPerson. It also has a cell that can be used to store a spouse, if and
when the person marries, and a re-assignable integer valued variable NumP.

familyPerson <˜ person.

familyPerson <˜
{addSpouse:[familyPerson]*. spouse:[familyPerson]{}.
addChild:[familyPerson]*. child:[familyPerson]{}.
addParent:[familyPerson]*. parent:[familyPerson]{}.
ancestor:[familyPerson]{}. descendant:[familyPerson]{}}.

familyPerson:[string,day,Gender,string]$=familyPerson.

familyPerson(Nm,Born,Sx,Hm)<=person(Nm,Born,Sx,Hm).

familyPerson(, , ,)..{
Spouse:cell[familyPerson]=$cell(_).

Child:dynamic[familyPerson]=$dynamic([]).

Parent:dynamic[familyPerson]=$dynamic([]).

NumP:integer:=0.

addSpouse(Sp)::var(Spouse.get()) ->

Spouse.set(Sp);Sp.addSpouse(this).

addSpouse(Sp) -> {}.
spouse(Sp) :- Sp=Spouse.get(),nonvar(Sp).

addChild(C)::\+child(C) ->

Child.add(C);C.addParent(this).

addChild(C)->{}.
child(C) :- Child.mem(C).

addParent(P)::NumP<2,\+parent(P) ->

Parent.add(P);NumP:=NumP+1;P.addChild(this).

addParent(P) -> {}.
parent(P):- Parent.mem(P).

ancestor(P) :- parent(P).

ancestor(A) :- parent(P), P.ancestor(A).

7 OBJECTS WITH CHANGEABLE STATE 26

descendant(C) :- child(C).

descendant(D) :- child(C),C.descendant(D).

${FamilyPerson.add(this)}
}.

... -- defs for isaFamilyPerson etc

Two new dynamic relations Child and Parent and a cell Spouse are created
for each new instance of the class, and are private to the object. These can
only be indirectly accessed using the methods addSpouse, spouse, addChild,
child and addParent, parent of the familyPerson interface. Each instance
also has its own private copy of the variable NumP that keeps a count of the
number of recorded parents. The Spouse cell is initialised to an anonymous
(hence unbound) variable. spouse is a relation rather than a function because
not every familyPerson will have a spouse. When there is no spouse a call
to spouse will fail.

Note the recursive definitions of the transitive ancestor and descendant

relations. They allow us to walk over a family tree from any familyPerson

on the tree.
We create an instance of the class without giving a spouse, parents or

children. We add them to the object after creation using the addSpouse,
addChild and addParent action methods. A call P.addSpouse(Sp) will, if
no spouse is yet recorded (the Spouse cell contains an unbound variable),
store Sp in the cell and then call Sp.addSpouse(P) to automatically add P

as the recorded spouse of Sp, if this is not yet recorded6. Similarly, a call
P.addChild(C) will automatically update the recorded parents of child C to
include P, if need be, and a C.addParent(P) call will update the recorded
children of P to include C, if need be. These automatically updates imple-
ment forward chaining inference using ontological knowledge that the spouse
relation is symmetric and that parent and child are inverses. In addition,
the addParent method will ignore an attempt to add an extra parent if two
are already recorded, implementing an ontology restriction that a person has
at most two parents.

We can construct a small family tree as follows:

J=newFamilyPerson("john",$day(...),male,"...");

6Sp.addSpouse(P) may now result in a recall of P.addSpouse(Sp) but this time the
second action rule for addSpouse will be used, ending the interaction.

7 OBJECTS WITH CHANGEABLE STATE 27

M=newFamilyPerson("mary",$day(...),female,"...");

creates J and M named "john", "mary"

J.addSpouse(M);

records M as spouse of J and vice versa

S=newFamilyPerson("sally",$day(...),female,"...");

J.addChild(S); M.addChild(S);

creates S named "sally", records S as a child of both

J and M and records J,M as parents of S

S.addChild(newFamilyPerson("paul",$day(...),male,"..."));

adds a new family person named "paul" as child

of S and adds S as a parent of the child

(J.descendant(D) *> stdout.outLine(D.name()));

will display names "sally", "paul" of descendants of J

{(FP.name(), {A.name()||FP.ancestor(A)},
{D.name()||FP.descendant(D)})

|| isaFamilyPerson(FP)}
is a list of triples containing for each family person

their name, names of ancestors, names of descendants

7.1 Incremental data and inverse and transitive prop-
erties in Owl

In an Owl ontology we can add information about a property value of an
individual at any time. Indeed we can add an extra axiom for a class at
any time. So an Owl ontology is inherently dynamic. Instead of explicitly
recursive definitions, in Owl we simply declare that descendant is a super
property of child and that it is transitive. We can also declare that parent
is the inverse of child, and that descendant is the inverse of ancestor.

Class(familyPerson partial person)

ObjectProperty(child super(descendant)

domain(familyPerson) range(familyPerson)

inverseOf(parent))

ObjectProperty(descendant

domain(familyPerson) range(familyPerson)

Transitive inverseOf(ancestor))

8 GENERAL RELATIONS INVOLVING OBJECTS 28

An Owl reasoner makes use of these declarations to infer information about
the child property from given information about the parent property, and
vice versa, and to infer values for the descendant and ancestor properties
from inferred or given values for these child and parent base properties. By
not requiring an explicit recursive definition of each transitive relation, and in
doing automatic inferences about properties that are declared as symmetric
or have inverses, Owl is more high level than Go!.

The restriction that a family person has at most two parents cannot be ex-
pressed as an Owl Lite restriction on the parent property in the familyPerson
class axiom. We can only require a maximum cardinality of 0 or 1 in Owl
Lite. In Owl DL we could specify a maximum cardinality of 2.

Other restrictions that we might want to enforce, such as the restriction
that the age of a child must be less than that of either of its parents, can
be implemented in Go! as extra tests in the addChild and addParent pro-
cedures. This restriction cannot be expressed in Owl Lite or Owl DL, as
numerical inequality constraints cannot be expressed.

8 General relations involving objects

So far we have only illustrated the use of binary relations as (unary) prop-
erties of objects of a class. Both Owl Lite and Owl DL can only use unary
properties in an ontology.

Sometimes it is useful to be able to use and to characterise more general
relations between classes. As an example, consider the ternary relationship
between three family persons C, P, A, that holds when A is an aunt of C

because A is a female]ing of a parent P of C.
Let us assume that we have added another property sibling to the

familyPerson type with the definition:

sibling:[familyPerson]{}.
sibling(S) :- parent(P)!,P.child(S),S!=this.

! is a postfix operator7 used to indicate that only one solution of a condition
is required. This defines a sibling, sufficient for our purposes, as any other
child of one of the parents - it does not matter which. (So, for us a sibling
has to share both parents.)

7Same symbol but very different semantics from the Prolog cut.

8 GENERAL RELATIONS INVOLVING OBJECTS 29

This property cannot be fully characterised in Owl. We can add a sibling
property to the familyPerson class, but we cannot restrict each value given
to this property to be a different child of a parent. This is similar to the
inability to restrict the lives property of a student to include the location
of their college, that we mentioned in section 4.1.

We can now define the terniary relation connecting a child C to an aunt
A via a parent P of the child. This can be defined as a global relation outside
the familyPerson class:

auntSinceSiblingOf:[familyPerson+,familyPerson,familyPerson]{}.
auntSinceSiblingOf(C,P,A) :-

C.parent(P),P.sibling(A),A.gender()=female.

In a call to this relation, the argument C must be given. The second and third
arguments may be given, or may be unbound variables to be bound by the
call. To generate all instances of the relation we can use a query conjunction:

isaFamilyPerson(C),auntSinceSiblingOf(C,P,A)

where C, P, A are all unbound variables.
The relation can also be defined as a binary relation inside the class

providing we add:

auntSinceSiblingOf:[familyPerson,familyPerson]{}.

to the interface type definition for familyPerson. The internal class defini-
tion is then:

auntSinceSiblingOf(P,A) :-

parent(P),P.sibling(A),A.gender()=female.

The above query becomes:

isaFamilyPerson(C),C.auntSinceSiblingOf(P,A)

In Go! class properties do not need to be all binary relations between an
instance of the class and the instance of another class or data value. They can
be (n+1)-ary relations relating a class instance to n other class instances or
data values. To represent the above relationship as a class property in Owl we
would have to add to the ontology an artificial class of familyPersonPairs,
with two functional properties first and second to access the components

9 SUMMARY AND RELATED WORK 30

of each pair. auntSinceSiblingOf can then be included as a property of a
family person with values from the class of familyPersonPairs. Values of
the property for a given individual would have to be explicitly given. There
is no way of specifying the restriction that the first component of each pair
must be a parent of the individual and the second must be a female sibling
of that parent. The most we could do is to restrict the ranges of the selector
properties so that first has values from the hasChild class defined by the
axiom:

Class(hasChild complete familyPerson

restriction child someValuesFrom(familyPerson))

and second has values from the hasSibing class:

Class(hasSibling complete familyPerson

restriction sibling someValuesFrom(familyPerson))

These restrictions ensure that each value for auntSinceSiblingOf comprises
a parent and a sibling, but do not ensure they are related to the individual
in question.

Here are some other definitions of non-binary relations involving objects.
We define them as class independent relations but each could be defined, with
one less argument, inside the class corresponding to their first argument.

bothAged:[person+,person+,integer]{}.
bothAged(FP1,FP2,A) :- A=FP1.age(),A=FP2.age().

bothLiveIn:[person+,person+,string]{}.
bothLiveIn(P1,P2,T) :- P1.lives(T),P2.lives(T).

bothStudySubjectAt:[student+,student+,symbol,college]{}.
bothStudySubjectAt(S1,S2,Sbj,Cge) :-

S1.studies(Sbj),S2.studies(Sbj),

Cge=S1.enrolled(),Cge=S2.enrolled().

9 Summary and related work

We hope we have convinced the reader that Go! is a rich language for build-
ing executable ontologies - for ontology oriented programming. By drawing

9 SUMMARY AND RELATED WORK 31

comparison with the features of Owl Lite, we have demonstrated that much
of what is considered necessary in an ontology description language can be
expressed directly or indirectly in Go!.

However, Owl Lite ontology specifications are more high level than the
class definitions in Go!. In Owl Lite characteristics of properties, such as
symmetry or transitivity, are declaratively specified. Owl DL allows one to
say that classes are disjoint and that the union of a set of classes is equivalent
to some other class. For example, one can say that animals, plants and
inanimates are disjoint and together cover all things. A full Owl inference
engine, provided by the translation of Owl into a description logic[11][3],
can reason using the class definitions themselves, and the statements about
relationships between classes. It can determine that one class is a subset of
another, using the descriptions of the classes provided in the class axioms.

Inference about the subsumption relationships between classes is not pos-
sible with the direct representation of ontology classes as Go! classes that we
have illustrated in this paper. A Go! class is a not a data value. It is code.
An alternative, meta-level representation, is investigated in [12]. There, each
Owl Lite class axiom becomes a Go! fact describing the named class. Each
property axiom similarly becomes a Go! fact about the named property. In-
dividuals are represented as instances of a single generic object class. This
generic class has meta-methods that give access to the names of the ontology
classes to which the individual has been declared or inferred to belong, the
names of all its defined properties, and a generic method for accessing the
current values of a given named property. New ontology class memberships
are inferred using range or domain constraints and complete class axioms.
Using this representation we can also reason, if need be, about subsumption
relationships between classes.

So, the direct representation of an ontology as Go! classes has weaker in-
ference capabilities when compared with a meta level representation in Go!

[12], or its representation in Owl Lite using description logic inference. In
compensation, the more direct representation has many ontology constraints
checked at compile time and property value access and update is direct and
fast. It is the far better approach to Go! based ontology oriented program-
ming when the extra inferences afforded by the meta-level representation are
not required, or are dispensable. This is the case when one only wants to
infer extra property values for instances of classes using ontological concepts,
and not to reason about the concepts themselves.

9 SUMMARY AND RELATED WORK 32

Ontologies with rules We have shown how Go!’s logic rules can be used
to extend the range of ontological relationships that can be expressed. They
can be used to define quite general relationships between class properties
(the definition of the marriedStudent lives relation being an example) and
to define n-ary relations. The ontology community recognizes the benefit of
augmenting ontology languages based on description logics with rules[13].

The SWRL language[14] (Semantic Web Rule Language) is an extension
of Owl DL to include a Horn clause rule language. Using such as extension,
one can augment an Owl ontology with n-ary relations. Here is the abstract
syntax version of a SWRL rule that defines the bothAged relation:

Implies(Antecedent(age(i-variable(FP1) d-variable(A))

age(i-variable(FP2) d-variable(A)))

Consequent(bothAged(i-variable(FP1) i-variable(FP2)))

SWRL indicates that a variable ranges over individuals or data values by
wrapping it by the functors i-variable, d-variable respectively.

WRL [15] (Web Rule Language), which builds upon F-Logic[16], a frame
based logic programming language, is another recent proposal to complement
Owl with rules. In WRL surface syntax the bothAged relation is defined by
the rule:

bothAged(?FP1,?FP2,?A) :-

?FP1[age hasValue ?A] and ?FP2[age hasValue ?A].

That age is a property of an individual is indicated by the use of the keyword
hasValue. Juxtaposition of an hasValue condition to a variable or name
indicates access to a property value of an individual. It is similar to Go!’s
use of dot as in FP1.age().

KIF[17], which is based on full first order logic, is used for ontology spec-
ification. It has no restrictions on the arity of ontology relations that can be
axiomatised. The KIF definition of bothAged is:

(defrelation bothAged (?FP1 ?FP2 ?A) :=

(and (age ?FP1 ?A) (age ?FP1 ?A)))

Flora-2[18], is another development of F-Logic that can be used for rule
based ontological knowledge representation. Like Go!, Flora-2 is a OO logic
programming language with multiple inheritance. Type information, anal-
ogous to Go!’s interface type declarations, can be asserted as facts. The
Flora-2 equivalent of the Go! type declaration:

REFERENCES 33

person <˜ {name:()=>string. age:[]=>integer.

home:[]=>string. lives:[string]{}}.

is the assertion:

person[name=>string, age=>integer,

home=>string, lives=>>string].

The =>> indicates that the lives attribute is multi-valued. The type asser-
tions do not seem to be used for type checking but they can be queried (see
below).

As in Go!, one can also define attributes using rules. For example, we
can state that for any person the value of the home property is a value of the
lives property using the rule:

P[lives-->H] :- person::P, P[home->H].

The infix :: is used to indicate class membership and is the equivalent to
our use of the isaPerson predicate.

Flora-2 has two other components. One is a higher order, or perhaps
more accurately a meta-order component, called HLog. This enables one to
query an object to find its attribute names, and whether they are single and
multiple valued, or to query a class type declaration to find the methods
for that class. Using this component one can reason about the relationships
between classes, as in Owl. To do this in Go! one has to use the meta-
level representation of classes and objects[12]. The other Flora-2 component
is transaction logic rules for specifying updates. Transaction logic rules are
similar to Go!’s action rules except that Flora-2 transaction rules can fail and
any updates already performed by the rule are then automatically undone.
A Go! action rule should not fail. It is an error if it does.

Finally, L&O [1], and two other object oriented extensions of Prolog,
Prolog++[19] and Logtalk[20], allow similar representation of ontological
concepts using a combination of class encapsulated rules, inheritance, and
meta-level inference. None of these languages is typed.

References

[1] F. G. McCabe. L&O: Logic and Objects. Prentice-Hall International,
1992.

REFERENCES 34

[2] N.M. Goldman. Ontology oriented programming - static typing for the
inconsistent programmer. In The Semantic Web, Proceedings of ISWC
2003, Sanibel Island, Florida, 2003. Springer-Verlag, LNAI, Vol 2870.

[3] P. F. Patel-Schneider et al. Owl web ontology language - se-
mantics and abstract syntax. W3C Candidate Recommendation,
http://www.w3.org/TR/2004/REC-owl-semantics-20040210/, 2003.

[4] K. L. Clark and F. G. McCabe. Go! – a Multi-paradigm programming
language for implementing Multi-threaded agents. Annals of Mathe-
matics and Artificial Intelligence, 41(2-4):171–206, 2004.

[5] S. McGuiness et al. Owl Web Ontology Language - Overview. W3C
candidate recommendation, http://www.w3.org/TR/owl, 2000.

[6] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From
SHIQ and RDF to OWL: The making of a web ontology language. J.
of Web Semantics, 1(1):7–26, 2003.

[7] Fergus Henderson Zoltan Somogyi and Thomas Conway. Mercury: an
efficient purely declarative logic programming language. In Proceedings
of the Australian Computer Science Conference, pages 499–512, 1995.

[8] M. Minsky. A framework for representing knowledge. In P. Winston,
editor, Psychology of Computer Vision, pages 211–277. MIT Press,
1975.

[9] R. Fikes et al. OWL-QL - A Language for Deductive Query
Answering on the Semantic Web. SL Technical Report 03-14,
http://ksl.stanford.edu/KSL Abstracts/KSL-03-14.html, 2003.

[10] K. L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors,
Logic and Databases, pages 293–322. Plenum press, 1978.

[11] Ian Horrocks and Sergio Tessaris. Querying the semantic web: a formal
approach. In Ian Horrocks and James Hendler, editors, Proc. of the
13th Int. Semantic Web Conf. (ISWC 2002), number 2342 in Lecture
Notes in Computer Science, pages 177–191. Springer-Verlag, 2002.

[12] K. L. Clark and F. G. McCabe. Ontology individual store as agent belief
store. Technical report, Dept. of Computing, Imperial College, London,
2004.

REFERENCES 35

[13] B. Grosof et al. Description Logic Programs: Combining Logic Programs
with Description Logics. In G. Hencsey and B. White, editors, Proc. of
the WWW-2003, 2003.

[14] Ian Horrocks, Peter F. Patel-Schneider, Sean Bechhofer, and Dmitry
Tsarkov. OWL rules: A proposal and prototype implementation. J. of
Web Semantics, 3(1):23–40, 2005.

[15] Jos de Bruijn et al. Web Rule Language (WRL), ver-
sion 1.0. Rule Markup Initiative Technical Report,
http://www.wsmo.org/wsml/wrl/wrl.html, 2005.

[16] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented
and frame-based languages. Journal of the ACM, 42:741–843, 1995.

[17] T. R. Gruber. Toward Principles for the Design of Ontologies used for
Knowledge Sharing. Technical report, Stanford University, http://ksl-
web.stanford.edu/KSL Abstracts/KSL-93-04.html, 1993.

[18] G. Yang, M. Kifer, and C. Zhao. Flora-2: A rule-based knowledge
representation and inference infrastructure for the semantic web. In
R. King, M. Orlowska, and R. Studer, editors, Proceedings on Ontolo-
gies, Databases and Applications of Semantics’03, LNAI 2888, pages
671–688. Springer Verlag, 2003.

[19] C. Moss. Prolog++: The Power of Object-Oriented and Logic Pro-
gramming. Addison-Wesly, 1994.

[20] P. J. Lopes de Moura. Logtalk: Design of an Object-Oriented Logic
Programming Language. PhD Thesis, Departamento de Informatica,
Universidade da Beira Interior, Portugal, 2003.

